YIN Jing, ZENG Xinxin, ZHOU Yanyan, et al. Advances in the Preparation and Application of Nanochitin in the Food Industry[J]. Science and Technology of Food Industry, 2025, 46(7): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040135.
Citation: YIN Jing, ZENG Xinxin, ZHOU Yanyan, et al. Advances in the Preparation and Application of Nanochitin in the Food Industry[J]. Science and Technology of Food Industry, 2025, 46(7): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040135.

Advances in the Preparation and Application of Nanochitin in the Food Industry

More Information
  • Received Date: April 09, 2024
  • Available Online: January 21, 2025
  • Nanochitin, a plentiful and renewable biopolymer, has attracted considerable interest in the food industry due to its excellent physical and chemical properties. This paper initially outlines the sources, preparation methods, and structural properties of nanochitin, then focuses on summarizing its recent applications in food active packaging, emulsification stabilizers, functional factor carriers, other fields both domestically and internationally. Additionally, the paper utilizes bibliometric methods to conduct an in-depth analysis of the research hotspots pertaining to nanochitin within the food sector, projecting its future development trajectories. This paper aims to furnish insights for the comprehensive development and utilization of nanochitin.
  • loading
  • [1]
    WU J, LIN H, MEREDITH J C. Poly(ethylene oxide) bionanocomposites reinforced with chitin nanofiber networks[J]. Polymer,2016(84):267−274.
    [2]
    SALABERRIA A M, LABIDI J, FERNANDES S C M. Different routes to turn chitin into stunning nano-objects[J]. European Polymer Journal,2015,68:503−515. doi: 10.1016/j.eurpolymj.2015.03.005
    [3]
    ISLAM S, BHUIYAN M A R, ISLAM M N. Chitin and chitosan:Structure, properties and applications in biomedical engineering[J]. Journal of Polymers and the Environment,2016,25(3):854−866.
    [4]
    MOHAN K, RAVICHANDRAN S, MURALISANKAR T, et al. Extraction and characterization of chitin from sea snail conus inscriptus (Reeve, 1843)[J]. International Journal of Biological Macromolecules,2019,126:555−560. doi: 10.1016/j.ijbiomac.2018.12.241
    [5]
    XU J, LIU S, CHEN G, et al. Engineering biocompatible hydrogels from bicomponent natural nanofibers for anticancer drug delivery[J]. J Agric Food Chem,2018,66(4):935−942. doi: 10.1021/acs.jafc.7b04210
    [6]
    XU J, DENG X, DONG Y, et al. High-strength, transparent and superhydrophobic nanocellulose/nanochitin membranes fabricated via crosslinking of nanofibers and coating F-SiO2 suspensions[J]. [J]. Carbohydrate Polymers,2020,247:116694. doi: 10.1016/j.carbpol.2020.116694
    [7]
    YOUNES I, HAJJI S, RINAUDO M, et al. Optimization of proteins and minerals removal from shrimp shells to produce highly acetylated chitin[J]. International Journal of Biological Macromolecules,2016,84:246−253. doi: 10.1016/j.ijbiomac.2015.08.034
    [8]
    USMAN A, ZIA K M, ZUBER M, et al. Chitin and chitosan based polyurethanes:A review of recent advances and prospective biomedical applications[J]. International Journal of Biological Macromolecules,2016,86:630−645. doi: 10.1016/j.ijbiomac.2016.02.004
    [9]
    ZHANG J, MOHD SAID F, JING Z. Hydrogels based on seafood chitin:From extraction to the development[J]. International Journal of Biological Macromolecules,2023,253:126482. doi: 10.1016/j.ijbiomac.2023.126482
    [10]
    ZHANG H, XU M, LUO H, et al. Interfacial assembly of chitin/Mn3O4 composite hydrogels as photothermal antibacterial platform for infected wound healing[J]. International Journal of Biological Macromolecules,2023,243:124362. doi: 10.1016/j.ijbiomac.2023.124362
    [11]
    LÜ S, ZHOU H, BAI L, et al. Development of food-grade pickering emulsions stabilized by a mixture of cellulose nanofibrils and nanochitin[J]. Food Hydrocolloids,2021,113:106451. doi: 10.1016/j.foodhyd.2020.106451
    [12]
    WANG M, ZHOU J, SELMA-ROYO M, et al. Potential benefits of high-added-value compounds from aquaculture and fish side streams on human gut microbiota[J]. Trends in Food Science & Technology,2021,112:484−494.
    [13]
    WENG S, MARCET I, RENDUELES M, et al. Insect-derived materials for food packaging-a review[J]. Food Packaging and Shelf Life,2023,38:101097. doi: 10.1016/j.fpsl.2023.101097
    [14]
    DUAN B, LIU F, HE M, et al. Ag-Fe3O4 nanocomposites@chitin microspheres constructed by in situ one-pot synthesis for rapid hydrogenation catalysis[J]. Green Chem,2014,16(5):2835−2845. doi: 10.1039/C3GC42637H
    [15]
    KING C, SHAMSHINA J L, GURAU G, et al. A platform for more sustainable chitin films from an ionic liquid process[J]. Green Chemistry,2017,19(1):117−126. doi: 10.1039/C6GC02201D
    [16]
    HUANG J, ZHONG Y, ZHANG L, et al. Extremely strong and transparent chitin films:A high-efficiency, energy-saving, and "Green" route using an aqueous KOH/Urea solution[J]. Advanced Functional Materials,2017,27(26):1701100. doi: 10.1002/adfm.201701100
    [17]
    JAHED E, KHALEDABAD M A, ALMASI H, et al. Physicochemical properties of carum copticum essential oil loaded chitosan films containing organic nanoreinforcements[J]. Carbohydrate Polymers,2017,164:325−338. doi: 10.1016/j.carbpol.2017.02.022
    [18]
    李彩荣. 改性甲壳素晶须/聚乳酸纳米复合材料的制备及其性能研究[D]. 广州:暨南大学, 2015. [LI C R. Preparation and properties of modified chitin whisker/ PLLA nanocomposites[D]. Guangzhou:Jinan University, 2015.]

    LI C R. Preparation and properties of modified chitin whisker/ PLLA nanocomposites[D]. Guangzhou: Jinan University, 2015.
    [19]
    吴双泉. 甲壳素/碳纳米管复合材料的构建及其在生物医学的应用[D]. 武汉:武汉大学, 2017. [WU S Q. Construction and biomedical applications of chitin/carbon nanotube composite materials[D]. Wuhan:Wuhan University, 2017.]

    WU S Q. Construction and biomedical applications of chitin/carbon nanotube composite materials[D]. Wuhan: Wuhan University, 2017.
    [20]
    ZHOU H, TAN Y, LÜ S, et al. Nanochitin-stabilized pickering emulsions:Influence of nanochitin on lipid digestibility and vitamin bioaccessibility[J]. Food Hydrocolloids,2020,106:105878. doi: 10.1016/j.foodhyd.2020.105878
    [21]
    ZOU Y, LI X, YU J, et al. The effect of nanochitin on gastrointestinal digestion of starch and protein:Role of surface charge and size[J]. Food Hydrocolloids,2024,146:109312. doi: 10.1016/j.foodhyd.2023.109312
    [22]
    欧贤凤. 甲壳素纳米晶的改性及其用于染料吸附和双疏涂层的研究[D]. 广州:暨南大学, 2020. [OU X F. Modification of chitin nanocrystals and their application in dye adsorption and amphiphobic coating[D]. Guangzhou:Jinan University, 2020.]

    OU X F. Modification of chitin nanocrystals and their application in dye adsorption and amphiphobic coating[D]. Guangzhou: Jinan University, 2020.
    [23]
    ARAKI J, KURIHARA M. Preparation of sterically stabilized chitin nanowhisker dispersions by grafting of poly(ethylene glycol) and evaluation of their dispersion stability[J]. Biomacromolecules,2014,16(1):379−388.
    [24]
    GOODRICH J D, WINTER W T. r-Chitin nanocrystals prepared from shrimp shells and their specific surface area measurement[J]. Biomacromolecules,2007,8(1):252−257. doi: 10.1021/bm0603589
    [25]
    WONGPANIT P, SANCHAVANAKIT N, PAVASANT P, et al. Preparation and characterization of chitin whisker-reinforced silk fibroin nanocomposite sponges[J]. European Polymer Journal,2007,43(10):4123−4135. doi: 10.1016/j.eurpolymj.2007.07.004
    [26]
    汪凯. 球磨法制备石墨烯_甲壳素纳米纤维杂化材料及其应用[D]. 青岛:青岛科技大学, 2018. [WANG K. The ball-milling preparation, functionalization of graphene/chitin nanofibers hybrids and their application[J]. Qingdao:Qingdao University of Science &Technology, 2018.]

    WANG K. The ball-milling preparation, functionalization of graphene/chitin nanofibers hybrids and their application[J]. Qingdao: Qingdao University of Science &Technology, 2018.
    [27]
    NGASOTTER S, SAMPATH L, XAVIER K A M. Nanochitin:An update review on advances in preparation methods and food applications[J]. Carbohydr Polym,2022,291:119627. doi: 10.1016/j.carbpol.2022.119627
    [28]
    SHAMSHINA J L, BERTON P, ROGERS R D. Advances in functional chitin materials:A review[J]. ACS Sustainable Chemistry & Engineering,2019,7(7):6444−6457.
    [29]
    孙绪兵, 杜京城, 由耀辉. 纳米甲壳素的制备、改性及应用研究进展[J]. 高分子通报,2016(8):71−80. [SUN X B, DU J C, YOU Y H. Research progress in the preparation, modification, and application of nanochitin[J]. Polymer Bulletin,2016(8):71−80.]

    SUN X B, DU J C, YOU Y H. Research progress in the preparation, modification, and application of nanochitin[J]. Polymer Bulletin, 2016(8): 71−80.
    [30]
    KISHIMOTO M, IZAWA H, SAIMOTO H, et al. Dyeing of chitin nanofibers with reactive dyes and preparation of their sheets and nanofiber/resin composites[J]. Cellulose,2021,29(5):2829−2837.
    [31]
    IFUKU S. Chitin and chitosan nanofibers:Preparation and chemical modifications[J]. Molecules,2014,19(11):18367−18380. doi: 10.3390/molecules191118367
    [32]
    ZHANG X, ROLANDI M. Engineering strategies for chitin nanofibers[J]. J Mater Chem B,2017,5(14):2547−2559. doi: 10.1039/C6TB03324E
    [33]
    ZHANG Y, JIANG J, LIU L, et al. Preparation, assessment, and comparison of α-chitin nano-fiber films with different surface charges[J]. Nanoscale Research Letters,2015,10(1):226. doi: 10.1186/s11671-015-0926-z
    [34]
    ZOU H, LIN B, XU C, et al. Preparation and characterization of individual chitin nanofibers with high stability from chitin gels by low-intensity ultrasonication for antibacterial finishing[J]. Cellulose,2017,25(2):999−1010.
    [35]
    LARBI F, GARCíA A, DEL VALLE L J, et al. Comparison of nanocrystals and nanofibers produced from shrimp shell α-chitin:From energy production to material cytotoxicity and Pickering emulsion properties[J]. Carbohydrate Polymers,2018,196:385−397. doi: 10.1016/j.carbpol.2018.04.094
    [36]
    ZHONG C, COOPER A, KAPETANOVIC A, et al. A facile bottom-up route to self-assembled biogenic chitin nanofibers[J]. Soft Matter,2010,6(21):5298. doi: 10.1039/c0sm00450b
    [37]
    MALLIK A K, SAKIB M N, SHAHARUZZAMAN M, et al. Chitin nanomaterials:Preparation and surface modifications [M]. Handbook of Chitin and Chitosan, 2020:165−194.
    [38]
    IFUKU S, IKUTA A, HOSOMI T, et al. Preparation of polysilsesquioxane-urethaneacrylate copolymer film reinforced with chitin nanofibers[J]. Carbohydr Polym,2012,89(3):865−869. doi: 10.1016/j.carbpol.2012.04.022
    [39]
    CHEN C, LI D, YANO H, et al. Bioinspired hydrogels:Quinone crosslinking reaction for chitin nanofibers with enhanced mechanical strength via surface deacetylation[J]. Carbohydr Polym,2019,207:411−417. doi: 10.1016/j.carbpol.2018.12.007
    [40]
    GAO K, GUO Y, NIU Q, et al. Effects of chitin nanofibers on the microstructure and properties of cellulose nanofibers/chitin nanofibers composite aerogels[J]. Cellulose,2018,25(8):4591−4602. doi: 10.1007/s10570-018-1899-8
    [41]
    ABDELRAHMAN R M, ABDEL-MOHSEN A M, ZBONCAK M, et al. Hyaluronan biofilms reinforced with partially deacetylated chitin nanowhiskers:Extraction, fabrication, in-vitro and antibacterial properties of advanced nanocomposites[J]. Carbohydrate Polymers,2020,235:115951. doi: 10.1016/j.carbpol.2020.115951
    [42]
    HSUEH C Y, TSAI M L, LIU T. Enhancing saltiness perception using chitin nanofibers when curing tilapia fillets[J]. LWT,2017,86:93−98. doi: 10.1016/j.lwt.2017.07.057
    [43]
    LU Y, SUN Q, SHE X, et al. Fabrication and characterisation of α-chitin nanofibers and highly transparent chitin films by pulsed ultrasonication[J]. Carbohydrate Polymers,2013,98(2):1497−1504. doi: 10.1016/j.carbpol.2013.07.038
    [44]
    IFUKU. S, NOGI. M, ABE. K, et al. Preparation of chitin nanofibers with a uniform width as r-Chitin from crab shells[J]. Biomacromolecules,2009,10(6):1584−1588. doi: 10.1021/bm900163d
    [45]
    AKLOG Y F, NAGAE T, IZAWA H, et al. Preparation of chitin nanofibers by surface esterification of chitin with maleic anhydride and mechanical treatment[J]. Carbohydr Polym,2016,153:55−59. doi: 10.1016/j.carbpol.2016.07.060
    [46]
    SIAHKAMARI M, JAMALI A, SABZEVARI A, et al. Removal of Lead(II) ions from aqueous solutions using biocompatible polymeric nano-adsorbents:A comparative study[J]. Carbohydrate Polymers,2017,157:1180−1189. doi: 10.1016/j.carbpol.2016.10.085
    [47]
    FAZLI WAN NAWAWI W M, LEE K Y, KONTTURI E, et al. Chitin nanopaper from mushroom extract:natural composite of nanofibers and glucan from a single biobased source[J]. ACS Sustainable Chemistry & Engineering,2019,7(7):6492−6496.
    [48]
    SALABERRIA A M, FERNANDES S C M, DIAZ R H, et al. Processing of α-chitin nanofibers by dynamic high pressure homogenization:Characterization and antifungal activity against A. niger[J]. Carbohydrate Polymers,2015,116:286−291. doi: 10.1016/j.carbpol.2014.04.047
    [49]
    MUSHI N E, NISHINO T, BERGLUND L A, et al. Strong and tough chitin film from α-chitin nanofibers prepared by high pressure homogenization and chitosan addition[J]. ACS Sustainable Chemistry & Engineering,2018,7(1):1692−1697.
    [50]
    WU C, LI Y, SUN J, et al. Novel konjac glucomannan films with oxidized chitin nanocrystals immobilized red cabbage anthocyanins for intelligent food packaging[J]. Food Hydrocolloids,2020,98:105245. doi: 10.1016/j.foodhyd.2019.105245
    [51]
    WU C, SUN J, CHEN M, et al. Effect of oxidized chitin nanocrystals and curcumin into chitosan films for seafood freshness monitoring[J]. Food Hydrocolloids,2019,95:308−317. doi: 10.1016/j.foodhyd.2019.04.047
    [52]
    YE W, YOKOTA S, FAN Y, et al. A combination of aqueous counter collision and TEMPO-mediated oxidation for doubled carboxyl contents of α-chitin nanofibers[J]. Cellulose,2021,28(4):2167−2181. doi: 10.1007/s10570-021-03676-2
    [53]
    YE W, HU Y, MA H, et al. Comparison of cast films and hydrogels based on chitin nanofibers prepared using TEMPO/NaBr/NaClO and TEMPO/NaClO/NaClO2 systems[J]. Carbohydrate Polymers,2020,237:116125. doi: 10.1016/j.carbpol.2020.116125
    [54]
    XU Y, LIANG K, ULLAH W, et al. Chitin nanocrystal enhanced wet adhesion performance of mussel-inspired citrate-based soft-tissue adhesive[J]. Carbohydrate Polymers,2018,190:324−330. doi: 10.1016/j.carbpol.2018.03.005
    [55]
    QIN Y, ZHANG S, YU J, et al. Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films[J]. Carbohydr Polym,2016,147:372−378. doi: 10.1016/j.carbpol.2016.03.095
    [56]
    OUN A A, RHIM J W. Effect of isolation methods of chitin nanocrystals on the properties of chitin-silver hybrid nanoparticles[J]. Carbohydr Polym,2018,197:349−358. doi: 10.1016/j.carbpol.2018.06.033
    [57]
    DJALAL T, HAZWAN M H, MOHAMAD K M H. Recent progress in cellulose nanocrystals:Sources and production[J]. Nanoscale,2017,9(5):1749−2096. doi: 10.1039/C7NR90020A
    [58]
    LIU L, SETA F T, AN X, et al. Facile isolation of colloidal stable chitin nano-crystals from Metapenaeus ensis shell via solid maleic acid hydrolysis and their application for synthesis of silver nanoparticles[J]. Cellulose,2020,27(17):9853−9875. doi: 10.1007/s10570-020-03499-7
    [59]
    MOTA-MORALES J D, SáNCHEZ-LEIJA R J, CARRANZA A, et al. Free-radical polymerizations of and in deep eutectic solvents:Green synthesis of functional materials[J]. Progress in Polymer Science,2018,78:139−153. doi: 10.1016/j.progpolymsci.2017.09.005
    [60]
    HONG S, YUAN Y, YANG Q, et al. Versatile acid base sustainable solvent for fast extraction of various molecular weight chitin from lobster shell[J]. Carbohydr Polym,2018,201:211−217. doi: 10.1016/j.carbpol.2018.08.059
    [61]
    MUSHI N E, UTSEL S, BERGLUND L A. Nanostructured biocomposite films of high toughness based on native chitin nanofibers and chitosan[J]. Front Chem,2014,2:99.
    [62]
    YUAN Y, HONG S, LIAN H, et al. Comparison of acidic deep eutectic solvents in production of chitin nanocrystals[J]. Carbohydr Polym,2020,236:116095. doi: 10.1016/j.carbpol.2020.116095
    [63]
    NAGHDI T, GOLMOHAMMADI H, YOUSEFI H, et al. Chitin nanofiber paper toward optical (bio)sensing applications[J]. ACS Appl Mater Interfaces,2020,12(13):15538−15552. doi: 10.1021/acsami.9b23487
    [64]
    TOPUZ F, UYAR T. Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications[J]. Food Research International,2020,130:108927. doi: 10.1016/j.foodres.2019.108927
    [65]
    SHAMSHINA J L, ZAVGORODNYA O, CHOUDHARY H, et al. In search of stronger/cheaper chitin nanofibers through electrospinning of chitin-cellulose composites using an ionic liquid platform[J]. ACS Sustainable Chemistry & Engineering,2018,6(11):14713−14722.
    [66]
    KADOKAWA J I, IDENOUE S, YAMAMOTO K. Fabricating chitin paper from self-assembled nanochitins[J]. ACS Sustainable Chemistry & Engineering,2020,8(22):8402−8408.
    [67]
    LIAO J, ZHOU Y, HOU B, et al. Nano-chitin:Preparation strategies and food biopolymer film reinforcement and applications[J]. Carbohydrate Polymers,2023,305:120553. doi: 10.1016/j.carbpol.2023.120553
    [68]
    WU C, JIANG H, ZHAO J, et al. A novel strategy to formulate edible active-intelligent packaging films for achieving dynamic visualization of product freshness[J]. Food Hydrocolloids,2022,133:107998. doi: 10.1016/j.foodhyd.2022.107998
    [69]
    JIANG H, SUN J, LI Y, et al. Preparation and characterization of citric acid crosslinked konjac glucomannan/surface deacetylated chitin nanofibers bionanocomposite film[J]. Int J Biol Macromol,2020,164:2612−2621. doi: 10.1016/j.ijbiomac.2020.08.138
    [70]
    DUAN M, YU S, SUN J, et al. Development and characterization of electrospun nanofibers based on pullulan/chitin nanofibers containing curcumin and anthocyanins for active-intelligent food packaging[J]. International Journal of Biological Macromolecules,2021,187:332−340. doi: 10.1016/j.ijbiomac.2021.07.140
    [71]
    SALABERRIA A M, DIAZ R H, ANDRES M A, et al. The antifungal activity of functionalized chitin nanocrystals in poly (lactid acid) films[J]. Materials (Basel),2017,10(5):546. doi: 10.3390/ma10050546
    [72]
    XIE C, WANG F, HE Z, et al. Development and characterization of active packaging based on chitosan/chitin nanofibers incorporated with scallion flower extract and its preservation in fresh-cut bananas[J]. International Journal of Biological Macromolecules,2023,242:125045. doi: 10.1016/j.ijbiomac.2023.125045
    [73]
    ZHANG X, WANG D, LIU S, et al. Bacterial cellulose nanofibril-based pickering emulsions:recent trends and applications in the food industry[J]. Foods,2022,11(24):4064. doi: 10.3390/foods11244064
    [74]
    SUN G, ZHAO Q, LIU S, et al. Complex of raw chitin nanofibers and zein colloid particles as stabilizer for producing stable pickering emulsions[J]. Food Hydrocolloids,2019,97:105178. doi: 10.1016/j.foodhyd.2019.105178
    [75]
    WANG Y, YANG F, YANG J, et al. Synergistic stabilization of oil in water emulsion with chitin particles and tannic acid[J]. Carbohydr Polym,2021,254:117292. doi: 10.1016/j.carbpol.2020.117292
    [76]
    ZHONG W, LI D, LI L, et al. pH-Responsive Pickering emulsion containing citrus essential oil stabilized by zwitterionically charged chitin nanofibers:Physicochemical properties and antimicrobial activity[J]. Food Chemistry,2024,433:137388. doi: 10.1016/j.foodchem.2023.137388
    [77]
    DHANASEKARAN S, RAMESHTHANGAM P, VENKATESAN S, et al. In vitro and in silico studies of chitin and chitosan based nanocarriers for curcumin and insulin delivery[J]. Journal of Polymers and the Environment,2018,26(10):4095−4113. doi: 10.1007/s10924-018-1282-8
    [78]
    PETROVA V A, ELOKHOVSKIY V Y, RAIK S V, et al. Alginate gel reinforcement with chitin nanowhiskers modulates rheological properties and drug release profile[J]. Biomolecules,2019,9(7):291. doi: 10.3390/biom9070291
    [79]
    JIA X, MA P, TAYLOR K S Y, et al. Development of stable pickering emulsions with TEMPO-oxidized chitin nanocrystals for encapsulation of quercetin[J]. Foods,2023,12(2):367. doi: 10.3390/foods12020367
    [80]
    TORLOPOV M A, VASENEVA I N, MIKHAYLOV V I, et al. Surface, rheopexy, digestive stability and toxicity of olive oil emulsions stabilized by chitin nanocrystals for vitamin D3 delivery[J]. Carbohydrate Polymers,2022,284:119162. doi: 10.1016/j.carbpol.2022.119162
    [81]
    ZOU Y, ZHANG S, LIU Y, et al. In vitro digestion properties of different chitin nanofibrils stabilized lipid emulsions[J]. Food Hydrocolloids,2023,139:108512. doi: 10.1016/j.foodhyd.2023.108512
    [82]
    ZHOU H, DAI T, LIU J, et al. Chitin nanocrystals reduce lipid digestion and β-carotene bioaccessibility:An in-vitro INFOGEST gastrointestinal study[J]. Food Hydrocolloids,2021,113:106494. doi: 10.1016/j.foodhyd.2020.106494
    [83]
    BARAKI S Y, JIANG Y, LI X, et al. Stable sunflower oil oleogel from oil/water pickering emulsion with regenerated chitin[J]. LWT,2021,146:111483. doi: 10.1016/j.lwt.2021.111483
    [84]
    ZHU Y, HUAN S, BAI L, et al. High internal phase oil-in-water pickering emulsions stabilized by chitin nanofibrils:3D structuring and solid foam [J]. ACS Applied Materials & Interfaces,2020,12(9):11240−11251.
    [85]
    CUI S, LI M, ZHANG S, et al. Physicochemical properties of maize and sweet potato starches in the presence of cellulose nanocrystals[J]. Food Hydrocolloids,2018,77:220−227. doi: 10.1016/j.foodhyd.2017.09.037
    [86]
    JIANG W J, TSAI M L, LIU T. Chitin nanofiber as a promising candidate for improved salty taste[J]. LWT,2017,75:65−71. doi: 10.1016/j.lwt.2016.08.050
    [87]
    陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究,2015,33(2):242−253. [CHEN Y, CHEN C M, LIU Z Y, et al. The methodological function of CiteSpace knowledge graph[J]. Studies In Science of Science,2015,33(2):242−253.] doi: 10.3969/j.issn.1003-2053.2015.02.009

    CHEN Y, CHEN C M, LIU Z Y, et al. The methodological function of CiteSpace knowledge graph[J]. Studies In Science of Science, 2015, 33(2): 242−253. doi: 10.3969/j.issn.1003-2053.2015.02.009
    [88]
    REN M, YU X, MUJUMDAR A S, et al. Visualizing the knowledge domain of pulsed light technology in the food field:A scientometrics review[J]. Innovative Food Science & Emerging Technologies,2021,74:102823.

Catalog

    Article Metrics

    Article views (21) PDF downloads (3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return