Citation: | LI Xu, CHU Ruoqing, LIU Xinru, et al. Sustained Release Properties of Acid Resistant Carboxymethyl Chitosan Gel Microspheres Loaded with Anthocyanins[J]. Science and Technology of Food Industry, 2024, 45(15): 152−160. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024020076. |
[1] |
CHEN L Z, ZHONG J J, LIN Y Y, et al. Microwave and enzyme co-assisted extraction of anthocyanins from purple-heart radish:Process optimization, composition analysis and antioxidant activity[J]. LWT,2023,187:115312. doi: 10.1016/j.lwt.2023.115312
|
[2] |
李煦, 白雪晴, 刘长霞, 等. 天 然花青素的抗氧化机制及功能活性研究进展[J]. 食品安全质量检测学报,2021,12(20):8163−8171. [LI X, BAI X Q, LIU C X, et al. Research progress on antioxidant mechanism and functional activity of natural anthocyanins[J]. Journal of Food Safety and Quality,2021,12(20):8163−8171.]
LI X, BAI X Q, LIU C X, et al. Research progress on antioxidant mechanism and functional activity of natural anthocyanins[J]. Journal of Food Safety and Quality, 2021, 12(20): 8163−8171.
|
[3] |
FARIA A, PESTANA D, AZEVEDO J, et al. Absorption of anthocyanins through intestinal epithelial cells-putative involvement of GLUT2[J]. Molecular Nutrition & Food Research,2009,53(11):1430−1437.
|
[4] |
HUANG Y X, ZHOU S Y, ZHAO G H, et al. Destabilisation and stabilisation of anthocyanins in purple-fleshed sweet potatoes:A review[J]. Trends in Food Science & Technology,2021,116:1141−1154.
|
[5] |
YUAN Y T, FAN Q, XU X Y, et al. Nanocarriers based on polysaccharides for improving the stability and bioavailability of anthocyanins:A review[J]. Carbohydrate Polymer Technologies and Applications,2023,6:100346. doi: 10.1016/j.carpta.2023.100346
|
[6] |
HE J, MAGNUSON B A, LALA G, et al. Intact anthocyanins and metabolites in rat urine and plasma after 3 months of anthocyanin supplementation[J]. Nutrition and Cancer,2006,54(1):3−12. doi: 10.1207/s15327914nc5401_2
|
[7] |
ZHOU X, NIE S, LIU L, et al. Compound hydrogels derived from gelatin and gellan gum regulates the release of anthocyanins in simulated digestion[J]. Food Hydrocolloids,2022,127:107487. doi: 10.1016/j.foodhyd.2022.107487
|
[8] |
GHREAGHAJLOU N, HALLAJ-NEZHADI S, GHASEMPOUR Z. Nano-liposomal system based on lyophilization of monophase solution technique for encapsulating anthocyanin-rich extract from red cabbage[J]. Dyes Pigments,2022,202:110263. doi: 10.1016/j.dyepig.2022.110263
|
[9] |
THIECLA K O R, SILVA M P D, LOURENO F R, et al. Nanoencapsulation of anthocyanins from blackberry (Rubus spp) through pectin and lysozyme self-assembling[J]. Food Hydrocolloids,2021,114:106563. doi: 10.1016/j.foodhyd.2020.106563
|
[10] |
IRMAK O S, NESLIHAN A D, KUBRA U, et al. Lyophilized nano-liposomal system for red onion (Allium cepa L.) peel anthocyanin:Characterization, bioaccessibility and release kinetics[J]. Food Bioscience,2023,53:102702. doi: 10.1016/j.fbio.2023.102702
|
[11] |
SANTIAGOGARCÍA A P, LEÓNMARTÍNEZ M F, GUTIÉRREZ C M, et al. Microencapsulation of strawberry juice in Agave angustifolia fructans:Effect of spray-drying conditions on the anthocyanin content and physicochemical properties[J]. International Journal of Food Science Technology,2023,58(12):6725−6735. doi: 10.1111/ijfs.16529
|
[12] |
LIU R R, WANG X H, YANG L X, et al. Coordinated encapsulation by β-cyclodextrin and chitosan derivatives improves the stability of anthocyanins[J]. International Journal of Biological Macromolecules,2023,242:125060. doi: 10.1016/j.ijbiomac.2023.125060
|
[13] |
WU C L, JULIAN M D, MA B H, et al. Composite hydrogels formed from okara cellulose nanofibers and carrageenan:Fabrication and characterization[J]. International Journal of Biological Macromolecules,2023,258(P2):129079.
|
[14] |
YING J. Synthesis of porous starch microgels for the encapsulation, delivery and stabilization of anthocyanins[J]. Journal of Food Engineering,2021,302:110552. doi: 10.1016/j.jfoodeng.2021.110552
|
[15] |
LI W J, LINLI F Z, YANG W Y, et al. Enhancing the stability of natural anthocyanins against environmental stressors through encapsulation with synthetic peptide-based gels[J]. International Journal of Biological Macromolecules,2023,253:127133. doi: 10.1016/j.ijbiomac.2023.127133
|
[16] |
曹亚婵, 刘晓坤, 党奇峰, 等. 基于壳聚糖的抗菌可注射自愈性水凝胶的制备及其生物相容性研究[J]. 中国海洋大学学报(自然科学版),2024,54(3):60−69. [CAO Y C, LIU X K, DANG Q F, et al. Preparation and biocompatibility of antibacterial injectable chitosan-based hydrogel for self-healing biomateria[J]. Periodical of Ocean University of China,2024,54(3):60−69.]
CAO Y C, LIU X K, DANG Q F, et al. Preparation and biocompatibility of antibacterial injectable chitosan-based hydrogel for self-healing biomateria[J]. Periodical of Ocean University of China, 2024, 54(3): 60−69.
|
[17] |
李煦, 董翠芳, 刘长霞, 等. 负载花色苷的壳聚糖-水杨醛水凝胶的制备及性能[J]. 食品工业科技,2023,44(9):111−118. [LI X, DONG C F, LIU C X, et al. Preparation and properties of chitosan salicylaldehyde hydrogel loaded with anthocyanins[J]. Science and Technology of Food Industry,2023,44(9):111−118.]
LI X, DONG C F, LIU C X, et al. Preparation and properties of chitosan salicylaldehyde hydrogel loaded with anthocyanins[J]. Science and Technology of Food Industry, 2023, 44(9): 111−118.
|
[18] |
LIU C X, DONG C F, LIU S H, et al. Multiple chiroptical switches and logic circuit based on salicyl- imine- chitosan hydrogel[J]. Carbohydrate Polymers,2021,257:117534. doi: 10.1016/j.carbpol.2020.117534
|
[19] |
FATEMEH K, SAEED S S. Synthesis and characterization of a novel hydrogel based on carboxymethyl chitosan/sodium alginate with the ability to release simvastatin for chronic wound healing[J]. Biomedial Materials,2023,18(2):025001. doi: 10.1088/1748-605X/acb0a3
|
[20] |
GUO F B, LIU Y, CHEN S Q, et al. A schiff base hydrogel dressing loading extracts from Periplaneta americana for diabetic wound healing[J]. International Journal of Biological Macromolecules,2023,230:123256. doi: 10.1016/j.ijbiomac.2023.123256
|
[21] |
YU R, ZHANG Y, BARBORU M, et al. Biobased pH-responsive and self-healing hydrogels prepared from O-carboxymethyl chitosan and a 3-dimensional dynamer as cartilage engineering scaffold[J]. Carbohydrate Polymers,2020,244:116471. doi: 10.1016/j.carbpol.2020.116471
|
[22] |
李俊杰, 贾鹏, 刘功稳, 等. 一种口服骨靶向微/纳水凝胶微球制备及对雌性去势小鼠骨质量影响的研究[J]. 中国骨质疏松杂志,2023,29(11):1581−1586,1597. [LI J J, JIA P, LIU G W, et al. Preparation of an oral bone-targeting micro/nano hydrogel microsphere and its effect on bone quality in ovariectomized mice[J]. Chinese Journal of Osteoporosis,2023,29(11):1581−1586,1597.] doi: 10.3969/j.issn.1006-7108.2023.11.005
LI J J, JIA P, LIU G W, et al. Preparation of an oral bone-targeting micro/nano hydrogel microsphere and its effect on bone quality in ovariectomized mice[J]. Chinese Journal of Osteoporosis, 2023, 29(11): 1581−1586,1597. doi: 10.3969/j.issn.1006-7108.2023.11.005
|
[23] |
GIULBUDAGIAN M, YEALLAND G, HNZHE S, et al. Breaking the barrier-Potent anti-inflammatory activity following efficient topical delivery of etanercept using thermoresponsive nanogels[J]. Theranostics,2018,8(2):450−463. doi: 10.7150/thno.21668
|
[24] |
ZHU C, WANG S, WANG D, et al. Novel nano-micro-macro multiple-nested hydrogel with gradient ciliary neurotrophic factor distribution induces directional axon regeneration of retinal ganglion cells[J]. Colloids and Surfaces-A Physicochemical and Engineering Aspects,2023,675:131904. doi: 10.1016/j.colsurfa.2023.131904
|
[25] |
LI X, WU X L. The microspheres/hydrogels scaffolds based on the proteins, nucleic acids, or polysaccharides composite as carriers for tissue repair:A review[J]. International Journal of Biological Macromolecules,2023,253:126611. doi: 10.1016/j.ijbiomac.2023.126611
|
[26] |
SATOMI T, ANDREA C, SUZUKA S, et al. Preparation of ultrasmall cyclodextrin nanogels by an inverse emulsion method using a cationic surfactant[J]. Chemical Communications,2023,59(27):4071−4074. doi: 10.1039/D3CC00523B
|
[27] |
刘长姣, 郑霞, 熊湘炜, 等. 分光光度法测定黑米花青素方法的建立[J]. 粮食与油脂,2019,32(1):73−77. [LIU C J, ZHENG X, XIONG X W, et al. Establishment of a spectrophotometric method for the determination of anthocyanins in black rice[J]. Food and Oil,2019,32(1):73−77.] doi: 10.3969/j.issn.1008-9578.2019.01.020
LIU C J, ZHENG X, XIONG X W, et al. Establishment of a spectrophotometric method for the determination of anthocyanins in black rice[J]. Food and Oil, 2019, 32(1): 73−77. doi: 10.3969/j.issn.1008-9578.2019.01.020
|
[28] |
戴文, 王晓东, 黄培, 等. 乳液模板法制备聚酰亚胺中空微球及其形貌调控[J]. 高分子材料科学与工程,2023,39(7):25−32. [DAI W, WANG X D, HUANG P, et al. Morphology control and preparation of polyimide hollow microspheres by emulsion template method[J]. Polymer Materials Science & Engineering,2023,39(7):25−32.]
DAI W, WANG X D, HUANG P, et al. Morphology control and preparation of polyimide hollow microspheres by emulsion template method[J]. Polymer Materials Science & Engineering, 2023, 39(7): 25−32.
|
[29] |
ZHANG B, WANG Q, ZHOU P P, et al. Copigmentation evidence of oenin with phenolic compounds:A comparative study of spectrographic, thermodynamic and theoretical data[J]. Food Chemistry,2020,313:126163. doi: 10.1016/j.foodchem.2020.126163
|
[30] |
薛宏坤, 李鹏程, 钟雪, 等. 高速逆流色谱分离纯化桑葚花色苷及其抗氧化活性[J]. 食品科学,2020,41(15):96−104. [XUE H S, LI P C, ZHONG X, et al. Separation and purification of anthocyanins from mulberry fruit by high-speed counter-current chromatography and their antioxidant activity[J]. Food Science,2020,41(15):96−104.] doi: 10.7506/spkx1002-6630-20190715-193
XUE H S, LI P C, ZHONG X, et al. Separation and purification of anthocyanins from mulberry fruit by high-speed counter-current chromatography and their antioxidant activity[J]. Food Science, 2020, 41(15): 96−104. doi: 10.7506/spkx1002-6630-20190715-193
|
[31] |
WU X H, LIN Q W, BELWAL T, et al. Effect of advanced/hybrid oxidation process involving ultrasonication and ultraviolet radiation (sonophotolysis) on anthocyanin stability:Degradation kinetics and mechanism[J]. Food Chemistry,2022,370:131083. doi: 10.1016/j.foodchem.2021.131083
|
[32] |
KOSMIDIS K, MACHERAS P. On the dilemma of fractal or fractional kinetics in drug release studies:A comparison between Weibull and Mittag-Leffler functions[J]. International Journal of Pharmaceutics,2018,543(1-2):269−273. doi: 10.1016/j.ijpharm.2018.03.060
|
[33] |
PAPADOPOILOU V, KOSMIDIS K, VLACHOU M, et al. On the use of the Weibull function for the discernment of drug release mechanisms[J]. International Journal of Pharmaceutics,2006,309(1−2):44−50. doi: 10.1016/j.ijpharm.2005.10.044
|
[34] |
NAZIM N, STEFAN K. Fundamental advances in hydrogels for the development of the next generation of smart delivery systems as biopharmaceuticals[J]. International Journal of Pharmaceutics,2023,633:122634. doi: 10.1016/j.ijpharm.2023.122634
|
[35] |
李凌冰, 谭业邦. 亲水聚合物凝胶系统中药物控制释放两类特殊情况的数学模型[J]. 生物医学工程学杂志,2003,20(1):17−21. [LI L B, TAN Y B. Two sorts of problems on drug controlled release from swellable polymer[J]. Journal of Biomedical Engineering,2003,20(1):17−21.] doi: 10.3321/j.issn:1001-5515.2003.01.006
LI L B, TAN Y B. Two sorts of problems on drug controlled release from swellable polymer[J]. Journal of Biomedical Engineering, 2003, 20(1): 17−21. doi: 10.3321/j.issn:1001-5515.2003.01.006
|
[36] |
LIU L Y, ZHANG D D, SONG X X, et al. Compound hydrogels derived from gelatin and gellan gum regulates the release of anthocyanins in simulated digestion[J]. Food Hydrocolloids,2022,127(6):107487.
|
[37] |
GHAZAL S, KORDESTANI S S, TAHRIRI M, et al. Evaluation of L929 cell morphology on anthocyanin-containing gelatin-based hydrogel for early detection of infection[J]. Bio-Design and Manufacturing,2019,2(3):181−186. doi: 10.1007/s42242-019-00047-6
|