Citation: | LI Jingmin, XUE Changhu, MEI Xuanwei, et al. Construction and Application of a Lentinan-Specific Fluorescent Probe Based on a Carbohydrate-binding Module[J]. Science and Technology of Food Industry, 2024, 45(19): 240−246. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100028. |
[1] |
NIEGO A G, RAPIOR S, THONGKLANG N, et al. Macrofungi as a nutraceutical source:Promising bioactive compounds and market value[J]. Journal of Fungi,2021,7(5):397. doi: 10.3390/jof7050397
|
[2] |
JEFF I B, YUAN X, SUN L, et al. Purification and in vitro anti-proliferative effect of novel neutral polysaccharides from Lentinus edodes[J]. International Journal of Biological Macromolecules,2013,52:99−106. doi: 10.1016/j.ijbiomac.2012.10.007
|
[3] |
WANG K, WANG J, LI Q, et al. Structural differences and conformational characterization of five bioactive polysaccharides from Lentinus edodes[J]. Food Research International,2014,62:223−232. doi: 10.1016/j.foodres.2014.02.047
|
[4] |
WASSER S P. Medicinal mushrooms in human clinical studies. Part I. Anticancer, oncoimmunological, and immunomodulatory activities:A review[J]. InternationaL Journal of Medicinal Mushrooms,2017,19(4):279−317. doi: 10.1615/IntJMedMushrooms.v19.i4.10
|
[5] |
MENG X, LIANG H, LUO L. Antitumor polysaccharides from mushrooms:A review on the structural characteristics, antitumor mechanisms and immunomodulating activities[J]. Carbohydrate Research,2016,424:30−41. doi: 10.1016/j.carres.2016.02.008
|
[6] |
LU REN C P A Y. Antitumor activity of mushroom polysaccharides:A review[J]. Food & Function,2012(3):1118.
|
[7] |
ZHANG Y, LI S, WANG X, et al. Advances in lentinan:Isolation, structure, chain conformation and bioactivities[J]. Food Hydrocolloids,2011,25(2):196−206. doi: 10.1016/j.foodhyd.2010.02.001
|
[8] |
MASON K N, EKANAYAKE G, HEESE A. Chapter 10-staining and automated image quantification of callose in arabidopsis cotyledons and leaves[J]. Methods in Cell Biology,2020,160:181−199.
|
[9] |
RYDAHL M G, HANSEN A R, KRAČUN S K, et al. Report on the current inventory of the toolbox for plant cell wall analysis:Proteinaceous and small molecular probes[J]. Frontiers in Plant Science, 2018, 9.
|
[10] |
DOMOZYCH D S. The quest for four-dimensional imaging in plant cell biology:It's just a matter of time[J]. Annals of Botany,2012,110(2):461−474. doi: 10.1093/aob/mcs107
|
[11] |
HERVÉ C, MARCUS S E, KNOX J P. Monoclonal antibodies, carbohydrate-binding modules, and the detection of polysaccharides in plant cell walls[J]. Methods Mol Biol,2011,715:103−113.
|
[12] |
SHOSEYOV O, SHANI Z, LEVY I. Carbohydrate binding modules:Biochemical properties and novel applications[J]. Microbiology and Molecular Biology Reviews,2006,70(2):283−295. doi: 10.1128/MMBR.00028-05
|
[13] |
BORASTON A B, BOLAM D N, GILBERT H J, et al. Carbohydrate-binding modules:Fine-tuning polysaccharide recognition[J]. Biochem J,2004,382(Pt3):769−781.
|
[14] |
OLIVEIRA C, CARVALHO V, DOMINGUES L, et al. Recombinant cbm-fusion technology-applications overview[J]. Biotechnology Advances,2015,33(3−4):358−369. doi: 10.1016/j.biotechadv.2015.02.006
|
[15] |
DING S, XU Q, ALI M K, et al. Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution[J]. BioTechniques,2006,41(4):435−443. doi: 10.2144/000112244
|
[16] |
MCCARTNEY L, BLAKE A W, FLINT J, et al. Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules[J]. Proceedings of the National Academy of Sciences-PNAS,2006,103(12):4765−4770. doi: 10.1073/pnas.0508887103
|
[17] |
BLAKE A W, MCCARTNEY L, FLINT J E, et al. Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes[J]. Journal of Biological Chemistry,2006,281(39):29321−29329. doi: 10.1074/jbc.M605903200
|
[18] |
TAMURA K, STECHER G, PETERSON D, et al. Mega6:Molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution,2013,30(12):2725−2729. doi: 10.1093/molbev/mst197
|
[19] |
MARCHLER-BAUER A, BO Y, HAN L, et al. Cdd/sparcle:Functional classification of proteins via subfamily domain architectures[J]. Nucleic Acids Research,2017,45(D1):D200−D203. doi: 10.1093/nar/gkw1129
|
[20] |
QUEVILLON E, SILVENTOINEN V, PILLAI S, et al. Interproscan:Protein domains identifier[J]. Nucleic Acids Research,2005,33(Web Server):W116−W120.
|
[21] |
WILKINS M R, GASTEIGER E, BAIROCH A, et al. Protein identification and analysis tools in the expasy server[J]. Methods Mol Biol,1999,112:531−552.
|
[22] |
JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with alphafold[J]. Nature,2021,596(7873):583−589. doi: 10.1038/s41586-021-03819-2
|
[23] |
PETERSEN T N, BRUNAK S, VON HEIJNE G, et al. Signalp 4.0:Discriminating signal peptides from transmembrane regions[J]. Nature Methods,2011,8(10):785−786. doi: 10.1038/nmeth.1701
|
[24] |
MCCARTNEY L, GILBERT H J, BOLAM D N, et al. Glycoside hydrolase carbohydrate-binding modules as molecular probes for the analysis of plant cell wall polymers[J]. Analytical Biochemistry,2004,326(1):49−54. doi: 10.1016/j.ab.2003.11.011
|
[25] |
TORODE T A, SIMÉON A, MARCUS S E, et al. Dynamics of cell wall assembly during early embryogenesis in the brown algafucus[J]. Journal of Experimental Botany,2016,67(21):6089−6100. doi: 10.1093/jxb/erw369
|
[26] |
KAWAKUBO T, KARITA S, ARAKI Y, et al. Analysis of exposed cellulose surfaces in pretreated wood biomass using carbohydrate-binding module (cbm)-cyan fluorescent protein (cfp)[J]. Biotechnol Bioeng,2010,105(3):499−508. doi: 10.1002/bit.22550
|
[27] |
PATTERSON G H, KNOBEL S M, SHARIF W D, et al. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy[J]. Biophysical Journal,1997,73(5):2782−2790. doi: 10.1016/S0006-3495(97)78307-3
|
[28] |
PÉREZ-BASSART Z, FABRA M J, MARTÍNEZ-ABAD A, et al. Compositional differences of β-glucan-rich extracts from three relevant mushrooms obtained through a sequential extraction protocol[J]. Food Chemistry,2023,402:134207. doi: 10.1016/j.foodchem.2022.134207
|
[29] |
LI D, QIN X, TIAN P, et al. Toughening and its association with the postharvest quality of king oyster mushroom (Pleurotus eryngii) stored at low temperature[J]. Food Chemistry,2016,196:1092−1100. doi: 10.1016/j.foodchem.2015.10.060
|
[30] |
HOCH H C, GALVANI C D, SZAROWSKI D H, et al. Two new fluorescent dyes applicable for visualization of fungal cell walls[J]. Mycologia,2005,97(3):580−588. doi: 10.1080/15572536.2006.11832788
|
[31] |
HARRINGTON B J, HAGEAGE J R. Calcofluor white:A review of its uses and applications in clinical mycology and parasitology[J]. Laboratory medicine,2003,34(5):361−367. doi: 10.1309/EPH2TDT8335GH0R3
|
[32] |
HERBURGER K, HOLZINGER A. Aniline blue and calcofluor white staining of callose and cellulose in the streptophyte green algae zygnema and klebsormidium[J]. Bio-Protocol,2016,6(20):e1969.
|
[33] |
URSACHE R, ANDERSEN T G, MARHAVÝ P, et al. A protocol for combining fluorescent proteins with histological stains for diverse cell wall components[J]. The Plant Journal,2017,93(2):399−412.
|
[34] |
TSURKAN M V, VORONKINA A, KHRUNYK Y, et al. Progress in chitin analytics[J]. Carbohydrate Polymers,2021,252:117204. doi: 10.1016/j.carbpol.2020.117204
|
[35] |
IFUKU S, NOMURA R, MORIMOTO M, et al. Preparation of chitin nanofibers from mushrooms[J]. Materials,2011,4(8):1417−1425. doi: 10.3390/ma4081417
|