Citation: | ZHANG Quantong, ZHENG Yao, YANG Liu, et al. Rapid Detection of Astaxanthin in Antarctic Krill Meal by Computer Vision Combined with Convolutional Neural Network[J]. Science and Technology of Food Industry, 2025, 46(3): 11−18. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030200. |
[1] |
SHI J, SUN X, WANG Y, et al. Foodomics reveals altered lipid and protein profiles of Antarctic krill (Euphausia superba) under different processing[J]. Food Bioscience, 2023, 53:102565.
|
[2] |
杨柳, 王鲁民, 周国燕, 等. 南极磷虾粉的加工工艺、品质特性与应用研究进展[J]. 海洋渔业,2022,44(4):501−512. [YANG L, WANG L M, ZHOU G Y, et al. Processing technology, quality characteristics and application status of Antarctic krill powder[J]. Marine Fisheries,2022,44(4):501−512.] doi: 10.3969/j.issn.1004-2490.2022.04.011
YANG L, WANG L M, ZHOU G Y, et al. Processing technology, quality characteristics and application status of Antarctic krill powder[J]. Marine Fisheries, 2022, 44(4): 501−512. doi: 10.3969/j.issn.1004-2490.2022.04.011
|
[3] |
邵晨. 船上加工处理对南极磷虾保藏的初步研究[D]. 上海:上海海洋大学, 2022. [SHAO C. Preliminary study on preservation of Antarctic krill by shipboard processing[D]. Shanghai:Shanghai Ocean University, 2022.]
SHAO C. Preliminary study on preservation of Antarctic krill by shipboard processing[D]. Shanghai: Shanghai Ocean University, 2022.
|
[4] |
LANDYMORE C, DURANCE T D, SINGH A, et al. Comparing different dehydration methods on protein quality of krill (Euphausia pacifica)[J]. Food Research International,2018,119:276−282.
|
[5] |
赵昕源. 南极磷虾粉加工过程中主要营养活性物质的流向与结构分析[D]. 上海:上海海洋大学, 2022. [ZHAO X Y. Flow direction and structure analysis of main nutrient active substances during processing of Euphausia superba meal[D]. Shanghai:Shanghai Ocean University, 2022.]
ZHAO X Y. Flow direction and structure analysis of main nutrient active substances during processing of Euphausia superba meal[D]. Shanghai: Shanghai Ocean University, 2022.
|
[6] |
XIE D, GONG M Y, WEI W, et al. Antarctic krill (Euphausia superba) oil:A comprehensive review of chemical composition, extraction technologies, health benefits, and current applications[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18(2):514−534. doi: 10.1111/1541-4337.12427
|
[7] |
LIU Y, CONG P, LI B, et al. Effect of thermal processing towards lipid oxidation and non-enzymatic browning reactions of Antarctic krill (Euphausia superba) meal[J]. Journal of the Science of Food and Agriculture,2018,98(14):5257−5268. doi: 10.1002/jsfa.9064
|
[8] |
MARTíNEZ-DELGADO A A, KHANDUAL S, VILLANUEVA–RODRíGUEZ S J. Chemical stability of astaxanthin integrated into a food matrix:Effects of food processing and methods for preservation[J]. Food Chemistry,2017,225:23−30. doi: 10.1016/j.foodchem.2016.11.092
|
[9] |
孙伟红, 邢丽红, 冷凯良, 等. 高效液相色谱法测定南极磷虾及其制品中虾青素的含量[J]. 食品安全质量检测学报,2017,8(4):1248−1253. [SUN W H, XING L H, LENG K L, et al. Determination of astaxanthin in Antarctic krill and its products by high performance liquid chromatography[J]. Journal of Food Safety and Quality,2017,8(4):1248−1253.]
SUN W H, XING L H, LENG K L, et al. Determination of astaxanthin in Antarctic krill and its products by high performance liquid chromatography[J]. Journal of Food Safety and Quality, 2017, 8(4): 1248−1253.
|
[10] |
LIU Y, PU H, SUN D-W. Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices[J]. Trends in Food Science & Technology,2021,113:193−204.
|
[11] |
CONG X Y, MIAO J K, ZHANG H Z, et al. Effects of drying methods on the content, structural isomers, and composition of astaxanthin in Antarctic krill[J]. Acs Omega,2019,4(19):17972−17980. doi: 10.1021/acsomega.9b01294
|
[12] |
魏荣男, 沈建, 谈佳玉, 等. 热处理对南极磷虾品质特性及虾粉得率的影响[J]. 海洋渔业,2018,40(2):235−241. [WEI R N, SHEN J, TAN J Y, et al. The effect of heat treatment on the Antarctic krill quality and yield rate of krill powder[J]. Marine Fisheries,2018,40(2):235−241.] doi: 10.3969/j.issn.1004-2490.2018.02.013
WEI R N, SHEN J, TAN J Y, et al. The effect of heat treatment on the Antarctic krill quality and yield rate of krill powder[J]. Marine Fisheries, 2018, 40(2): 235−241. doi: 10.3969/j.issn.1004-2490.2018.02.013
|
[13] |
LU F S H, BRUHEIM I, ALE M T, et al. The effect of thermal treatment on the quality changes of Antartic krill meal during the manufacturing process:High processing temperatures decrease product quality[J]. European Journal of Lipid Science and Technology,2014,117(4):411−420.
|
[14] |
ZHANG Y, TAKAHAMA K, OSAWA Y, et al. Characteristics of LED light-induced geometrical isomerization and degradation of astaxanthin and improvement of the color value and crystallinity of astaxanthin utilizing the photoisomerization[J]. Food Research International,2023,174:113553. doi: 10.1016/j.foodres.2023.113553
|
[15] |
SANTOS PEREIRA L F, BARBON S, JR. , VALOUS N A, et al. Predicting the ripening of papaya fruit with digital imaging and random forests[J]. Computers and Electronics in Agriculture,2018,145:76−82. doi: 10.1016/j.compag.2017.12.029
|
[16] |
李聪, 李玉洁, 李小占, 等. 基于机器视觉的红枣外部品质检测技术研究进展[J]. 食品工业科技,2022,43(20):447−453. [LI C, LI Y J, LI X Z, et al. Research progress on external quality detection and classification technology of jujube based on machine vision[J]. Science and Technology of Food Industry,2022,43(20):447−453.]
LI C, LI Y J, LI X Z, et al. Research progress on external quality detection and classification technology of jujube based on machine vision[J]. Science and Technology of Food Industry, 2022, 43(20): 447−453.
|
[17] |
SU Q, KONDO N, RIZA D F A, et al. Potato quality grading based on depth imaging and convolutional neural network[J]. Journal of Food Quality,2020,2020:8815896.
|
[18] |
WANG C, LIU Y, XIA Z, et al. Convolutional neural network‐based portable computer vision system for freshness assessment of crayfish (Prokaryophyllus clarkii)[J]. Journal of Food Science,2022,87(12):5330−5339. doi: 10.1111/1750-3841.16377
|
[19] |
GILA A, BEJAOUI M A, BELTRAN G, et al. Rapid method based on computer vision to determine the moisture and insoluble impurities content in virgin olive oils[J]. Food Control,2020,113:107210. doi: 10.1016/j.foodcont.2020.107210
|
[20] |
FERNANDES D D D S, ROMEO F, KREPPER G, et al. Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools[J]. LWT-Food Science and Technology, 2019, 100:20−27.
|
[21] |
PAULINE O, SUMING C, CHAO-YIN T, et al. A non-destructive methodology for determination of cantaloupe sugar content using machine vision and deep learning[J]. Journal of the Science of Food and Agriculture,2022,102(14):6586−6595. doi: 10.1002/jsfa.12024
|
[22] |
中华人民共和国农业农村部. 水产品及其制品中虾青素含量的测定 高效液相色谱法:SC/T 3053-2019[S]. 北京:中国农业出版社, 2019:1. [Ministry of Agriculture and Rural Affairs of the People's Republic of China. Determination of astaxanthin in fish and fishery products by high performance liquid chromatography method:SC/T 3053-2019[S]. Beijing:China Agriculture Press, 2019:1.]
Ministry of Agriculture and Rural Affairs of the People's Republic of China. Determination of astaxanthin in fish and fishery products by high performance liquid chromatography method: SC/T 3053-2019[S]. Beijing: China Agriculture Press, 2019: 1.
|
[23] |
VIDAL M, GARCIA-ARRONA R, BORDAGARAY A, et al. Simultaneous determination of color additives tartrazine and allura red in food products by digital image analysis[J]. Talanta,2018,184:58−64. doi: 10.1016/j.talanta.2018.02.111
|
[24] |
WANG C, LIU S, WANG Y, et al. Application of convolutional neural network-based detection methods in fresh fruit production:A comprehensive review[J]. Frontiers in Plant Science, 2022, 13.
|
[25] |
杜紫燕, 徐杰, 熊菁晶, 等. 南极磷虾粉贮藏过程中品质变化研究[J]. 食品工业科技,2018,39(9):267−271,277. [DU Z Y, XU J, XIONG J J, et al. Effect of storage conditions on the quality of Antarctic krill meal[J]. Science and Technology of Food Industry,2018,39(9):267−271,277.]
DU Z Y, XU J, XIONG J J, et al. Effect of storage conditions on the quality of Antarctic krill meal[J]. Science and Technology of Food Industry, 2018, 39(9): 267−271,277.
|
[26] |
BAI Y, XIONG Y, HUANG J, et al. Accurate prediction of soluble solid content of apples from multiple geographical regions by combining deep learning with spectral fingerprint features[J]. Postharvest Biology and Technology,2019,156:110943. doi: 10.1016/j.postharvbio.2019.110943
|
[27] |
LI J, ZHU Z, LIU H, et al. Strawberry R-CNN:Recognition and counting model of strawberry based on improved faster R-CNN[J]. Ecological Informatics, 2023:102210.
|
[28] |
GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition,2018,77:354−377. doi: 10.1016/j.patcog.2017.10.013
|
[29] |
ZHANG Q, ZHUO L, LI J, et al. Vehicle color recognition using multiple-layer feature representations of lightweight convolutional neural network[J]. Signal Processing,2018,147:146−153. doi: 10.1016/j.sigpro.2018.01.021
|
[30] |
COTRIM W D S, MINIM V P R, FELIX L B, et al. Short convolutional neural networks applied to the recognition of the browning stages of bread crust[J]. Journal of Food Engineering,2020,277:109916. doi: 10.1016/j.jfoodeng.2020.109916
|
[31] |
LI Z, LIU F, YANG W, et al. A survey of convolutional neural networks:Analysis, applications, and prospects[J]. Ieee Transactions on Neural Networks and Learning Systems,2022,33(12):6999−7019. doi: 10.1109/TNNLS.2021.3084827
|
[32] |
NASIRI A, OMID M, TAHERI-GARAVAND A. An automatic sorting system for unwashed eggs using deep learning[J]. Journal of Food Engineering,2020,283:110036. doi: 10.1016/j.jfoodeng.2020.110036
|
[33] |
张润泽, 冯国红, 付晟宏, 等. 基于CNN-GRU-AE的蓝莓货架期预测模型研究[J]. 食品科学,2024,45(13):229−238. [ZHANG R Z, FENG G H, FU S H, et al. Research on blueberry shelf-life prediction model based on CNN-GRU-AE[J]. Food Science,2024,45(13):229−238.] doi: 10.7506/spkx1002-6630-20231208-071
ZHANG R Z, FENG G H, FU S H, et al. Research on blueberry shelf-life prediction model based on CNN-GRU-AE[J]. Food Science, 2024, 45(13): 229−238. doi: 10.7506/spkx1002-6630-20231208-071
|
[34] |
占可, 陈季旺, 徐言, 等. 基于近红外光谱特征的冷冻小龙虾鲜度快速检测方法[J]. 食品科学,2024,45(2):299−307. [ZHAN K, CHEN JW, XU Y, et al. Rapid detection method for freshness of crayfish during freezing storage:Based on near-infrared spectroscopy[J]. Food Science,2024,45(2):299−307.] doi: 10.7506/spkx1002-6630-20230418-177
ZHAN K, CHEN JW, XU Y, et al. Rapid detection method for freshness of crayfish during freezing storage: Based on near-infrared spectroscopy[J]. Food Science, 2024, 45(2): 299−307. doi: 10.7506/spkx1002-6630-20230418-177
|
[35] |
YU S, LAN H, LI X, et al. Prediction method of shelf life of damaged Korla fragrant pears[J]. Journal of Food Process Engineering,2021,44:e13902. doi: 10.1111/jfpe.13902
|
[36] |
GAO Q, WANG P, NIU T, et al. Soluble solid content and firmness index assessment and maturity discrimination of Malus micromalus Makino based on near-infrared hyperspectral imaging[J]. Food Chemistry,2021,370:131013.
|
[37] |
KARUNASINGHA D S K. Root mean square error or mean absolute error? Use their ratio as well[J]. Information Sciences,2022,585:609−629. doi: 10.1016/j.ins.2021.11.036
|
[38] |
QI J, DU J, SINISCALCHI S M, et al. On mean absolute error for deep neural network based vector-to-vector regression[J]. IEEE Signal Processing Letters,2020,27:1485−1489. doi: 10.1109/LSP.2020.3016837
|
[39] |
耿金峰, 张惠敏, 杨建强, 等. 雨生红球藻中虾青素含量的快速测定方法[J]. 食品研究与开发,2016,37(12):125−128. [GENG J F, ZHANG H M, YANG J Q, et al. A method for rapid determination of astaxanthin from Haematococcus pluvialis[J]. Food Research and Development,2016,37(12):125−128.] doi: 10.3969/j.issn.1005-6521.2016.12.029
GENG J F, ZHANG H M, YANG J Q, et al. A method for rapid determination of astaxanthin from Haematococcus pluvialis[J]. Food Research and Development, 2016, 37(12): 125−128. doi: 10.3969/j.issn.1005-6521.2016.12.029
|
[40] |
LIU J, BI J, LIU X, et al. Modelling and optimization of high-pressure homogenization of not-from-concentrate juice:Achieving better juice quality using sustainable production[J]. Food Chemistry,2021,370:131058.
|