GUO Yan, GUO Yilin, LIU Boping, et al. Mechanism of Baicalein Inhibiting the PD-1/PD-L1 Interaction Based on Molecular Dynamics Simulation and Experiment Research[J]. Science and Technology of Food Industry, 2024, 45(2): 40−47. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090095.
Citation: GUO Yan, GUO Yilin, LIU Boping, et al. Mechanism of Baicalein Inhibiting the PD-1/PD-L1 Interaction Based on Molecular Dynamics Simulation and Experiment Research[J]. Science and Technology of Food Industry, 2024, 45(2): 40−47. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090095.

Mechanism of Baicalein Inhibiting the PD-1/PD-L1 Interaction Based on Molecular Dynamics Simulation and Experiment Research

More Information
  • Received Date: September 10, 2023
  • Available Online: November 12, 2023
  • To study the molecular mechanism of baicalein interrupting the programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) pathway, molecular docking, molecular dynamics simulation, binding free energy calculation and principal component analysis were first performed to predict the inhibition effect of baicalein on this pathway, which was verified by enzyme-linked immunosorbent assay (ELISA) subsequently. Binding free energy calculations showed that the affinity of baicalein to the PD-L1 dimer was −32.41±0.31 kcal/mol. Free energy decomposition, contact numbers and nonbonded interaction results revealed that baicalein mainly interacted with the C-, C'-, F- and G-sheet domains of the PD-L1 dimer. Importantly, nonpolar interactions between the key residues Tyr56, Met115, Ala121, Asp122 and baicalein were dominant factors during the binding process. Cross-correlation matrixes and secondary structure results further demonstrated that baicalein could stably interact with the sheet domains of the PD-L1 dimer. The result of ELISA showed that the IC50 value of baicalein for inhibiting the PD-1/PD-L1 interaction was 79.47 µg/L. In conclusion, this study revealed that baicalein could directly bind to the PD-L1 dimer, thus blocking the PD-1/PD-L1 interaction, would provide basis for discovering natural small-molecule inhibitors of this pathway.
  • loading
  • [1]
    岳露, 金双龙, 高健, 等. 联苯类PD-L1抑制剂的设计合成及生物活性评价[J]. 中国药物化学杂志,2019,29(6):417−425. [YUE L, JIN S L, GAO J, et al. Design, synthesis and biological evaluation of diphenyl-based PD-L1 inhibitors[J]. Chinese Journal of Medicinal Chemistry,2019,29(6):417−425.

    YUE L, JIN S L, GAO J, et al. Design, synthesis and biological evaluation of diphenyl-based PD-L1 inhibitors[J]. Chinese Journal of Medicinal Chemistry, 2019, 296): 417425.
    [2]
    WU Q, JIANG L, LI S, et al. Small molecule inhibitors targeting the PD-1/PD-L1 signaling pathway[J]. Acta Pharmacologica Sinica,2021,42(1):1−9. doi: 10.1038/s41401-020-0366-x
    [3]
    张昕彤, 王坤, 曾庆轩, 等. 基于PD-L1肿瘤免疫苦豆碱类衍生物的合成与活性研究[J]. 药学学报,2022,57(4):1085−1094. [ZHANG, X T, WANG K, ZENG Q X, et al. Synthesis and activity evaluation of aloperine derivatives based on PD-L1 tumor immunity[J]. Acta Pharmaceutica Sinica,2022,57(4):1085−1094.

    ZHANG, X T, WANG K, ZENG Q X, et al. Synthesis and activity evaluation of aloperine derivatives based on PD-L1 tumor immunity[J]. Acta Pharmaceutica Sinica, 2022, 574): 10851094.
    [4]
    RI M H, MA J, JIN X. Development of natural products for anti-PD-1/PD-L1 immunotherapy against cancer[J]. Journal of Ethnopharmacology,2021,281:114370. doi: 10.1016/j.jep.2021.114370
    [5]
    NAIDOO J, PAGE D B, LI B T, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies[J]. Annals of Oncology,2015,26(12):2375−2391. doi: 10.1093/annonc/mdv383
    [6]
    SANGRO B, CHAN S L, MEYER T, et al. Diagnosis and management of toxicities of immune checkpoint inhibitors in hepatocellular carcinoma[J]. Journal of Hepatology,2020,72(2):320−341. doi: 10.1016/j.jhep.2019.10.021
    [7]
    ZAK K M, GRUDNIK P, GUZIK K, et al. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1)[J]. Oncotarget,2016,7(21):30323. doi: 10.18632/oncotarget.8730
    [8]
    SKALNIAK L, ZAK K M, GUZIK K, et al. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells[J]. Oncotarget,2017,8(42):72167. doi: 10.18632/oncotarget.20050
    [9]
    王岱东, 屠鹏飞, 黄亚卓, 等. 人参中PD-1小分子抑制剂的筛选及活性验证[J]. 药学学报,2020,55(10):2428−2434. [WANG D D, TU P F, HUANG Y A, et al. Identification of PD-1 small molecule inhibitors and validation in Panax ginseng[J]. Acta Pharmaceutica Sinica,2020,55(10):2428−2434.

    WANG D D, TU P F, HUANG Y A, et al. Identification of PD-1 small molecule inhibitors and validation in Panax ginseng[J]. Acta Pharmaceutica Sinica, 2020, 5510): 24282434.
    [10]
    KE M, ZHANG Z, XU B, et al. Baicalein and baicalin promote antitumor immunity by suppressing PD-L1 expression in hepatocellular carcinoma cells[J]. International Immunopharmacology,2019,75:105824. doi: 10.1016/j.intimp.2019.105824
    [11]
    SONG L, ZHU S, LIU C, et al. Baicalin triggers apoptosis, inhibits migration, and enhances anti‐tumor immunity in colorectal cancer via TLR4/NF- κB signaling pathway[J]. Journal of Food Biochemistry,2022,46(3):e13703.
    [12]
    郑敦锦, 沈锐锋, 何康平, 等. 分子动力学模拟与热稳定性实验相结合分析乙酰氨基葡萄糖与脂肪酶的相互作用机制[J]. 现代食品科技,2022,38(3):74−81. [ZHENG D J, SHEN R F, HE K P, et al. Molecular dynamics simulation combined with thermal stability experiments to analyze the interaction mechanism between acetylglucosamine and lipase[J]. Modern Food Science and Technology,2022,38(3):74−81.

    ZHENG D J, SHEN R F, HE K P, et al. Molecular dynamics simulation combined with thermal stability experiments to analyze the interaction mechanism between acetylglucosamine and lipase[J]. Modern Food Science and Technology, 2022, 383): 7481.
    [13]
    SUN X, YAN X, ZHUO W, et al. PD-L1 nanobody competitively inhibits the formation of the PD-1/PD-L1 complex:Comparative molecular dynamics simulations[J]. International Journal of Molecular Sciences,2018,19(7):1984. doi: 10.3390/ijms19071984
    [14]
    SHI D, ZHOU S, LIU X, et al. Understanding the structural and energetic basis of PD-1 and monoclonal antibodies bound to PD-L1:A molecular modeling perspective[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2018,1862(3):576−588. doi: 10.1016/j.bbagen.2017.11.022
    [15]
    VERDURA S, CUYAS E, CORTADA E, et al. Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity[J]. Aging,2020,12(1):8. doi: 10.18632/aging.102646
    [16]
    GUO Y, JIN Y, WANG B, et al. Molecular mechanism of small-molecule inhibitors in blocking the PD-1/PD-L1 pathway through PD-L1 dimerization[J]. International Journal of Molecular Sciences,2021,22(9):4766. doi: 10.3390/ijms22094766
    [17]
    WU X, WANG N, LIANG J, et al. Is the triggering of PD-L1 dimerization a potential mechanism for food-derived small molecules in cancer immunotherapy? A study by molecular dynamics[J]. International Journal of Molecular Sciences,2023,24:1413. doi: 10.3390/ijms24021413
    [18]
    LIANG J, WANG B, YANG Y, et al. Approaching the dimerization mechanism of small molecule inhibitors targeting PD-L1 with molecular simulation[J]. International Journal of Molecular Sciences 2023, 24, 1280.
    [19]
    都宵晓, 孟凡翠, 刘巍, 等. 胰高血糖素样肽-1受体的分子动力学模拟研究[J]. 中国新药杂志,2021,30(8):732−739. [DU X X, MENG F C, LIU L, et al. Molecular dynamics simulation study of glucagon-like peptide-1 receptor[J]. Chinese Journal of New Drugs,2021,30(8):732−739.

    DU X X, MENG F C, LIU L, et al. Molecular dynamics simulation study of glucagon-like peptide-1 receptor[J]. Chinese Journal of New Drugs, 2021, 308): 732739.
    [20]
    HORNAK V, ABEL R, OKUR A, et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters[J]. Proteins:Structure, Function, and Bioinformatics, 2006, 65(3):712-725.
    [21]
    WANG J, WOLF R M, CALDWELL J W, et al. Development and testing of a general Amber force field[J]. Journal of Computational Chemistry,2004,25(9):1157−1174. doi: 10.1002/jcc.20035
    [22]
    GENHEDEN S, RYDE U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities[J]. Expert Opinion on Drug Discovery,2015,10(5):449−461. doi: 10.1517/17460441.2015.1032936
    [23]
    GUO Y, LIANG J, LIU B, et al. Molecular mechanism of food-derived polyphenols on PD-L1 dimerization:A molecular dynamics simulation study[J]. International Journal of Molecular Sciences,2021,22(20):10924. doi: 10.3390/ijms222010924
    [24]
    WANG Q, NING L, NIU Y, et al. Molecular mechanism of the inhibition and remodeling of human islet amyloid polypeptide (hIAPP1–37) oligomer by resveratrol from molecular dynamics simulation[J]. The Journal of Physical Chemistry B,2015,119(1):15−24. doi: 10.1021/jp507529f
    [25]
    DRAGIC T, TRKOLA A, THOMPSON D A D, et al. A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5[J]. Proceedings of the National Academy of Sciences,2000,97(10):5639−5644. doi: 10.1073/pnas.090576697
    [26]
    桑鹏, 李智, 杨力权, 等. 基于分子动力学模拟和自由能计算的非小细胞肺癌对克唑替尼(crizotinib)耐药性研究[J]. 云南大学学报(自然科学版),2020,42(4):760−767. [SANG P, LI Z, YANG L Q, et al. Insight into crizotinib resistance of non-small cell lung cancer derived from molecular dynamics simulations and free energy analysis[J]. Journal of Yunnan University: Natural Sciences Edition,2020,42(4):760−767.

    SANG P, LI Z, YANG L Q, et al. Insight into crizotinib resistance of non-small cell lung cancer derived from molecular dynamics simulations and free energy analysis[J]. Journal of Yunnan University: Natural Sciences Edition, 2020, 424): 760767.
    [27]
    AHMED M, BARAKAT K. The too many faces of PD-L1:A comprehensive conformational analysis study[J]. Biochemistry,2017,56(40):5428−5439. doi: 10.1021/acs.biochem.7b00655
    [28]
    GUO J, SUN W, LI L, et al. Brazilin inhibits fibrillogenesis of human islet amyloid polypeptide, disassembles mature fibrils, and alleviates cytotoxicity[J]. RSC Advances,2017,7(69):43491−43501. doi: 10.1039/C7RA05742C
    [29]
    ZHAN D, GUAN S, JIN H, et al. Stereoselectivity of phosphotriesterase with paraoxon derivatives:A computational study[J]. Journal of Biomolecular Structure and Dynamics,2016,34(3):600−611. doi: 10.1080/07391102.2015.1046937
    [30]
    GUAN S, WANG T, KUAI Z, et al. Exploration of binding and inhibition mechanism of a small molecule inhibitor of influenza virus H1N1 hemagglutinin by molecular dynamics simulation[J]. Scientific Reports,2017,7(1):3786. doi: 10.1038/s41598-017-03719-4
    [31]
    KIM J H, KIM Y S, CHOI J G, et al. Kaempferol and its glycoside, kaempferol 7-O-rhamnoside, inhibit PD-1/PD-L1 interaction in vitro[J]. International Journal of Molecular Sciences,2020,21(9):3239. doi: 10.3390/ijms21093239
    [32]
    LI W, KIM T I, KIM J H, et al. Immune checkpoint PD-1/PD-L1 CTLA-4/CD80 are blocked by Rhus verniciflua stokes and its active compounds[J]. Molecules,2019,24(22):4062. doi: 10.3390/molecules24224062
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (150) PDF downloads (25) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return