Citation: | XIE Anguo, JI Siyuan, LI Yueling, et al. Detection of Pork Freshness Using NIR Hyperspectral Imaging Based on Genetic Algorithm and Deep Neural Network[J]. Science and Technology of Food Industry, 2024, 45(17): 345−351. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120096. |
[1] |
WÓJCIAK K M, HALAGARDA M, ROHN S, et al. Selected nutrients determining the quality of different cuts of organic and conventional pork[J]. European Food Research and Technology,2021,247:1389−1400. doi: 10.1007/s00217-021-03716-y
|
[2] |
KUCHA C T, NGADI M O. Rapid assessment of pork freshness using miniaturized NIR spectroscopy[J]. Journal of Food Measurement and Characterization,2020,14:1105−1115. doi: 10.1007/s11694-019-00360-9
|
[3] |
SOHAIB M, ANJUM F M, ARSHAD M S, et al. Postharvest intervention technologies for safety enhancement of meat and meat based products; a critical review[J]. Journal of Food Science and Technology,2016,53:19−30. doi: 10.1007/s13197-015-1985-y
|
[4] |
XIE A G, SUN J, WANG T, et al. Visualized detection of quality change of cooked beef with condiments by hyperspectral imaging technique[J]. Food Science and Biotechnology,2022,31(10):1257−1266. doi: 10.1007/s10068-022-01115-x
|
[5] |
ZAREEF M, CHEN Q, HASSAN M M, et al. An overview on the applications of typical non-linear algorithms coupled with NIR spectroscopy in food analysis[J]. Food Engineering Reviews,2020,12:173−190. doi: 10.1007/s12393-020-09210-7
|
[6] |
XIE A G, SUN D W, ZHU Z, et al. Nondestructive measurements of freezing parameters of frozen porcine meat by NIR hyperspectral imaging[J]. Food and Bioprocess Technology,2016,9:1444−1454. doi: 10.1007/s11947-016-1766-2
|
[7] |
王彩霞, 王松磊, 贺晓光, 等. 高光谱图谱融合检测羊肉中饱和脂肪酸含量[J]. 光谱学与光谱分析,2020,409(2):595−601. [WANG C X, WANG S L, HE X G, et al. Detection of saturated fatty acid content in mutton by using the fusion of hyperspectral spectrum and image information[J]. Spectroscopy and Spectral Analysis,2020,409(2):595−601.]
WANG C X, WANG S L, HE X G, et al. Detection of saturated fatty acid content in mutton by using the fusion of hyperspectral spectrum and image information[J]. Spectroscopy and Spectral Analysis, 2020, 409(2): 595−601.
|
[8] |
ZHANG J, LIU G, LI Y, et al. Rapid identification of lamb freshness grades using visible and near-infrared spectroscopy (Vis-NIR)[J]. Journal of Food Composition and Analysis,2022,111:104590. doi: 10.1016/j.jfca.2022.104590
|
[9] |
ERNA K H, ROVINA K, MANTIHAL S. Current detection techniques for monitoring the freshness of meat-based products:A review[J]. Journal of Packaging Technology and Research,2021,5(3):127−141. doi: 10.1007/s41783-021-00120-5
|
[10] |
GÓRSKA-HORCZYCZAK E, HORCZYCZAK M, GUZEK D, et al. Chromatographic fingerprints supported by artificial neural network for differentiation of fresh and frozen pork[J]. Food Control,2017,73:237−244. doi: 10.1016/j.foodcont.2016.08.010
|
[11] |
HASSOUN A, AÏT-KADDOUR A, SAHAR A, et al. Monitoring thermal treatments applied to meat using traditional methods and spectroscopic techniques:A review of advances over the last decade[J]. Food and Bioprocess Technology,2021,14:195−208. doi: 10.1007/s11947-020-02510-0
|
[12] |
NGUYEN G, DLUGOLINSKY S, BOBÁK M, et al. Machine learning and deep learning frameworks and libraries for large-scale data mining:A survey[J]. Artificial Intelligence Review,2019,52:77−124. doi: 10.1007/s10462-018-09679-z
|
[13] |
Geatpy–The genetic and evolutionary algorithm toolbox for Python with high performance[EB/OL]. http://geatpy.com/index.php/home/.
|
[14] |
MAHMUD M, KAISER M S, MCGINNITY T M, et al. Deep learning in mining biological data[J]. Cognitive Computation,2021,13:1−33. doi: 10.1007/s12559-020-09773-x
|
[15] |
DONG K, GUAN Y, WANG Q, et al. Non-destructive prediction of yak meat freshness indicator by hyperspectral techniques in the oxidation process[J]. Food Chemistry:X,2023,17:100541.
|
[16] |
CASABURI A, PIOMBINO P, NYCHAS G J, et al. Bacterial populations and the volatilome associated to meat spoilage[J]. Food Microbiology,2015,45:83−102. doi: 10.1016/j.fm.2014.02.002
|
[17] |
LUO X, DONG K, LIU L, et al. Proteins associated with quality deterioration of prepared chicken breast based on differential proteomics during refrigerated storage[J]. Journal of the Science of Food and Agriculture,2021,101:3489−3499. doi: 10.1002/jsfa.10980
|
[18] |
BÜNING-PFAUE H. Analysis of water in food by near infrared spectroscopy[J]. Food Chemistry,2003,82(1):107−115. doi: 10.1016/S0308-8146(02)00583-6
|
[19] |
HEIMAN A, LICHT S. Fundamental baseline variations in aqueous near-infrared analysis[J]. Analytica Chimica Acta,1999,394(2):135−147.
|
[20] |
WANG P, WANG P, WANG H W, et al. Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration[J]. Journal of Biomedical Optics,2012,17(9):96010−96011.
|
[21] |
谢安国, 王满生, 石晓微, 等. 牛肉加热过程中低场核磁驰豫信号与品质特征的动态分析[J]. 食品与机械,2020,36(7):23−27,71. [XIE A G, WANG M S, SHI X W, et al. Dynamic analysis of LF-NMR relaxation signals and quality characteristics during heating beef[J]. Food & Machinery,2020,36(7):23−27,71.]
XIE A G, WANG M S, SHI X W, et al. Dynamic analysis of LF-NMR relaxation signals and quality characteristics during heating beef[J]. Food & Machinery, 2020, 36(7): 23−27,71.
|
[22] |
胡黄水, 赵思远, 刘清雪, 等. 基于动量因子优化学习率的BP神经网络PID参数整定算法[J]. 吉林大学学报(理学版),2020,58(6):1415−1420. [HU H S, ZHAO S Y, LIU Q X, et al. BP neural network PID parameter tuning algorithm based on momentum factor optimized learning rate[J]. Journal of Jilin University(Science Edition),2020,58(6):1415−1420.]
HU H S, ZHAO S Y, LIU Q X, et al. BP neural network PID parameter tuning algorithm based on momentum factor optimized learning rate[J]. Journal of Jilin University(Science Edition), 2020, 58(6): 1415−1420.
|
[23] |
SUN H, SHEN L, ZHONG Q, et al. AdaSAM:Boosting sharpness-aware minimization with adaptive learning rate and momentum for training deep neural networks[J]. Neural Networks,2024,169:506−519. doi: 10.1016/j.neunet.2023.10.044
|
[24] |
CHANDRA B, SHARMA R K. Deep learning with adaptive learning rate using laplacian score[J]. Expert Systems with Applications,2016,63:1−7. doi: 10.1016/j.eswa.2016.05.022
|
[25] |
ZHENG S, GUO W, LI C, et al. Application of machine learning and deep learning methods for hydrated electron rate constant prediction[J]. Environmental Research,2023,231:115996. doi: 10.1016/j.envres.2023.115996
|
[26] |
WORKMAN J, WEYER L. Practical guide to interpretive near-infrared spectroscopy[M]. CRC Press, 2007, 47:4620-4629.
|
[27] |
何鸿举, 王洋洋, 王魏, 等. NIR高光谱成像技术联用SPA算法快速检测五花肉的过氧化值[J]. 食品工业科技,2020,41(8):236−241. [HE H J, WANG Y Y, WANG W, et al. NIR hyperspectral imaging combined with SPA algorithm for the rapid detection of peroxidation value of pork belly[J]. Science and Technology of Food Industry,2020,41(8):236−241.]
HE H J, WANG Y Y, WANG W, et al. NIR hyperspectral imaging combined with SPA algorithm for the rapid detection of peroxidation value of pork belly[J]. Science and Technology of Food Industry, 2020, 41(8): 236−241.
|
[28] |
XU J L, ESQUERRE C, SUN D W. Methods for performing dimensionality reduction in hyperspectral image classification[J]. Journal of Near Infrared Spectroscopy,2018,26(1):61−75. doi: 10.1177/0967033518756175
|
[29] |
李艳坤, 董汝南, 张进, 等. 光谱数据解析中的变量筛选方法[J]. 光谱学与光谱分析, 2021, 41(11):3331-3338. [LI Y K, DONG R N, ZHANG J, et al. Variable selection methods in spectral data analysis[J]. Spectroscopy and Spectral Analysis, 2021, 41(11):3331.]
LI Y K, DONG R N, ZHANG J, et al. Variable selection methods in spectral data analysis[J]. Spectroscopy and Spectral Analysis, 2021, 41(11): 3331.
|
[30] |
CHENG W W, SUN D W, PU H B, et al. Characterization of myofibrils cold structural deformation degrees of frozen pork using hyperspectral imaging coupled with spectral angle mapping algorithm[J]. Food Chemistry,2018,239:1001−1008. doi: 10.1016/j.foodchem.2017.07.011
|