LI Peng, LIU Xiaolan. Effects of Lactic Acid Bacteria Fermentation on Antioxidant Activity and Solubility of Rice Bran Protein[J]. Science and Technology of Food Industry, 2025, 46(7): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050317.
Citation: LI Peng, LIU Xiaolan. Effects of Lactic Acid Bacteria Fermentation on Antioxidant Activity and Solubility of Rice Bran Protein[J]. Science and Technology of Food Industry, 2025, 46(7): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050317.

Effects of Lactic Acid Bacteria Fermentation on Antioxidant Activity and Solubility of Rice Bran Protein

More Information
  • Received Date: May 26, 2024
  • Available Online: January 24, 2025
  • In order to improve the poor water solubility of rice bran protein, fully demonstrate its biological activity, and expand its application in industries such as food, this article used rice bran protein powder as a raw material, first hydrolyzing rice bran protein with protease, and then fermented the rice bran protein hydrolysate with lactic acid bacteria to prepare products with high antioxidant activity. The results showed that the optimal enzymatic hydrolysis conditions were alcalase addition of 700 U/g, substrate concentration of 13% (w/v, calculated by protein), hydrolysis time of 3 h, hydrolysis pH of 8.5, and hydrolysis temperature of 60 ℃. The optimal fermentation condition was 2% (v/v, inoculation dose of 108 CFU/mL) of Lactobacillus plantarum 13110, initial pH of fermentation medium 5.5, fermentation temperature of 31 ℃, and fermentation time of 36 h. Compared with the enzymatic hydrolysate of rice bran protein, after fermentation by Lactobacillus plantarum 13110, the DPPH free radical scavenging rate of the fermentation broth increased from 36.12% to 57.42% (sample protein concentration of 1 mg/mL), the ABTS+ free radical scavenging rate increased from 76.27% to 90.35% (sample protein concentration of 0.5 mg/mL), and the peptide components with molecular weight less than 1.0 kDa increased from 0.67% to 6.84%. The solubility of rice bran protein was only 13.43% at pH 7, while its solubility after enzymatic hydrolysis and fermentation was 72.12% and 85.38%, respectively. In summary, the synergistic fermentation of enzymes and bacteria can effectively improve the antioxidant activity and solubility of rice bran protein, providing technical support for the application of rice bran protein as a functional food substrate.
  • loading
  • [1]
    RODRIGUEZ-RESTREPO Y A, FERREIRA-SANTOS P, ORREGO C E, et al. Valorization of rice by products:Protein phenolic based fractions with bioactive potential[J]. Journal of Cereal Science,2020,95:103039. doi: 10.1016/j.jcs.2020.103039
    [2]
    CHO S J. Changes in the antioxidant properties of rice bran protein isolate upon simulated gastrointestinal digestion[J]. LWT-Food Science and Technology,2020,126(4):109206.
    [3]
    PHONGTHAI S, HOMTHAWORNCHOO W, RAWDKUEN S. Preparation, properties and application of rice bran protein:A review[J]. International Food Research Journal,2017,24(1):25−34.
    [4]
    藏小丹, 董良伟, 李凤玉, 等. 酶种类对米糠蛋白酶解物抗氧化及加工特性的影响[J]. 粮食与油脂,2018,31(6):80−83. [ZANG X D, DONG L W, LI F Y, et al. Effects of enzyme types on antioxidant and processing properties of rice bran protein hydrolysate[J]. Grain and Oils,2018,31(6):80−83.] doi: 10.3969/j.issn.1008-9578.2018.06.021

    ZANG X D, DONG L W, LI F Y, et al. Effects of enzyme types on antioxidant and processing properties of rice bran protein hydrolysate[J]. Grain and Oils, 2018, 31(6): 80−83. doi: 10.3969/j.issn.1008-9578.2018.06.021
    [5]
    OLUTAYO T O, ADETOKUNBO A O, SEUN B O, et al. Correction:Antihypertensive effect of polyphenol-rich fraction of Azadirachta indica on Nω-nitro-L-arginine methyl ester-induced hypertension and cardiorenal dysfunction[J]. Drug Research,2019,69(1):12−22. doi: 10.1055/a-0635-0638
    [6]
    邹智鹏, 王明洁, 刘梦婷, 等. 小米米糠蛋白水解物及其膜分离组分的降血压相关活性研究[J]. 中国粮油学报,2020,35(6):31−38. [ZOU Z P, WANG M J, LIU M T, et al. Study on the antihypertensive activity of millet bran protein hydrolysate and its membrane separation fractions[J]. Journal of the Chinese Cereals and Oils Association,2020,35(6):31−38.] doi: 10.3969/j.issn.1003-0174.2020.06.005

    ZOU Z P, WANG M J, LIU M T, et al. Study on the antihypertensive activity of millet bran protein hydrolysate and its membrane separation fractions[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(6): 31−38. doi: 10.3969/j.issn.1003-0174.2020.06.005
    [7]
    文伟, 张名位, 刘磊, 等. 乳酸菌发酵对脱脂米糠中糖和酚类物质含量的影响[J]. 现代食品科技,2016,32(2):137−141. [WEN W, ZHANG M W, LIU L, et al. Effects of lactic acid bacteria fermentation on the content of sugars and polyphenols of defatted rice bran[J]. Modern Food Science and Technology,2016,32(2):137−141.]

    WEN W, ZHANG M W, LIU L, et al. Effects of lactic acid bacteria fermentation on the content of sugars and polyphenols of defatted rice bran[J]. Modern Food Science and Technology, 2016, 32(2): 137−141.
    [8]
    周梅, 张敏. 米糠蛋白抗氧化活性肽的制备[J]. 天然产物研究与开发,2012,24(6):793−799. [ZHOU M, ZHANG M. Preparation of antioxidant peptides from rice bran protein[J]. Natural Product Research and Development,2012,24(6):793−799.] doi: 10.3969/j.issn.1001-6880.2012.06.019

    ZHOU M, ZHANG M. Preparation of antioxidant peptides from rice bran protein[J]. Natural Product Research and Development, 2012, 24(6): 793−799. doi: 10.3969/j.issn.1001-6880.2012.06.019
    [9]
    魏明, 薛正莲, 赵世光, 等. 米曲霉发酵米糠制取米糠多肽及其抗氧化活性研究[J]. 食品工业科技,2014,35(19):114−118. [WEI M, XUE Z L, ZHAO S G, et al. Study on the preparation of peptides from rice bran and antioxidant activity by Aspergillus oryzae fermentation[J]. Science and Technology of Food Industry,2014,35(19):114−118.]

    WEI M, XUE Z L, ZHAO S G, et al. Study on the preparation of peptides from rice bran and antioxidant activity by Aspergillus oryzae fermentation[J]. Science and Technology of Food Industry, 2014, 35(19): 114−118.
    [10]
    RIVERO-PINO F, LEON M J, MILLAN-LINARES M C, et al. Anti-microbial plant-derived peptides obtained by enzymatic hydrolysis and fermentation as components to improve current food systems[J]. Trends in Food Science & Technology,2023,135:32−42.
    [11]
    刘羽婷, 宫春宇, 廉雅雯, 等. 不同预处理方式对玉米须多糖提取及抗氧化活性的影响[J]. 食品科技,2022,47(4):209−215. [LIU Y T, GONG C Y, LIAN Y W, et al. Effects of different pretreatment methods on the extraction and antioxidant activity of corn silk polysaccharides[J]. Food Science and Technology,2022,47(4):209−215.] doi: 10.3969/j.issn.1005-9989.2022.4.spkj202204030

    LIU Y T, GONG C Y, LIAN Y W, et al. Effects of different pretreatment methods on the extraction and antioxidant activity of corn silk polysaccharides[J]. Food Science and Technology, 2022, 47(4): 209−215. doi: 10.3969/j.issn.1005-9989.2022.4.spkj202204030
    [12]
    何远清, 郭蕊, 陈敏. 一种燕麦抗氧化肽的制备及纯化鉴定方法[P]. 江苏省:CN202210307008.7, 2022-08-30. [HE Y Q, GUO R, CHEN M. Preparation, purification and identification method of oat antioxidant peptide[P]. Jiangsu Province CN202210307008.7, 2022-08-30.]

    HE Y Q, GUO R, CHEN M. Preparation, purification and identification method of oat antioxidant peptide[P]. Jiangsu Province CN202210307008.7, 2022-08-30.
    [13]
    URAIPONG C, ZHAO J. In vitro digestion of rice bran proteins produces peptides with potent inhibitory effects on α-lucosidase and angiotensin I converting enzyme[J]. Journal of the Science of Food Agriculture,2018,98(2):758−766. doi: 10.1002/jsfa.8523
    [14]
    刘容旭, 李春雨, 王语聪, 等. 超高压辅助酶解法改性汉麻分离蛋白及其理化性质的研究[J]. 食品工业科技,2023,44(19):99−107. [LIU R X, LI C Y, WANG Y C, et al. Study on the modification of hemp protein isolate by ultrahigh pressure assisted enzymatic hydrolysis and its physicochemical properties[J]. Food Industry Science and Technology,2023,44(19):99−107.]

    LIU R X, LI C Y, WANG Y C, et al. Study on the modification of hemp protein isolate by ultrahigh pressure assisted enzymatic hydrolysis and its physicochemical properties[J]. Food Industry Science and Technology, 2023, 44(19): 99−107.
    [15]
    张相伦. 氧化大豆蛋白对肉鸡的损伤及不同类型维生素E的缓解作用及相关机制研究[D]. 南京:南京农业大学, 2016. [ZHANG X L. Study on the damage of oxidized soy protein to broilers and the mitigating effects of different types of vitamin E and related mechanisms[D]. Nanjing:Nanjing Agricultural University, 2016.]

    ZHANG X L. Study on the damage of oxidized soy protein to broilers and the mitigating effects of different types of vitamin E and related mechanisms[D]. Nanjing: Nanjing Agricultural University, 2016.
    [16]
    吴琛, 刘俊锋, 孔祥峰, 等. 饲粮精氨酸与丙氨酸对环江香猪肉质、氨基酸组成及抗氧化功能的影响[J]. 动物营养学报,2012,24(3):528−533. [WU C, LIU J F, KONG X F, et al. Effects of dietary arginine and alanine on meat quality, amino acid composition and antioxidant function of Huanjiang Xiang pigs[J]. Journal of Animal Nutrition,2012,24(3):528−533.] doi: 10.3969/j.issn.1006-267x.2012.03.020

    WU C, LIU J F, KONG X F, et al. Effects of dietary arginine and alanine on meat quality, amino acid composition and antioxidant function of Huanjiang Xiang pigs[J]. Journal of Animal Nutrition, 2012, 24(3): 528−533. doi: 10.3969/j.issn.1006-267x.2012.03.020
    [17]
    杨旭洲, 陈佩瑶, 张富新. 抗氧化乳酸菌的筛选及其益生特性评价[J]. 食品与发酵工业,2023,49(10):17−23. [YANG X Z, CHEN P Y, ZHANG F X. Screening of antioxidant lactic acid bacteria and evaluation of their probiotic properties[J]. Food and Fermentation Industries,2023,49(10):17−23.]

    YANG X Z, CHEN P Y, ZHANG F X. Screening of antioxidant lactic acid bacteria and evaluation of their probiotic properties[J]. Food and Fermentation Industries, 2023, 49(10): 17−23.
    [18]
    LIU M J, JUMAMURAT B, BERNADET R, et al. The proteolytic system of lactic acid bacteria revisited:A genomic comparison[J]. BMC Genomics,2010,11(1):36. doi: 10.1186/1471-2164-11-36
    [19]
    EDMUND R S K, ANJA H, DE VRIES C J, et al. Transport of β-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis[J]. Journal of Biological Chemistry,1995,270(4):1569−1574. doi: 10.1074/jbc.270.4.1569
    [20]
    张倩芳, 李敏, 栗红瑜, 等. 燕麦麸皮枯草芽孢杆菌固态发酵工艺优化[J]. 农产品加工,2023(14):39−41,45. [ZHANG Q F, LI M, LI H Y, et al. Optimization of solid-state fermentation process of oat bran with Bacillus subtilis[J]. Agricultural Products Processing,2023(14):39−41,45.]

    ZHANG Q F, LI M, LI H Y, et al. Optimization of solid-state fermentation process of oat bran with Bacillus subtilis[J]. Agricultural Products Processing, 2023(14): 39−41,45.
    [21]
    龙久铃, 朱秋劲, 白晶, 等. 米曲霉固态发酵苏麻饼粕产抗氧化肽工艺优化[J]. 轻工学报,2021,36(4):18−28. [LONG J L, ZHU Q J, BAI J, et al. Optimization of the process for producing antioxidant peptides from Aspergillus oryzae solid-state fermentation of hemp cake[J]. Journal of Light Industry,2021,36(4):18−28.] doi: 10.12187/2021.04.003

    LONG J L, ZHU Q J, BAI J, et al. Optimization of the process for producing antioxidant peptides from Aspergillus oryzae solid-state fermentation of hemp cake[J]. Journal of Light Industry, 2021, 36(4): 18−28. doi: 10.12187/2021.04.003
    [22]
    周笑犁, 卢颖, 朱坤珑, 等. 刺梨果渣多糖的发酵制备工艺优化及其抗氧化活性研究[J]. 食品研究与开发,2019,40(14):24−29. [ZHOU X L, LU Y, ZHU K L, et al. Optimization of fermentation preparation process of polysaccharide from Roxburghii pomace and its antioxidant activity[J]. Food Research and Development,2019,40(14):24−29.]

    ZHOU X L, LU Y, ZHU K L, et al. Optimization of fermentation preparation process of polysaccharide from Roxburghii pomace and its antioxidant activity[J]. Food Research and Development, 2019, 40(14): 24−29.
    [23]
    谢晓阳, 李晓, 王伟, 等. 灵芝子实体多糖发酵工艺条件优化及抗氧化活性[J]. 食品研究与开发,2023,44(10):107−115. [XIE X Y, LI X, WANG W, et al. Optimization of fermentation conditions and antioxidant activity of polysaccharides from Ganoderma lucidum fruiting bodies[J]. Food Research and Development,2023,44(10):107−115.]

    XIE X Y, LI X, WANG W, et al. Optimization of fermentation conditions and antioxidant activity of polysaccharides from Ganoderma lucidum fruiting bodies[J]. Food Research and Development, 2023, 44(10): 107−115.
    [24]
    陈惠敏, 吴晓平, 汪少芸. 黑豆粕饮料发酵工艺的优化及其抗氧化活性评价[J]. 食品工业科技,2023,44(5):129−138. [CHEN H M, WU X P, WANG S Y. Optimization of fermentation process of black soybean meal beverage and evaluation of its antioxidant activity[J]. Science and Technology of Food Industry,2023,44(5):129−138.]

    CHEN H M, WU X P, WANG S Y. Optimization of fermentation process of black soybean meal beverage and evaluation of its antioxidant activity[J]. Science and Technology of Food Industry, 2023, 44(5): 129−138.
    [25]
    朱立斌, 朱丹, 牛广财, 等. 毛酸浆乳酸发酵工艺优化及其抗氧化活性[J]. 食品科技,2020,45(7):50−56. [ZHU L B, ZHU D, NIU G C, et al. Optimization of lactic acid fermentation process of Physalis pubescens and its antioxidant activity[J]. Food Science and Technology,2020,45(7):50−56.]

    ZHU L B, ZHU D, NIU G C, et al. Optimization of lactic acid fermentation process of Physalis pubescens and its antioxidant activity[J]. Food Science and Technology, 2020, 45(7): 50−56.
    [26]
    张微漾, 陈毅保, 王怡雯, 等. 花生粕固态发酵产物的抗氧化活性研究[J]. 粮食与油脂,2023,36(9):123−127. [ZHANG W Y, CHEN Y B, WANG Y W, et al. Study on the antioxidant activity of solid-state fermentation products of peanut meal[J]. Grain and Oils,2023,36(9):123−127.] doi: 10.3969/j.issn.1008-9578.2023.09.026

    ZHANG W Y, CHEN Y B, WANG Y W, et al. Study on the antioxidant activity of solid-state fermentation products of peanut meal[J]. Grain and Oils, 2023, 36(9): 123−127. doi: 10.3969/j.issn.1008-9578.2023.09.026
    [27]
    宋茹, 夏宇, 韦荣编, 等. 枯草芽孢杆菌转化鱿鱼墨制备抗氧化型发酵液[J]. 中国食品学报,2014,14(3):78−85. [SONG R, XIA Y, WEI R B, et al. Preparation of antioxidant fermentation broth from squid ink transformed by Bacillus subtilis[J]. Journal of Chinese Institute of Food Science and Technology,2014,14(3):78−85.]

    SONG R, XIA Y, WEI R B, et al. Preparation of antioxidant fermentation broth from squid ink transformed by Bacillus subtilis[J]. Journal of Chinese Institute of Food Science and Technology, 2014, 14(3): 78−85.
    [28]
    杨玉蓉, 李安平, 钟政昌, 等. 桃仁多肽螯合亚铁的结构表征及体外模拟消化[J]. 中国食品学报,2020,20(2):61−69. [YANG Y R, LI A P, ZHONG Z C, et al. Structural characterization and in vitro simulated digestion of peach kernel polypeptide chelated ferrous iron[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(2):61−69.]

    YANG Y R, LI A P, ZHONG Z C, et al. Structural characterization and in vitro simulated digestion of peach kernel polypeptide chelated ferrous iron[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(2): 61−69.
    [29]
    Energy and protein requirements. Report of a Joint FAO/WHO Ad Hoc Expert Committee[R]. Rome:World Health Organization technical report series, 1973(522):1−118.
    [30]
    李平, 杨婷, 周辉, 等. 干腌火腿中生物活性肽功能特性研究进展[J]. 食品科学,2021,42(11):278−283. [LI P, YANG T, ZHOU H, et al. Research progress on functional properties of bioactive peptides in dry-cured ham[J]. Food Science,2021,42(11):278−283.] doi: 10.7506/spkx1002-6630-20200418-238

    LI P, YANG T, ZHOU H, et al. Research progress on functional properties of bioactive peptides in dry-cured ham[J]. Food Science, 2021, 42(11): 278−283. doi: 10.7506/spkx1002-6630-20200418-238
    [31]
    RANATHUNGA S, RAJAPAKSE N, KIM S. Purification and characterization of antioxidative peptide derived from muscle of conger eel (Conger myriaster)[J]. European Food Research & Technology,2006,222(3−4):310−315.
    [32]
    CAO X H, WEN H B, LI C J, et al. Differences in functional properties and biochemical characteristics of congenetic rice proteins[J]. Journal of Cereal Science,2009,50(2):184−189. doi: 10.1016/j.jcs.2009.04.009
    [33]
    谭力铭, 曹妍, 裴海生, 等. 酶法制备酸枣仁ACE抑制肽理化性质研究[J]. 食品工业科技,2022,43(2):84−92. [TAN L M, CAO Y, PEI H S, et al. Study on the physicochemical properties of ACE inhibitory peptides from jujube seeds prepared by enzymatic method[J]. Food Industry Science and Technology,2022,43(2):84−92.]

    TAN L M, CAO Y, PEI H S, et al. Study on the physicochemical properties of ACE inhibitory peptides from jujube seeds prepared by enzymatic method[J]. Food Industry Science and Technology, 2022, 43(2): 84−92.

Catalog

    Article Metrics

    Article views (46) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return