Citation: | WANG Mengyuan, LIU Xianjun, MENG Xianglong, et al. Role and Mechanism of 20-Hydroxyecdysone in Oxidative Damage of HepG2 Cells Induced by High Glucose[J]. Science and Technology of Food Industry, 2024, 45(20): 369−377. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120297. |
[1] |
LIU J L, LIU M, CHAI Z L, et al. Projected rapid growth in diabetes disease burden and economic burden in China:A spatio-temporal study from 2020 to 2030[J]. The Lancet Regional Health-Western Pacific,2023,33:100700. doi: 10.1016/j.lanwpc.2023.100700
|
[2] |
KUMAR S, DUAN Q H, WU R X, et al. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis[J]. Advanced Drug Delivery Reviews,2021,176:113869. doi: 10.1016/j.addr.2021.113869
|
[3] |
EKTA, GUPTA M, KAUR A, et al. Pathobiological and molecular connections involved in the high fructose and high fat diet induced diabetes associated nonalcoholic fatty liver disease[J]. Inflammation Research,2020,69(9):851−867. doi: 10.1007/s00011-020-01373-7
|
[4] |
RAHAMAN M M, HOSSAIN R, HERRERA-BRAVO J, et al. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits:An update[J]. Food Science & Nutrition,2023,11(4):1657−1670.
|
[5] |
胡一晨, 赵钢, 秦培友, 等. 藜麦活性成分研究进展[J]. 作物学报, 2018, 44(11):1579−1591. [HU Y C, ZHAO G, QIN P Y, et al. Research progress on bioactive components of Quinoa (Chenopodium quinoa Willd.) [J]. Acta Agronomica Sinica, 2018, 44(11):1579−1591.]
HU Y C, ZHAO G, QIN P Y, et al. Research progress on bioactive components of Quinoa (Chenopodium quinoa Willd.) [J]. Acta Agronomica Sinica, 2018, 44(11): 1579−1591.
|
[6] |
KIZELSZTEIN P, GOVORKO D, KOMARNYTSKY S, et al. 20-Hydroxyecdysone decreases weight and hyperglycemia in a diet-induced obesity mice model[J]. American Journal of Physiology-Endocrinology and Metabolism,2009,296(3):E433−E439. doi: 10.1152/ajpendo.90772.2008
|
[7] |
PLOTNIKOV M B, ZIBAREVA L N, VASIL'EV A S, et al. Antihyperglycaemic, haemorheological and antioxidant activities of Lychnis chalcedonica L. extract in a streptozotocin-induced rat model of diabetes mellitus[J]. Journal of Complementary & Integrative Medicine,2019,17(2):jcim−2017-0028.
|
[8] |
SHUVALOV O, KIRDEEVA Y, FEFILOVA E, et al. 20-Hydroxyecdysone confers antioxidant and antineoplastic properties in human non-small cell lung cancer cells[J]. Metabolites,2023,13(5):656. doi: 10.3390/metabo13050656
|
[9] |
SOUZA L, DA FONSECA S, FERRARI A, et al. β-ecdysone content and antioxidant capacity in different organs of Brazilian ginseng[J]. Ciencia Rural,2021,51(5):e20200618. doi: 10.1590/0103-8478cr20200618
|
[10] |
WANG J C, HU K L, CAI X Y, et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis[J]. Acta Pharmaceutica Sinica B,2022,12(1):18−32. doi: 10.1016/j.apsb.2021.07.023
|
[11] |
LIU S H, JIA Y B, MENG S R, et al. Mechanisms of and potential medications for oxidative stress in ovarian granulosa cells:A review[J]. International Journal of Molecular Sciences,2023,24(11):9205. doi: 10.3390/ijms24119205
|
[12] |
RAI S N, DILNASHIN H, BIRLA H, et al. The role of PI3K/Akt and ERK in neurodegenerative disorders[J]. Neurotoxicity Research,2019,35(3):775−795. doi: 10.1007/s12640-019-0003-y
|
[13] |
SUBRAMANIYAN S D, NATARAJAN A K. Citral, A monoterpene protect against high gucose induced oxidative injury in HepG2 cell in vitro-an experimental study[J]. Journal of Dlinical and Diagnostic Research:JCDR,2017,11(8):BC10−BC15.
|
[14] |
DAINA A, MICHIELIN O, ZOETE V. Swiss target prediction:Updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Research,2019,47(W1):W357−W364. doi: 10.1093/nar/gkz382
|
[15] |
STELZER G, ROSEN N, PLASCHKES I, et al. The GeneCards suite:From gene data mining to disease genome sequence analyses[J]. Current Protocols in Bioinformatics, 2016, 54:1−33.
|
[16] |
SHERMAN B T, HAO M, QIU J, et al. DAVID:a web server for functional enrichment analysis and functional annotation of gene lists (2021 update)[J]. Nucleic Acids Research,2022,50(W1):W216−W221. doi: 10.1093/nar/gkac194
|
[17] |
TANG D D, CHEN M J, HUANG X H, et al. SRplot:A free online platform for data visualization and graphing[J]. PloS one,2023,18(11):e0294236. doi: 10.1371/journal.pone.0294236
|
[18] |
KANEHISA M, SATO Y. KEGG Mapper for inferring cellular functions from protein sequences[J]. Protein Science,2020,29(1):28−35. doi: 10.1002/pro.3711
|
[19] |
LI S L, YI Z J, DENG M H, et al. TSLP protects against liver I/R injury via activation of the PI3K/Akt pathway[J]. Jci Insight,2019,4(22):e129013. doi: 10.1172/jci.insight.129013
|
[20] |
赵悦竹, 金鑫, 张屿楠, 等. 芦荟多糖对D-半乳糖致HepG2细胞氧化损伤的保护作用[J]. 食品工业科技,2023,44(1):405−412. [ZHAO Y Z, JIN X, ZHANG Y N, et al. Protective effect of aloe polysaccharide on oxidative stress injury of HepG2 cells induced by D-galactose[J]. Science and Technology of Food Industry,2023,44(1):405−412.]
ZHAO Y Z, JIN X, ZHANG Y N, et al. Protective effect of aloe polysaccharide on oxidative stress injury of HepG2 cells induced by D-galactose[J]. Science and Technology of Food Industry, 2023, 44(1): 405−412.
|
[21] |
鲁亚君, 刘莹, 王益, 等. 莲壳多酚对T-BHP致HepG2氧化应激损伤的保护作用[J]. 食品工业科技,2023,44(12):397−404. [LU Y J, LIU Y, WANG Y, et al. Protective effects of polyphenol of lotus seed epicarp on oxidative stress damage induced by T-BHP[J]. Science and Technology of Food Industry,2023,44(12):397−404.]
LU Y J, LIU Y, WANG Y, et al. Protective effects of polyphenol of lotus seed epicarp on oxidative stress damage induced by T-BHP[J]. Science and Technology of Food Industry, 2023, 44(12): 397−404.
|
[22] |
DING X Q, JIAN T Y, WU Y X, et al. Ellagic acid ameliorates oxidative stress and insulin resistance in high glucose-treated HepG2 cells via miR-223/keap1-Nrf2 pathway[J]. Biomedicine & Pharmacotherapy,2019,110:85−94.
|
[23] |
LI J T, HAN X P, TANG L, et al. 20-Hydroxyecdysone protects wheat seedlings from salt stress[J]. Archives of Biological Sciences,2018,70(2):379−386. doi: 10.2298/ABS170722056L
|
[24] |
HU J, LUO C X, CHU W H, et al. 20-Hydroxyecdysone protects against oxidative stress-induced neuronal injury by scavenging free radicals and modulating NF-κB and JNK pathways[J]. PLoS One,2012,7(12):e50764. doi: 10.1371/journal.pone.0050764
|
[25] |
NOJIMA Y, BONO H, YOKOYAMA T, et al. Superoxide dismutase down-regulation and the oxidative stress is required to initiate pupation in Bombyx mori[J]. Scientific Reports,2019,9(1):14693. doi: 10.1038/s41598-019-51163-3
|
[26] |
HU J N, FENG Y, LI B L, et al. Identification of quality markers for Cyanotis arachnoidea and analysis of its physiological mechanism based on chemical pattern recognition, network pharmacology, and experimental validation[J]. PeerJ,2023,11:e15948. doi: 10.7717/peerj.15948
|
[27] |
WANG J, ZHAO Y P. Knockdown of PRUNE2 alleviates hypoxia-induced oxidative stress inhibits cell proliferation in trophoblast cells, and reverses LY294002-induced PI3K/AKT pathway inhibition[J]. Tropical Journal of Pharmaceutical Research,2023,22(2):305−311. doi: 10.4314/tjpr.v22i2.12
|
[28] |
WANG H Q, CHEN M, ZHANG T, et al. Recombinant human erythropoietin upregulates PPARγ through the PI3K/Akt pathway to protect neurons in rats subjected to oxidative stress[J]. European Journal of Neuroscience,2022,56(3):4045−4059. doi: 10.1111/ejn.15735
|
[29] |
ROMANIUK-DRAPALA A, LISIAK N, TOTON E, et al. Proapoptotic and proautophagic activity of 20-hydroxyecdysone in breast cancer cells in vitro[J]. Chemico-Biological Interactions,2021,342:109479. doi: 10.1016/j.cbi.2021.109479
|
[30] |
CAI M J, ZHAO W L, JING Y P, et al. 20-hydroxyecdysone activates Forkhead box O to promote proteolysis during Helicoverpa armigera molting[J]. Development,2016,143(6):1005−1015.
|
[31] |
JIAN C X, LIU X F, HU J, et al. 20-hydroxyecdysone-induced bone morphogenetic protein-2-dependent osteogenic differentiation through the ERK pathway in human periodontal ligament stem cells[J]. European Journal of Pharmacology,2013,698(1−3):48−56. doi: 10.1016/j.ejphar.2012.07.044
|