ZHANG Hongbo, KANG Ningbo, ZHOU Lianghuan, et al. Influence of Vacuum Precooling Pressure on SOD Enzyme Activity of Fresh Lycium barbarum and Molecular Dynamics Simulation[J]. Science and Technology of Food Industry, 2025, 46(1): 54−60. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120167.
Citation: ZHANG Hongbo, KANG Ningbo, ZHOU Lianghuan, et al. Influence of Vacuum Precooling Pressure on SOD Enzyme Activity of Fresh Lycium barbarum and Molecular Dynamics Simulation[J]. Science and Technology of Food Industry, 2025, 46(1): 54−60. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120167.

Influence of Vacuum Precooling Pressure on SOD Enzyme Activity of Fresh Lycium barbarum and Molecular Dynamics Simulation

More Information
  • Received Date: December 17, 2023
  • Available Online: November 02, 2024
  • In order to investigate the effect of vacuum precooling on superoxide dismutase (SOD) enzyme activity of fresh Lycium barbarum and its molecular level mechanism, this paper explored the activity of SOD enzyme in crude enzyme liquid extracted from fresh Lycium barbarum of Ningxia was determined under 900 Pa and 1100 Pa vacuum precooling final pressure. The structural changes of SOD enzyme under different vacuum precooling pressure treatments were studied using molecular dynamics simulation for 150 ns, which included the changes of root mean square deviation (RMSD), radius of gyration (Rg), total energy, potential energy, kinetic energy, bond angle energy, root mean square fluctuation (RMSF), number of hydrogen bonds, surface structure and solvent accessible surface area (SASA). Then the optimum pressure conditions for vacuum precooling treatment were selected. The results of experiments showed that the activity of SOD enzyme was the highest under 900 Pa. The results of molecular dynamics simulation showed that the total energy, potential energy, kinetic energy and bond angle energy of SOD enzyme were in a balanced and stable state. An increase in pressure could cause changes in the surface structure of proteins, reduced the number of hydrogen bonds, and continuously decreased the solvent accessible surface area. Under the condition of 900 Pa, the protein structure was the most compact, and binding pocket became wider and easier to bind to the protein. The activity of SOD enzyme protein decreased under 1100 Pa, the protein structure was damaged, and binding pocket became smaller. This study could provide a scientific reference for the study of fresh Lycium barbarum preservation and processing.
  • loading
  • [1]
    王晓菁. 宁夏枸杞产业发展存在的问题与挑战及对策研究[J]. 宁夏农林科技,2023,64(11):32−35. [WANG X J. Research on problems, challenges and countermeasures of the development of Wolfberry industry in Ningxia[J]. Ningxia Agriculture and Forestry Science and Technology,2023,64(11):32−35.] doi: 10.3969/j.issn.1002-204x.2023.11.009

    WANG X J. Research on problems, challenges and countermeasures of the development of Wolfberry industry in Ningxia[J]. Ningxia Agriculture and Forestry Science and Technology, 2023, 64(11): 32−35. doi: 10.3969/j.issn.1002-204x.2023.11.009
    [2]
    闫亚美, 米佳, 秦垦, 等. 宁夏枸杞品质响应因素研究进展[J]. 宁夏农林科技,2023,64(11):28−31. [YAN Y M, MI J, QIN K, et al. Research progress on quality response factors of Lycium barbarum in Ningxia[J]. Ningxia Agriculture and Forestry Science and Technology,2023,64(11):28−31.] doi: 10.3969/j.issn.1002-204x.2023.11.008

    YAN Y M, MI J, QIN K, et al. Research progress on quality response factors of Lycium barbarum in Ningxia[J]. Ningxia Agriculture and Forestry Science and Technology, 2023, 64(11): 28−31. doi: 10.3969/j.issn.1002-204x.2023.11.008
    [3]
    林继辉, 陈莎莎, 陈梓嫔, 等. 余甘子果超氧化物歧化酶提取工艺优化及抗氧化性研究[J]. 云南民族大学学报(自然科学版),2023,32(2):199−208. [LIN J H, CHEN S S, CHEN Z P, et al. Study on the optimization of extraction process of superoxide dismutase from Phyllanthus emblica and its antioxidant activity[J]. Journal of Yunnan Minzu University (Natural Science Edition),2023,32(2):199−208.] doi: 10.3969/j.issn.1672-8513.2023.02.009

    LIN J H, CHEN S S, CHEN Z P, et al. Study on the optimization of extraction process of superoxide dismutase from Phyllanthus emblica and its antioxidant activity[J]. Journal of Yunnan Minzu University (Natural Science Edition), 2023, 32(2): 199−208. doi: 10.3969/j.issn.1672-8513.2023.02.009
    [4]
    JIN X, LIU Z, WU W F. POD, CAT and SOD enzyme activity of corn kernels as affected by low plasma pretreatment[J]. International Journal of Food Properties,2023,26(1):38−48. doi: 10.1080/10942912.2022.2151619
    [5]
    GONG H G, REHMAN F, MA Y, et al. Germplasm resources and strategy for genetic breeding of Lycium species:A review[J]. Frontiers in Plant Science,2022,13:802936. doi: 10.3389/fpls.2022.802936
    [6]
    朱秀敏. 超氧化物歧化酶的生理活性[J]. 当代医学,2011,17(15):26−27. [ZHU X M. Physiological activity of superoxide dismutase[J]. Contemporary Medicine,2011,17(15):26−27.] doi: 10.3969/j.issn.1009-4393.2011.15.017

    ZHU X M. Physiological activity of superoxide dismutase[J]. Contemporary Medicine, 2011, 17(15): 26−27. doi: 10.3969/j.issn.1009-4393.2011.15.017
    [7]
    尹俊杰. 鲜枸杞真空预冷过程热质传递的数值模拟[D]. 银川:宁夏大学, 2022. [YIN J J. Numerical Simulation of heat and mass Transfer during vacuum precooling of fresh wolfberry[D]. Yinchuan:Ningxia University, 2022.]

    YIN J J. Numerical Simulation of heat and mass Transfer during vacuum precooling of fresh wolfberry[D]. Yinchuan: Ningxia University, 2022.
    [8]
    AN R H, LUO S F, ZHOU H S, et al. Effects of hydrogen-rich water combined with vacuum precooling on the senescence and antioxidant capacity of pakchoi (Brassica rapa subsp. Chinensis)[J]. Scientia Horticulturae,2021,289:110469. doi: 10.1016/j.scienta.2021.110469
    [9]
    廖彩虎. 基于微观结构研究优化真空预冷技术对西式火腿品质及安全的影响[D]. 广州:华南理工大学, 2020. [LIAO C H. Effect of innovative vacuum cooling on the quality and safety of cooked meat product-based on the prespective of microstructure [D]. Guangzhou:South China University of Technology, 2020.]

    LIAO C H. Effect of innovative vacuum cooling on the quality and safety of cooked meat product-based on the prespective of microstructure [D]. Guangzhou: South China University of Technology, 2020.
    [10]
    鲁焱兴. 真空预冷技术与气调包装延长香菇保藏期的研究[D]. 哈尔滨:哈尔滨商业大学, 2020. [LU Y X. Extending shelf life of Lentinus edodes by vacuum precooling and modified atmosphere packaging[D]. Harbin:Harbin University of Commerce, 2020.]

    LU Y X. Extending shelf life of Lentinus edodes by vacuum precooling and modified atmosphere packaging[D]. Harbin: Harbin University of Commerce, 2020.
    [11]
    梁豪, 田怀文, 杨文哲. 真空预冷技术及其在果蔬方面的应用和发展前景[J]. 科技创新与生产力,2020(11):75−77. [LIANG H, TIAN H W, YANG W Z. Vacuum precooling technology and its application and development prospect in fruits and vegetables[J]. Science and Technology innovation and Productivity,2020(11):75−77.] doi: 10.3969/j.issn.1674-9146.2020.11.075

    LIANG H, TIAN H W, YANG W Z. Vacuum precooling technology and its application and development prospect in fruits and vegetables[J]. Science and Technology innovation and Productivity, 2020(11): 75−77. doi: 10.3969/j.issn.1674-9146.2020.11.075
    [12]
    鲁玲, 康宁波, 刘贵珊, 等. 真空预冷结合微孔膜包装对鲜枸杞贮藏品质的影响[J]. 农业工程学报,2021,37(10):245−252. [LU L, KANG N B, LIU G S, et al. Storage quality of fresh Lycium barbarum by vacuum precooling and microporous membrane packaging[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(10):245−252.] doi: 10.11975/j.issn.1002-6819.2021.10.029

    LU L, KANG N B, LIU G S, et al. Storage quality of fresh Lycium barbarum by vacuum precooling and microporous membrane packaging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(10): 245−252. doi: 10.11975/j.issn.1002-6819.2021.10.029
    [13]
    HE X L, WU C, LU L, et al. Influence of acidic electrolyzed water combined with vacuum precooling treatment on quality and antioxidant performance of fresh Lycium barbarum L.[J]. Journal of Food Processing and Preservation, 2022, 46(12).
    [14]
    何小玲. 真空预冷对鲜枸杞力学及生理特性的影响研究[D]. 银川:宁夏大学, 2023. [HE X L. The study of the effects of vacuum precooling on the mechanical and physiological properties of fresh goji berries[D]. Yinchuan:Ningxia University, 2023.]

    HE X L. The study of the effects of vacuum precooling on the mechanical and physiological properties of fresh goji berries[D]. Yinchuan: Ningxia University, 2023.
    [15]
    黄业传, 张喜才, 曾奕秀, 等. 高压处理对木瓜蛋白酶活性的影响及分子动力学模拟[J]. 食品工业科技,2023,44(12):102−107. [HUANG Y C, ZHANG X C, ZENG Y X, et al. Effect of high pressure treatment on papain activity and molecular dynamics simulation[J]. Food Industry Science and Technology,2023,44(12):102−107.]

    HUANG Y C, ZHANG X C, ZENG Y X, et al. Effect of high pressure treatment on papain activity and molecular dynamics simulation[J]. Food Industry Science and Technology, 2023, 44(12): 102−107.
    [16]
    孔庆新, 罗丽梅, 黄业传, 等. 分子动力学探究高压对β-乳球蛋白与多酚结合的影响[J]. 食品与发酵工业,2022,48(3):107−114. [KONG Q X, LUO L M, HUANG Y C, et al. The effect of high pressure on the combination of β-lactoglobulin and polyphenol using molecular dynamic model[J]. Food and Fermentation Industry,2022,48(3):107−114.]

    KONG Q X, LUO L M, HUANG Y C, et al. The effect of high pressure on the combination of β-lactoglobulin and polyphenol using molecular dynamic model[J]. Food and Fermentation Industry, 2022, 48(3): 107−114.
    [17]
    简清梅, 索化夷, 张喜才, 等. 分子动力学模拟超高压结合热处理对β-乳球蛋白结构的影响[J]. 食品科学,2021,42(23):57−63. [JIAN Q M, SUO H Y, ZHANG X C, et al. Effect of combined high pressure and thermal on structure of β-lactoglobulin evaluated by molecular dynamics simulation[J]. Food Science,2021,42(23):57−63.] doi: 10.7506/spkx1002-6630-20210427-378

    JIAN Q M, SUO H Y, ZHANG X C, et al. Effect of combined high pressure and thermal on structure of β-lactoglobulin evaluated by molecular dynamics simulation[J]. Food Science, 2021, 42(23): 57−63. doi: 10.7506/spkx1002-6630-20210427-378
    [18]
    赵泽丰, 亢恺雯, 年梦, 等. 杜仲中超氧化物歧化酶1抑制成分的虚拟筛选及分子动力学研究[J]. 西北药学杂志,2023,38(1):124−132. [ZHAO Z F, KANG K W, NIAN M, et al. Virtual screening and molecular dynamics simulation studies of effective superoxide dismutase 1 inhibitory constituents from Eucommia ulmoides[J]. Northwestern Journal of Pharmacy,2023,38(1):124−132.] doi: 10.3969/j.issn.1004-2407.2023.01.022

    ZHAO Z F, KANG K W, NIAN M, et al. Virtual screening and molecular dynamics simulation studies of effective superoxide dismutase 1 inhibitory constituents from Eucommia ulmoides[J]. Northwestern Journal of Pharmacy, 2023, 38(1): 124−132. doi: 10.3969/j.issn.1004-2407.2023.01.022
    [19]
    BAGEWADI Z K, KHAN T M Y, GANGADHARAPPA B, et al. Molecular dynamics and simulation analysis against superoxide dismutase (SOD) target of micrococcus luteus with secondary metabolites from Bacillus licheniformis recognized by genome mining approach[J]. Saudi Journal of Biological Sciences,2023,30(9):103753. doi: 10.1016/j.sjbs.2023.103753
    [20]
    吴鹏娟. 过氧化氢酶和葡萄糖氧化酶双酶连接的分子动力学研究[D]. 北京:北京化工大学, 2013. [WU P J. Molecular dynamics study of dual-enzyme system of catalase and glucose oxidase[D]. Beijing:Beijing University of Chemical Technology, 2013.]

    WU P J. Molecular dynamics study of dual-enzyme system of catalase and glucose oxidase[D]. Beijing: Beijing University of Chemical Technology, 2013.
    [21]
    ZHOU H L, WANG F H, NIU H H, et al. Structural studies and molecular dynamic simulations of polyphenol oxidase treated by high pressure processing.[J]. Food Chemistry,2021,372:131243.
    [22]
    于嘉祥, 张瀚文, 曲超, 等. 基于生信分析、分子对接及分子动力学研究枸杞子中活性成分改善胰岛素抵抗的作用机制[J]. 世界科学技术-中医药现代化,2021,23(11):3997−4008. [YU J X, ZHANG H W, QU C, et al. Study on the mechanism of active ingredients in wolfberry to improve insulin resistance based on biogenic analysis, molecular docking and molecular dynamics[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2021,23(11):3997−4008.] doi: 10.11842/wst.20210105009

    YU J X, ZHANG H W, QU C, et al. Study on the mechanism of active ingredients in wolfberry to improve insulin resistance based on biogenic analysis, molecular docking and molecular dynamics[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2021, 23(11): 3997−4008. doi: 10.11842/wst.20210105009
    [23]
    MARTINS L C, CINO E A, FERREIRA R S. PyAutoFEP:An automated free energy perturbation workflow for GROMACS integrating enhanced sampling methods[J]. Journal of Chemical Theory and Computation,2021,17(7):4262−4273. doi: 10.1021/acs.jctc.1c00194
    [24]
    HESS B, KUTZNER C, VAN DER SPOEL D, et al. GROMACS 4:Algorithms for highly efficient, load-balanced, and scalable molecular simulation[J]. Journal of Chemical Theory and Computation,2008,4(3):435−447. doi: 10.1021/ct700301q
    [25]
    MOOERS H B M, MARINA B. Templates for writing PyMOL scripts.[J]. Protein Science,2020,30(1):262−269.
    [26]
    张驭洲, 曹武迪, 卜景德, 等. GROMACS 2020在ROCm平台上的移植与优化[J]. 计算机工程与科学,2021,43(11):1901−1909. [ZHANG Y Z, CAO W D, BU J D, et al. Porting and optimization of GROMACS 2020 on ROCm platform[J]. Computer Engineering and Science,2021,43(11):1901−1909.] doi: 10.3969/j.issn.1007-130X.2021.11.001

    ZHANG Y Z, CAO W D, BU J D, et al. Porting and optimization of GROMACS 2020 on ROCm platform[J]. Computer Engineering and Science, 2021, 43(11): 1901−1909. doi: 10.3969/j.issn.1007-130X.2021.11.001
    [27]
    VANGA S K, SINGH A, RAGHAVAN V. Changes in soybean trypsin inhibitor by varying pressure and temperature of processing:A molecular modeling study[J]. Innovative Food Science & Emerging Technologies,2018,49:31−40.
    [28]
    ZHANG X J, YI W G, LIU G S, et al. Colour and chlorophyll level modelling in vacuum-precooled green beans during storage[J]. Journal of Food Engineering,2021,301:110523. doi: 10.1016/j.jfoodeng.2021.110523
    [29]
    章轶锋, 唐善虎, 秦文玲, 等. 铜锌超氧化物歧化酶的研究进展[J]. 四川畜牧兽医,2008(1):33−35. [ZHANG Y F, TANG S H, QIN W L, et al. Research progress of Cu-Zn superoxide dismutase[J]. Sichuan Animal Husbandry and Veterinary Science,2008(1):33−35.] doi: 10.3969/j.issn.1001-8964.2008.01.015

    ZHANG Y F, TANG S H, QIN W L, et al. Research progress of Cu-Zn superoxide dismutase[J]. Sichuan Animal Husbandry and Veterinary Science, 2008(1): 33−35. doi: 10.3969/j.issn.1001-8964.2008.01.015
    [30]
    安容慧. 富氢水结合真空预冷对采后上海青营养品质的影响[D]. 沈阳:沈阳农业大学, 2020. [AN R H. Effect of hydrogen-rich water combined with vacuum precooling on the nutritional quality of postharvest Shangqing[D]. Shenyang:Shenyang Agricultural University, 2020.]

    AN R H. Effect of hydrogen-rich water combined with vacuum precooling on the nutritional quality of postharvest Shangqing[D]. Shenyang: Shenyang Agricultural University, 2020.
    [31]
    杨晓宇. 过氧化氢酶在电场下的分子动力学研究[D]. 郑州:郑州大学, 2019. [YANG X Y. Molecular dynamics of catalase under electric field[D]. Zhengzhou:Zhengzhou University, 2019.]

    YANG X Y. Molecular dynamics of catalase under electric field[D]. Zhengzhou: Zhengzhou University, 2019.
    [32]
    高进. 木瓜蛋白酶加工过程中的性质及结构研究[D]. 天津:天津科技大学, 2018. [GAO J. Study on the properties and structure of papain in processing [D]. Tianjin:Tianjin University of Science and Technology, 2018.]

    GAO J. Study on the properties and structure of papain in processing [D]. Tianjin: Tianjin University of Science and Technology, 2018.
    [33]
    BORGSTAHL G E O, OBERLEY-DEEGAN R E. Superoxide dismutases (SODs) and SOD Mimetics[J]. Antioxidants,2018,7(11):156−156. doi: 10.3390/antiox7110156
    [34]
    李维忠, 刘小兰, 王谨玲, 等. 修饰Cu, Zn超氧化物歧化酶的分子动力学模拟[J]. 南开大学学报(自然科学版),1996(1):90−94. [LI W Z, LIU X L, WANG J L, et al. Molecular dynamics simulation of modified copper and zing superoxide dismutase[J]. Journal of Nankai University (Natural Science Edition),1996(1):90−94.]

    LI W Z, LIU X L, WANG J L, et al. Molecular dynamics simulation of modified copper and zing superoxide dismutase[J]. Journal of Nankai University (Natural Science Edition), 1996(1): 90−94.
    [35]
    史龙. 三氟乙醇对超氧化物歧化酶和酪氨酸酶活力与结构的影响:酶动力学和计算机模拟研究[D]. 广州:南方医科大学, 2011. [SHI L. Effects of trifluoroethanol on the activities and structures of superoxide dismutase and tyrosinase:enzyme kinetics and computer simulation studies[D]. Guangzhou:Southern Medical University, 2011.]

    SHI L. Effects of trifluoroethanol on the activities and structures of superoxide dismutase and tyrosinase: enzyme kinetics and computer simulation studies[D]. Guangzhou: Southern Medical University, 2011.
    [36]
    JAHAN I, NAYEEM S M. Conformational dynamics of superoxide dismutase (SOD 1) in osmolytes:A molecular dynamics simulation study[J]. RSC Advances,2020,10(46):27598−27614. doi: 10.1039/D0RA02151B
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (44) PDF downloads (12) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return