Citation: | YIN Jing, ZENG Xinxin, ZHOU Yanyan, et al. Advances in the Preparation and Application of Nanochitin in the Food Industry[J]. Science and Technology of Food Industry, 2025, 46(7): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040135. |
[1] |
WU J, LIN H, MEREDITH J C. Poly(ethylene oxide) bionanocomposites reinforced with chitin nanofiber networks[J]. Polymer,2016(84):267−274.
|
[2] |
SALABERRIA A M, LABIDI J, FERNANDES S C M. Different routes to turn chitin into stunning nano-objects[J]. European Polymer Journal,2015,68:503−515. doi: 10.1016/j.eurpolymj.2015.03.005
|
[3] |
ISLAM S, BHUIYAN M A R, ISLAM M N. Chitin and chitosan:Structure, properties and applications in biomedical engineering[J]. Journal of Polymers and the Environment,2016,25(3):854−866.
|
[4] |
MOHAN K, RAVICHANDRAN S, MURALISANKAR T, et al. Extraction and characterization of chitin from sea snail conus inscriptus (Reeve, 1843)[J]. International Journal of Biological Macromolecules,2019,126:555−560. doi: 10.1016/j.ijbiomac.2018.12.241
|
[5] |
XU J, LIU S, CHEN G, et al. Engineering biocompatible hydrogels from bicomponent natural nanofibers for anticancer drug delivery[J]. J Agric Food Chem,2018,66(4):935−942. doi: 10.1021/acs.jafc.7b04210
|
[6] |
XU J, DENG X, DONG Y, et al. High-strength, transparent and superhydrophobic nanocellulose/nanochitin membranes fabricated via crosslinking of nanofibers and coating F-SiO2 suspensions[J]. [J]. Carbohydrate Polymers,2020,247:116694. doi: 10.1016/j.carbpol.2020.116694
|
[7] |
YOUNES I, HAJJI S, RINAUDO M, et al. Optimization of proteins and minerals removal from shrimp shells to produce highly acetylated chitin[J]. International Journal of Biological Macromolecules,2016,84:246−253. doi: 10.1016/j.ijbiomac.2015.08.034
|
[8] |
USMAN A, ZIA K M, ZUBER M, et al. Chitin and chitosan based polyurethanes:A review of recent advances and prospective biomedical applications[J]. International Journal of Biological Macromolecules,2016,86:630−645. doi: 10.1016/j.ijbiomac.2016.02.004
|
[9] |
ZHANG J, MOHD SAID F, JING Z. Hydrogels based on seafood chitin:From extraction to the development[J]. International Journal of Biological Macromolecules,2023,253:126482. doi: 10.1016/j.ijbiomac.2023.126482
|
[10] |
ZHANG H, XU M, LUO H, et al. Interfacial assembly of chitin/Mn3O4 composite hydrogels as photothermal antibacterial platform for infected wound healing[J]. International Journal of Biological Macromolecules,2023,243:124362. doi: 10.1016/j.ijbiomac.2023.124362
|
[11] |
LÜ S, ZHOU H, BAI L, et al. Development of food-grade pickering emulsions stabilized by a mixture of cellulose nanofibrils and nanochitin[J]. Food Hydrocolloids,2021,113:106451. doi: 10.1016/j.foodhyd.2020.106451
|
[12] |
WANG M, ZHOU J, SELMA-ROYO M, et al. Potential benefits of high-added-value compounds from aquaculture and fish side streams on human gut microbiota[J]. Trends in Food Science & Technology,2021,112:484−494.
|
[13] |
WENG S, MARCET I, RENDUELES M, et al. Insect-derived materials for food packaging-a review[J]. Food Packaging and Shelf Life,2023,38:101097. doi: 10.1016/j.fpsl.2023.101097
|
[14] |
DUAN B, LIU F, HE M, et al. Ag-Fe3O4 nanocomposites@chitin microspheres constructed by in situ one-pot synthesis for rapid hydrogenation catalysis[J]. Green Chem,2014,16(5):2835−2845. doi: 10.1039/C3GC42637H
|
[15] |
KING C, SHAMSHINA J L, GURAU G, et al. A platform for more sustainable chitin films from an ionic liquid process[J]. Green Chemistry,2017,19(1):117−126. doi: 10.1039/C6GC02201D
|
[16] |
HUANG J, ZHONG Y, ZHANG L, et al. Extremely strong and transparent chitin films:A high-efficiency, energy-saving, and "Green" route using an aqueous KOH/Urea solution[J]. Advanced Functional Materials,2017,27(26):1701100. doi: 10.1002/adfm.201701100
|
[17] |
JAHED E, KHALEDABAD M A, ALMASI H, et al. Physicochemical properties of carum copticum essential oil loaded chitosan films containing organic nanoreinforcements[J]. Carbohydrate Polymers,2017,164:325−338. doi: 10.1016/j.carbpol.2017.02.022
|
[18] |
李彩荣. 改性甲壳素晶须/聚乳酸纳米复合材料的制备及其性能研究[D]. 广州:暨南大学, 2015. [LI C R. Preparation and properties of modified chitin whisker/ PLLA nanocomposites[D]. Guangzhou:Jinan University, 2015.]
LI C R. Preparation and properties of modified chitin whisker/ PLLA nanocomposites[D]. Guangzhou: Jinan University, 2015.
|
[19] |
吴双泉. 甲壳素/碳纳米管复合材料的构建及其在生物医学的应用[D]. 武汉:武汉大学, 2017. [WU S Q. Construction and biomedical applications of chitin/carbon nanotube composite materials[D]. Wuhan:Wuhan University, 2017.]
WU S Q. Construction and biomedical applications of chitin/carbon nanotube composite materials[D]. Wuhan: Wuhan University, 2017.
|
[20] |
ZHOU H, TAN Y, LÜ S, et al. Nanochitin-stabilized pickering emulsions:Influence of nanochitin on lipid digestibility and vitamin bioaccessibility[J]. Food Hydrocolloids,2020,106:105878. doi: 10.1016/j.foodhyd.2020.105878
|
[21] |
ZOU Y, LI X, YU J, et al. The effect of nanochitin on gastrointestinal digestion of starch and protein:Role of surface charge and size[J]. Food Hydrocolloids,2024,146:109312. doi: 10.1016/j.foodhyd.2023.109312
|
[22] |
欧贤凤. 甲壳素纳米晶的改性及其用于染料吸附和双疏涂层的研究[D]. 广州:暨南大学, 2020. [OU X F. Modification of chitin nanocrystals and their application in dye adsorption and amphiphobic coating[D]. Guangzhou:Jinan University, 2020.]
OU X F. Modification of chitin nanocrystals and their application in dye adsorption and amphiphobic coating[D]. Guangzhou: Jinan University, 2020.
|
[23] |
ARAKI J, KURIHARA M. Preparation of sterically stabilized chitin nanowhisker dispersions by grafting of poly(ethylene glycol) and evaluation of their dispersion stability[J]. Biomacromolecules,2014,16(1):379−388.
|
[24] |
GOODRICH J D, WINTER W T. r-Chitin nanocrystals prepared from shrimp shells and their specific surface area measurement[J]. Biomacromolecules,2007,8(1):252−257. doi: 10.1021/bm0603589
|
[25] |
WONGPANIT P, SANCHAVANAKIT N, PAVASANT P, et al. Preparation and characterization of chitin whisker-reinforced silk fibroin nanocomposite sponges[J]. European Polymer Journal,2007,43(10):4123−4135. doi: 10.1016/j.eurpolymj.2007.07.004
|
[26] |
汪凯. 球磨法制备石墨烯_甲壳素纳米纤维杂化材料及其应用[D]. 青岛:青岛科技大学, 2018. [WANG K. The ball-milling preparation, functionalization of graphene/chitin nanofibers hybrids and their application[J]. Qingdao:Qingdao University of Science &Technology, 2018.]
WANG K. The ball-milling preparation, functionalization of graphene/chitin nanofibers hybrids and their application[J]. Qingdao: Qingdao University of Science &Technology, 2018.
|
[27] |
NGASOTTER S, SAMPATH L, XAVIER K A M. Nanochitin:An update review on advances in preparation methods and food applications[J]. Carbohydr Polym,2022,291:119627. doi: 10.1016/j.carbpol.2022.119627
|
[28] |
SHAMSHINA J L, BERTON P, ROGERS R D. Advances in functional chitin materials:A review[J]. ACS Sustainable Chemistry & Engineering,2019,7(7):6444−6457.
|
[29] |
孙绪兵, 杜京城, 由耀辉. 纳米甲壳素的制备、改性及应用研究进展[J]. 高分子通报,2016(8):71−80. [SUN X B, DU J C, YOU Y H. Research progress in the preparation, modification, and application of nanochitin[J]. Polymer Bulletin,2016(8):71−80.]
SUN X B, DU J C, YOU Y H. Research progress in the preparation, modification, and application of nanochitin[J]. Polymer Bulletin, 2016(8): 71−80.
|
[30] |
KISHIMOTO M, IZAWA H, SAIMOTO H, et al. Dyeing of chitin nanofibers with reactive dyes and preparation of their sheets and nanofiber/resin composites[J]. Cellulose,2021,29(5):2829−2837.
|
[31] |
IFUKU S. Chitin and chitosan nanofibers:Preparation and chemical modifications[J]. Molecules,2014,19(11):18367−18380. doi: 10.3390/molecules191118367
|
[32] |
ZHANG X, ROLANDI M. Engineering strategies for chitin nanofibers[J]. J Mater Chem B,2017,5(14):2547−2559. doi: 10.1039/C6TB03324E
|
[33] |
ZHANG Y, JIANG J, LIU L, et al. Preparation, assessment, and comparison of α-chitin nano-fiber films with different surface charges[J]. Nanoscale Research Letters,2015,10(1):226. doi: 10.1186/s11671-015-0926-z
|
[34] |
ZOU H, LIN B, XU C, et al. Preparation and characterization of individual chitin nanofibers with high stability from chitin gels by low-intensity ultrasonication for antibacterial finishing[J]. Cellulose,2017,25(2):999−1010.
|
[35] |
LARBI F, GARCíA A, DEL VALLE L J, et al. Comparison of nanocrystals and nanofibers produced from shrimp shell α-chitin:From energy production to material cytotoxicity and Pickering emulsion properties[J]. Carbohydrate Polymers,2018,196:385−397. doi: 10.1016/j.carbpol.2018.04.094
|
[36] |
ZHONG C, COOPER A, KAPETANOVIC A, et al. A facile bottom-up route to self-assembled biogenic chitin nanofibers[J]. Soft Matter,2010,6(21):5298. doi: 10.1039/c0sm00450b
|
[37] |
MALLIK A K, SAKIB M N, SHAHARUZZAMAN M, et al. Chitin nanomaterials:Preparation and surface modifications [M]. Handbook of Chitin and Chitosan, 2020:165−194.
|
[38] |
IFUKU S, IKUTA A, HOSOMI T, et al. Preparation of polysilsesquioxane-urethaneacrylate copolymer film reinforced with chitin nanofibers[J]. Carbohydr Polym,2012,89(3):865−869. doi: 10.1016/j.carbpol.2012.04.022
|
[39] |
CHEN C, LI D, YANO H, et al. Bioinspired hydrogels:Quinone crosslinking reaction for chitin nanofibers with enhanced mechanical strength via surface deacetylation[J]. Carbohydr Polym,2019,207:411−417. doi: 10.1016/j.carbpol.2018.12.007
|
[40] |
GAO K, GUO Y, NIU Q, et al. Effects of chitin nanofibers on the microstructure and properties of cellulose nanofibers/chitin nanofibers composite aerogels[J]. Cellulose,2018,25(8):4591−4602. doi: 10.1007/s10570-018-1899-8
|
[41] |
ABDELRAHMAN R M, ABDEL-MOHSEN A M, ZBONCAK M, et al. Hyaluronan biofilms reinforced with partially deacetylated chitin nanowhiskers:Extraction, fabrication, in-vitro and antibacterial properties of advanced nanocomposites[J]. Carbohydrate Polymers,2020,235:115951. doi: 10.1016/j.carbpol.2020.115951
|
[42] |
HSUEH C Y, TSAI M L, LIU T. Enhancing saltiness perception using chitin nanofibers when curing tilapia fillets[J]. LWT,2017,86:93−98. doi: 10.1016/j.lwt.2017.07.057
|
[43] |
LU Y, SUN Q, SHE X, et al. Fabrication and characterisation of α-chitin nanofibers and highly transparent chitin films by pulsed ultrasonication[J]. Carbohydrate Polymers,2013,98(2):1497−1504. doi: 10.1016/j.carbpol.2013.07.038
|
[44] |
IFUKU. S, NOGI. M, ABE. K, et al. Preparation of chitin nanofibers with a uniform width as r-Chitin from crab shells[J]. Biomacromolecules,2009,10(6):1584−1588. doi: 10.1021/bm900163d
|
[45] |
AKLOG Y F, NAGAE T, IZAWA H, et al. Preparation of chitin nanofibers by surface esterification of chitin with maleic anhydride and mechanical treatment[J]. Carbohydr Polym,2016,153:55−59. doi: 10.1016/j.carbpol.2016.07.060
|
[46] |
SIAHKAMARI M, JAMALI A, SABZEVARI A, et al. Removal of Lead(II) ions from aqueous solutions using biocompatible polymeric nano-adsorbents:A comparative study[J]. Carbohydrate Polymers,2017,157:1180−1189. doi: 10.1016/j.carbpol.2016.10.085
|
[47] |
FAZLI WAN NAWAWI W M, LEE K Y, KONTTURI E, et al. Chitin nanopaper from mushroom extract:natural composite of nanofibers and glucan from a single biobased source[J]. ACS Sustainable Chemistry & Engineering,2019,7(7):6492−6496.
|
[48] |
SALABERRIA A M, FERNANDES S C M, DIAZ R H, et al. Processing of α-chitin nanofibers by dynamic high pressure homogenization:Characterization and antifungal activity against A. niger[J]. Carbohydrate Polymers,2015,116:286−291. doi: 10.1016/j.carbpol.2014.04.047
|
[49] |
MUSHI N E, NISHINO T, BERGLUND L A, et al. Strong and tough chitin film from α-chitin nanofibers prepared by high pressure homogenization and chitosan addition[J]. ACS Sustainable Chemistry & Engineering,2018,7(1):1692−1697.
|
[50] |
WU C, LI Y, SUN J, et al. Novel konjac glucomannan films with oxidized chitin nanocrystals immobilized red cabbage anthocyanins for intelligent food packaging[J]. Food Hydrocolloids,2020,98:105245. doi: 10.1016/j.foodhyd.2019.105245
|
[51] |
WU C, SUN J, CHEN M, et al. Effect of oxidized chitin nanocrystals and curcumin into chitosan films for seafood freshness monitoring[J]. Food Hydrocolloids,2019,95:308−317. doi: 10.1016/j.foodhyd.2019.04.047
|
[52] |
YE W, YOKOTA S, FAN Y, et al. A combination of aqueous counter collision and TEMPO-mediated oxidation for doubled carboxyl contents of α-chitin nanofibers[J]. Cellulose,2021,28(4):2167−2181. doi: 10.1007/s10570-021-03676-2
|
[53] |
YE W, HU Y, MA H, et al. Comparison of cast films and hydrogels based on chitin nanofibers prepared using TEMPO/NaBr/NaClO and TEMPO/NaClO/NaClO2 systems[J]. Carbohydrate Polymers,2020,237:116125. doi: 10.1016/j.carbpol.2020.116125
|
[54] |
XU Y, LIANG K, ULLAH W, et al. Chitin nanocrystal enhanced wet adhesion performance of mussel-inspired citrate-based soft-tissue adhesive[J]. Carbohydrate Polymers,2018,190:324−330. doi: 10.1016/j.carbpol.2018.03.005
|
[55] |
QIN Y, ZHANG S, YU J, et al. Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films[J]. Carbohydr Polym,2016,147:372−378. doi: 10.1016/j.carbpol.2016.03.095
|
[56] |
OUN A A, RHIM J W. Effect of isolation methods of chitin nanocrystals on the properties of chitin-silver hybrid nanoparticles[J]. Carbohydr Polym,2018,197:349−358. doi: 10.1016/j.carbpol.2018.06.033
|
[57] |
DJALAL T, HAZWAN M H, MOHAMAD K M H. Recent progress in cellulose nanocrystals:Sources and production[J]. Nanoscale,2017,9(5):1749−2096. doi: 10.1039/C7NR90020A
|
[58] |
LIU L, SETA F T, AN X, et al. Facile isolation of colloidal stable chitin nano-crystals from Metapenaeus ensis shell via solid maleic acid hydrolysis and their application for synthesis of silver nanoparticles[J]. Cellulose,2020,27(17):9853−9875. doi: 10.1007/s10570-020-03499-7
|
[59] |
MOTA-MORALES J D, SáNCHEZ-LEIJA R J, CARRANZA A, et al. Free-radical polymerizations of and in deep eutectic solvents:Green synthesis of functional materials[J]. Progress in Polymer Science,2018,78:139−153. doi: 10.1016/j.progpolymsci.2017.09.005
|
[60] |
HONG S, YUAN Y, YANG Q, et al. Versatile acid base sustainable solvent for fast extraction of various molecular weight chitin from lobster shell[J]. Carbohydr Polym,2018,201:211−217. doi: 10.1016/j.carbpol.2018.08.059
|
[61] |
MUSHI N E, UTSEL S, BERGLUND L A. Nanostructured biocomposite films of high toughness based on native chitin nanofibers and chitosan[J]. Front Chem,2014,2:99.
|
[62] |
YUAN Y, HONG S, LIAN H, et al. Comparison of acidic deep eutectic solvents in production of chitin nanocrystals[J]. Carbohydr Polym,2020,236:116095. doi: 10.1016/j.carbpol.2020.116095
|
[63] |
NAGHDI T, GOLMOHAMMADI H, YOUSEFI H, et al. Chitin nanofiber paper toward optical (bio)sensing applications[J]. ACS Appl Mater Interfaces,2020,12(13):15538−15552. doi: 10.1021/acsami.9b23487
|
[64] |
TOPUZ F, UYAR T. Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications[J]. Food Research International,2020,130:108927. doi: 10.1016/j.foodres.2019.108927
|
[65] |
SHAMSHINA J L, ZAVGORODNYA O, CHOUDHARY H, et al. In search of stronger/cheaper chitin nanofibers through electrospinning of chitin-cellulose composites using an ionic liquid platform[J]. ACS Sustainable Chemistry & Engineering,2018,6(11):14713−14722.
|
[66] |
KADOKAWA J I, IDENOUE S, YAMAMOTO K. Fabricating chitin paper from self-assembled nanochitins[J]. ACS Sustainable Chemistry & Engineering,2020,8(22):8402−8408.
|
[67] |
LIAO J, ZHOU Y, HOU B, et al. Nano-chitin:Preparation strategies and food biopolymer film reinforcement and applications[J]. Carbohydrate Polymers,2023,305:120553. doi: 10.1016/j.carbpol.2023.120553
|
[68] |
WU C, JIANG H, ZHAO J, et al. A novel strategy to formulate edible active-intelligent packaging films for achieving dynamic visualization of product freshness[J]. Food Hydrocolloids,2022,133:107998. doi: 10.1016/j.foodhyd.2022.107998
|
[69] |
JIANG H, SUN J, LI Y, et al. Preparation and characterization of citric acid crosslinked konjac glucomannan/surface deacetylated chitin nanofibers bionanocomposite film[J]. Int J Biol Macromol,2020,164:2612−2621. doi: 10.1016/j.ijbiomac.2020.08.138
|
[70] |
DUAN M, YU S, SUN J, et al. Development and characterization of electrospun nanofibers based on pullulan/chitin nanofibers containing curcumin and anthocyanins for active-intelligent food packaging[J]. International Journal of Biological Macromolecules,2021,187:332−340. doi: 10.1016/j.ijbiomac.2021.07.140
|
[71] |
SALABERRIA A M, DIAZ R H, ANDRES M A, et al. The antifungal activity of functionalized chitin nanocrystals in poly (lactid acid) films[J]. Materials (Basel),2017,10(5):546. doi: 10.3390/ma10050546
|
[72] |
XIE C, WANG F, HE Z, et al. Development and characterization of active packaging based on chitosan/chitin nanofibers incorporated with scallion flower extract and its preservation in fresh-cut bananas[J]. International Journal of Biological Macromolecules,2023,242:125045. doi: 10.1016/j.ijbiomac.2023.125045
|
[73] |
ZHANG X, WANG D, LIU S, et al. Bacterial cellulose nanofibril-based pickering emulsions:recent trends and applications in the food industry[J]. Foods,2022,11(24):4064. doi: 10.3390/foods11244064
|
[74] |
SUN G, ZHAO Q, LIU S, et al. Complex of raw chitin nanofibers and zein colloid particles as stabilizer for producing stable pickering emulsions[J]. Food Hydrocolloids,2019,97:105178. doi: 10.1016/j.foodhyd.2019.105178
|
[75] |
WANG Y, YANG F, YANG J, et al. Synergistic stabilization of oil in water emulsion with chitin particles and tannic acid[J]. Carbohydr Polym,2021,254:117292. doi: 10.1016/j.carbpol.2020.117292
|
[76] |
ZHONG W, LI D, LI L, et al. pH-Responsive Pickering emulsion containing citrus essential oil stabilized by zwitterionically charged chitin nanofibers:Physicochemical properties and antimicrobial activity[J]. Food Chemistry,2024,433:137388. doi: 10.1016/j.foodchem.2023.137388
|
[77] |
DHANASEKARAN S, RAMESHTHANGAM P, VENKATESAN S, et al. In vitro and in silico studies of chitin and chitosan based nanocarriers for curcumin and insulin delivery[J]. Journal of Polymers and the Environment,2018,26(10):4095−4113. doi: 10.1007/s10924-018-1282-8
|
[78] |
PETROVA V A, ELOKHOVSKIY V Y, RAIK S V, et al. Alginate gel reinforcement with chitin nanowhiskers modulates rheological properties and drug release profile[J]. Biomolecules,2019,9(7):291. doi: 10.3390/biom9070291
|
[79] |
JIA X, MA P, TAYLOR K S Y, et al. Development of stable pickering emulsions with TEMPO-oxidized chitin nanocrystals for encapsulation of quercetin[J]. Foods,2023,12(2):367. doi: 10.3390/foods12020367
|
[80] |
TORLOPOV M A, VASENEVA I N, MIKHAYLOV V I, et al. Surface, rheopexy, digestive stability and toxicity of olive oil emulsions stabilized by chitin nanocrystals for vitamin D3 delivery[J]. Carbohydrate Polymers,2022,284:119162. doi: 10.1016/j.carbpol.2022.119162
|
[81] |
ZOU Y, ZHANG S, LIU Y, et al. In vitro digestion properties of different chitin nanofibrils stabilized lipid emulsions[J]. Food Hydrocolloids,2023,139:108512. doi: 10.1016/j.foodhyd.2023.108512
|
[82] |
ZHOU H, DAI T, LIU J, et al. Chitin nanocrystals reduce lipid digestion and β-carotene bioaccessibility:An in-vitro INFOGEST gastrointestinal study[J]. Food Hydrocolloids,2021,113:106494. doi: 10.1016/j.foodhyd.2020.106494
|
[83] |
BARAKI S Y, JIANG Y, LI X, et al. Stable sunflower oil oleogel from oil/water pickering emulsion with regenerated chitin[J]. LWT,2021,146:111483. doi: 10.1016/j.lwt.2021.111483
|
[84] |
ZHU Y, HUAN S, BAI L, et al. High internal phase oil-in-water pickering emulsions stabilized by chitin nanofibrils:3D structuring and solid foam [J]. ACS Applied Materials & Interfaces,2020,12(9):11240−11251.
|
[85] |
CUI S, LI M, ZHANG S, et al. Physicochemical properties of maize and sweet potato starches in the presence of cellulose nanocrystals[J]. Food Hydrocolloids,2018,77:220−227. doi: 10.1016/j.foodhyd.2017.09.037
|
[86] |
JIANG W J, TSAI M L, LIU T. Chitin nanofiber as a promising candidate for improved salty taste[J]. LWT,2017,75:65−71. doi: 10.1016/j.lwt.2016.08.050
|
[87] |
陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究,2015,33(2):242−253. [CHEN Y, CHEN C M, LIU Z Y, et al. The methodological function of CiteSpace knowledge graph[J]. Studies In Science of Science,2015,33(2):242−253.] doi: 10.3969/j.issn.1003-2053.2015.02.009
CHEN Y, CHEN C M, LIU Z Y, et al. The methodological function of CiteSpace knowledge graph[J]. Studies In Science of Science, 2015, 33(2): 242−253. doi: 10.3969/j.issn.1003-2053.2015.02.009
|
[88] |
REN M, YU X, MUJUMDAR A S, et al. Visualizing the knowledge domain of pulsed light technology in the food field:A scientometrics review[J]. Innovative Food Science & Emerging Technologies,2021,74:102823.
|