Citation: | ZHANG Xinyi, ZHANG Xiaoyuan, SUN Shuyuan, et al. Research Progress on Rapid Detection and Removal of Pesticide and Veterinary Drug Residues in Agricultural Products Based on Metal-Organic Frameworks[J]. Science and Technology of Food Industry, 2024, 45(16): 404−417. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090086. |
[1] |
申焕杰. 市售蔬果中农药残留的危害、检测技术及质量控制概述[J]. 现代食品,2023,29(2):133−135. [SHEN H J. Harm, detection technology and quality control of pesticide residues in commercial vegetables and fruits[J]. Food Science and Technology,2023,29(2):133−135.]
SHEN H J. Harm, detection technology and quality control of pesticide residues in commercial vegetables and fruits[J]. Food Science and Technology, 2023, 29(2): 133−135.
|
[2] |
ABBASI JORJANDI M, ASADIKARAM G, ABOLHASSANI M, et al. Pesticide exposure and related health problems among family members of farmworkers in southeast Iran. A case-control study[J]. Environmental Pollution,2020,267:115424. doi: 10.1016/j.envpol.2020.115424
|
[3] |
TRELLU C, OLVERA V H, MOUSSET E, et al. Electrochemical technologies for the treatment of pesticides[J]. Current Opinion in Electrochemistry,2021,26:100−677.
|
[4] |
PASCANU V, GONZÁLEZ M G, INGE A K, et al. Metal-organic frameworks as catalysts for organic synthesis:A critical perspective[J]. Journal of the American Chemical Society,2019,141(18):7223−7234. doi: 10.1021/jacs.9b00733
|
[5] |
LI D, XU H Q, JIAO L, et al. Metal-organic frameworks for catalysis:state of the art, challenges, and opportunities[J]. EnergyChem,2019,1(1):100005. doi: 10.1016/j.enchem.2019.100005
|
[6] |
CUI Y J, LI B, HE H Y, et al. Metal–organic frameworks as platforms for functional materials[J]. Accounts of Chemical Research,2016,49(3):483−493. doi: 10.1021/acs.accounts.5b00530
|
[7] |
LIU J T, HUANG J, ZHANG L, et al. Multifunctional metal–organic framework heterostructures for enhanced cancer therapy[J]. Chemical Society Reviews,2021,50:1188−1218. doi: 10.1039/D0CS00178C
|
[8] |
MANDAL S, NATARAJAN S, MANI P, et al. Post-synthetic modification of metal–organic frameworks toward applications[J]. Advanced Functional Materials,2020,31(4):2006291.
|
[9] |
AHMED I, MONDO L M M H, JUNG M J, et al. MOFs with bridging or terminal hydroxo ligands:Applications in adsorption, catalysis, and functionalization[J]. Coordination Chemistry Reviews,2023,475:214912. doi: 10.1016/j.ccr.2022.214912
|
[10] |
MOHAN B, PRIYANKA, SINGH G, et al. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection[J]. Journal of Hazardous Materials 2023, 453:131324.
|
[11] |
AHMED I, LEE H J, JHUNG S H. Covalent-organic polymer-derived carbons:An effective adsorbent to remove sulfonamide antibiotics from water[J]. Chemical Engineering Journal,2022,437:135386. doi: 10.1016/j.cej.2022.135386
|
[12] |
VERMA C, RASHEED T, ANWAR M T, et al. From metal-organic frameworks (MOFs) to metal-doped MOFs (MDMOFs):current and future scenarios in environmental catalysis and remediation applications[J]. Microchemical Journal,2023,192:108954. doi: 10.1016/j.microc.2023.108954
|
[13] |
ZHANG Q Q, ZHAO J X, XIE R F, et al. A simple and efficient method for determining the pyrethroid pesticide residues in freshly squeezed fruit juices using a water stable metal–organic framework[J]. Microchemical Journal, 2023, 187.
|
[14] |
FULLER J, AN Q, FORTUNELLI A, et al. Reaction mechanisms, kinetics, and improved catalysts for ammonia synthesis from hierarchical high throughput catalyst design[J]. Accounts of Chemical Research,2022,55(8):1124−1134. doi: 10.1021/acs.accounts.1c00789
|
[15] |
YANG J M, YANG B C, ZHANG Y, et al. Rapid adsorptive removal of cationic and anionic dyes from aqueous solution by a Ce(III)-doped Zr-based metal–organic framework[J]. Microporous and Mesoporous Materials,2020,292:109764. doi: 10.1016/j.micromeso.2019.109764
|
[16] |
HAN L Z, QIN P G, LI M Y, et al. Hierarchically porous zirconium-based metal–organic frameworks for rapid adsorption and enrichment of sulfonamide antibiotics[J]. Chemical Engineering Journal, 2023, 456.
|
[17] |
WANG Z X, HU S, BAO H H, et al. Immunochromatographic assay based on time-resolved fluorescent nanobeads for the rapid detection of sulfamethazine in egg, honey, and pork[J]. Journal of the Science of Food and Agriculture,2020,101(2):684−692.
|
[18] |
ALMOHANA A I, ALMOJIL S F, ALALI A F, et al. The elimination and extraction of organosulfur compounds from real water and soil samples using metal organic framework/graphene oxide as a novel and efficient nanocomposite[J]. Chemosphere,2023,319:137950. doi: 10.1016/j.chemosphere.2023.137950
|
[19] |
MAO X J, YAN A P, WAN Y Q, et al. Dispersive solid-phase extraction using microporous sorbent UIO-66 coupled to gas chromatography-tandem mass spectrometry:A quechers-type method for the determination of organophosphorus pesticide residues in edible vegetable oils without matrix interference[J]. Journal of Agricultural and Food Chemistry,2019,67(6):1760−1770. doi: 10.1021/acs.jafc.8b04980
|
[20] |
LEFTON J B, PEKAR K B, HARIS U, et al. Defect formation and amorphization of Zn-MOF-74 crystals by post-synthetic interactions with bidentate adsorbates[J]. Journal of Materials Chemistry A,2021,9(35):19698−19704. doi: 10.1039/D0TA10613E
|
[21] |
ALIZADEH R, ARBANDI F, KASHEFOLGHETA S, et al. A new generation of solid-phase microextraction based on breathing of metal organic framework nanorods MOF-508 for the determination of diazinon and chlorpyrifos in wheat samples[J]. Microchemical Journal, 2021, 171.
|
[22] |
JIA W W, ZHANG J, FAN R Q, et al. A pitaya-inspired modular cylindrical MOF-based capsule design for pesticide signal probes[J]. ACS Applied Materials & Interfaces,2023,15(8):11163−11174.
|
[23] |
CHANG Y, YAN X. Trifluoromethyl-modified hierarchical nanoporous metal–organic framework nanoparticles for adsorption of fluorine-containing pesticides[J]. ACS Applied Nano Materials,2022,5(4):5268−5277. doi: 10.1021/acsanm.2c00306
|
[24] |
SUN J Q, TAO L, YE C L, et al. MOF-derived Ru1Zr1/Co dual-atomic-site catalyst with promoted performance for fischer–tropsch synthesis[J]. Journal of the American Chemical Society,2023,145(13):7113−7122. doi: 10.1021/jacs.2c09168
|
[25] |
KOMKOVA MARIA A, KARYAKINA ELENA E, KARYAKIN ARKADY A. Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase[J]. Journal of the American Chemical Society,2018,140(36):11302−11307. doi: 10.1021/jacs.8b05223
|
[26] |
TIAN Y M, BU T, ZHANG M, et al. Metal-polydopamine framework based lateral flow assay for high sensitive detection of tetracycline in food samples[J]. Food Chemistry,2021,339:127854−127854. doi: 10.1016/j.foodchem.2020.127854
|
[27] |
BU T, JIA P, SUN X Y, et al. Hierarchical molybdenum disulfide nanosheets based lateral flow immunoassay for highly sensitive detection of tetracycline in food samples[J]. Sensors and Actuators B:Chemical,2020,320:128440. doi: 10.1016/j.snb.2020.128440
|
[28] |
ZHANG W, HU S L, YIN J J, et al. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers[J]. Journal of the American Chemical Society,2016,138(18):5860−5865. doi: 10.1021/jacs.5b12070
|
[29] |
CAO S L, YUE D M, LI X H, et al. Novel nano-/micro-biocatalyst:soybean epoxide hydrolase immobilized on UiO-66-NH2 MOF for efficient biosynthesis of enantiopure (R)-1, 2-octanediol in deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering,2016,4(6):3586−3595.
|
[30] |
LUO L P, HUANG L J, LIU X N, et al. Mixed-valence Ce-BPyDC metal–organic framework with dual enzyme-like activities for colorimetric biosensing[J]. Inorganic Chemistry,2019,58(17):11382−11388. doi: 10.1021/acs.inorgchem.9b00661
|
[31] |
ZHONG X, XIA H, HUANG W Q, et al. Biomimetic metal-organic frameworks mediated hybrid multi-enzyme mimic for tandem catalysis[J]. Chemical Engineering Journal,2020,381(1):122758.
|
[32] |
SHEN Z, XU D Y, WANG G X, et al. Novel colorimetric aptasensor based on MOF-derived materials and its applications for organophosphorus pesticides determination[J]. Journal of Hazardous Materials,2022,440:129707. doi: 10.1016/j.jhazmat.2022.129707
|
[33] |
CHAI H N, YU K, ZHAO Y M, et al. MOF-on-MOF dual enzyme-mimic nanozyme with enhanced cascade catalysis for colorimetric/chemiluminescent dual-mode aptasensing[J]. Analytical Chemistry,2023,95:10785−10794. doi: 10.1021/acs.analchem.3c01905
|
[34] |
YU X X, WEI Y C, QI W, et al. Catalytic metal-organic framework-melamine foam composite as an efficient material for the elimination of organic pollutants[J]. Environmental Science and Pollution Research,2023,30(15):44266−44275. doi: 10.1007/s11356-023-25441-7
|
[35] |
FEIZPOOR S, HABIBI YANGJEH A, LUQUE R. Preparation of TiO(2)/Fe-MOF n‒n heterojunction photocatalysts for visible-light degradation of tetracycline hydrochloride[J]. Chemosphere,2023,336:139101. doi: 10.1016/j.chemosphere.2023.139101
|
[36] |
MA X J, OU Q, YUAN J J, et al. Multifunctional Fe-doped carbon dots and metal-organic frameworks nanoreactor for cascade degradation and detection of organophosphorus pesticides[J]. Chemical Engineering Journal,2023,464(15):142480.
|
[37] |
TIAN Y, LIU Q, LIN S S, et al. Magnetic Z-scheme CuFe2O4/MIL-101(Fe) toward chlorpyrifos degradation:Photocatalytic mechanism, degradation pathways, and intermediates toxicity evaluation[J]. Journal of Environmental Chemical Engineering,2023,11(3):110054. doi: 10.1016/j.jece.2023.110054
|
[38] |
LIN B, LI S, PENG Y, et al. MOF-derived core/shell C-TiO(2)/CoTiO(3) type II heterojunction for efficient photocatalytic removal of antibiotics[J]. Journal of Hazardous Materials, 2021, 406:124675.
|
[39] |
PAN M, LIAO W M, YIN S Y, et al. Single-phase white-light-emitting and photoluminescent color-tuning coordination assemblies[J]. Chemical Reviews,2018,118(18):8889−8935. doi: 10.1021/acs.chemrev.8b00222
|
[40] |
MASOOMI M Y, MORSALI A, DHAKSHINAMOORTHY A, et al. Mixed-metal MOFs:Unique opportunities in metal-organic framework (MOF) functionality and design[J]. Angewandte Chemie International Edition,2019,58(43):15188−15205. doi: 10.1002/anie.201902229
|
[41] |
CAO W Q, TANG Y, CUI Y J, et al. Energy transfer in metal–organic frameworks and its applications[J]. Small Structures,2020,1(3):2000019. doi: 10.1002/sstr.202000019
|
[42] |
XU X H, GUO Y N, WANG X Y, et al. Sensitive detection of pesticides by a highly luminescent metal-organic framework[J]. Sensors and Actuators B:Chemical,2018,260:339−345. doi: 10.1016/j.snb.2018.01.075
|
[43] |
FAN M Y, YU H H, FU P, et al. Luminescent Cd(Ⅱ) metal-organic frameworks with anthracene nitrogen-containing organic ligands as novel multifunctional chemosensors for the detection of picric acid, pesticides, and ferric ions[J]. Dyes and Pigments,2020,185:108834.
|
[44] |
YUE X Y, FU L, LI Y, et al. Lanthanide bimetallic MOF-based fluorescent sensor for sensitive and visual detection of sulfamerazine and malachite[J]. Food Chemistry,2023,410:135390. doi: 10.1016/j.foodchem.2023.135390
|
[45] |
YANG G L, JIANG X L, XU H, et al. Applications of MOFs as luminescent sensors for environmental pollutants[J]. Small Structures,2021,17(22):2005327.
|
[46] |
刘玉莹, 王朝崑, 汪溪远, 等. 荧光传感器阵列检测农药污染物研究进展[J]. 环境化学,2022,41(1):241−250. [LIU Y Y, WANG Z K, WANG X Y, et al. Advances in the detection of pesticide contaminants by fluorescence sensor array[J]. Environmental Chemistry,2022,41(1):241−250.]
LIU Y Y, WANG Z K, WANG X Y, et al. Advances in the detection of pesticide contaminants by fluorescence sensor array[J]. Environmental Chemistry, 2022, 41(1): 241−250.
|
[47] |
HE K Y, LI Z S, WANG L, et al. A water-stable luminescent metal–organic framework for rapid and visible sensing of organophosphorus pesticides[J]. ACS Applied Materials & Interfaces 2019, 11:26250−26260.
|
[48] |
YU L, CHEN H X, YUE J, et al. Metal–organic framework enhances aggregation-induced fluorescence of chlortetracycline and the application for detection[J]. Analytical Chemistry,2019,91(9):5913−5921. doi: 10.1021/acs.analchem.9b00319
|
[49] |
XU Y, WANG T H, LI H X, et al. Flexible aggregation-induced emission-active hydrogel for on-site monitoring of pesticide degradation[J]. ACS Nano,2022,16(11):18421−18429. doi: 10.1021/acsnano.2c06544
|
[50] |
ZHANG Z K, ZHANG L, HAN P, et al. A luminescent probe based on terbium-based metal-organic frameworks for organophosphorus pesticides detection[J]. Mikrochim Acta,2022,189(11):438. doi: 10.1007/s00604-022-05508-x
|
[51] |
ZHANG L, SUN Y X, ZHANG Z Y, et al. Portable and durable sensor based on porous MOFs hybrid sponge for fluorescent-visual detection of organophosphorus pesticide[J]. Biosensors and Bioelectronics 2022, 216:114659.
|
[52] |
YUE X Y, ZHOU Z J, LI M, et al. Inner-filter effect induced fluorescent sensor based on fusiform Al-MOF nanosheets for sensitive and visual detection of nitrofuran in milk[J]. Food Chemistry,2022,367:130763. doi: 10.1016/j.foodchem.2021.130763
|
[53] |
LIU L, CHEN Q, LÜ J, et al. Stable metal–organic frameworks for fluorescent detection of tetracycline antibiotics[J]. Inorganic Chemistry,2022,61(20):8015−8021. doi: 10.1021/acs.inorgchem.2c00754
|
[54] |
DUAN N, CHEN X W, LIN X F, et al. Paper-based fluorometric sensing of malachite green using synergistic recognition of aptamer-molecularly imprinted polymers and luminescent metal–organic frameworks[J]. Sensors and Actuators B:Chemical,2023,384:133665. doi: 10.1016/j.snb.2023.133665
|
[55] |
GAN Z Y, HU X T, XU X C, et al. A portable test strip based on fluorescent europium-based metal–organic framework for rapid and visual detection of tetracycline in food samples[J]. Food Chemistry,2021,354:129501. doi: 10.1016/j.foodchem.2021.129501
|
[56] |
LIU Q J, WANG H, HAN P, et al. Fluorescent aptasensing of chlorpyrifos based on the assembly of cationic conjugated polymer-aggregated gold nanoparticles and luminescent metal-organic frameworks[J]. Analyst,2019,144(20):6025−6032. doi: 10.1039/C9AN00943D
|
[57] |
CHEN J, XU F H, ZHANG Q, et al. Tetracycline antibiotics and NH4+ detection by Zn–organic framework fluorescent probe[J]. Analyst,2021,146:6883−6892. doi: 10.1039/D1AN00894C
|
[58] |
WANG F X, LI Z P, JIA H P, et al. Bimetallic metal-organic frameworks-based ratiometric fluorescence sensor for the quantitative detection of thiram in fruits samples[J]. Food Chemistry,2023,409:135328. doi: 10.1016/j.foodchem.2022.135328
|
[59] |
YU Y, HUANG G L, LUO X L, et al. Carbon dots@Cu metal–organic frameworks hybrids for ratiometric fluorescent determination of pesticide thiophanate-methyl[J]. Microchimica Acta,2022,189:325. doi: 10.1007/s00604-022-05438-8
|
[60] |
KHATAEE A, JALILI R, DASTBORHAN M, et al. Ratiometric visual detection of tetracycline residues in milk by framework-enhanced fluorescence of gold and copper nanoclusters[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,242:118715. doi: 10.1016/j.saa.2020.118715
|
[61] |
LI Y, WANG Y, DU P Y, et al. Fabrication of carbon dots@hierarchical mesoporous ZIF-8 for simultaneous ratiometric fluorescence detection and removal of tetracycline antibiotics[J]. Sensors and Actuators B:Chemical,2022,358:131526. doi: 10.1016/j.snb.2022.131526
|
[62] |
HUO P P, LI Z J, YAO R H, et al. Dual-ligand lanthanide metal–organic framework for ratiometric fluorescence detection of the anthrax biomarker dipicolinic acid[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2022,282(5):121700.
|
[63] |
GUPTA M, KOTTILIL D, TOMAR K, et al. Two-photon absorption and fluorescence in micrometer-sized single crystals of a rhodamine b coordinated metal–organic framework[J]. ACS Applied Energy Materials,2018,1(10):5408−5413.
|
[64] |
WANG B J, XU Z Y, SUN Z, et al. A wide-range ratiometric sensor mediating fluorescence and scattering based on carbon dots/metal–organic framework composites for the detection of bisulfite/sulfite in sugar[J]. Analytical and Bioanalytical Chemistry,2023,415:4639−4647. doi: 10.1007/s00216-023-04763-y
|
[65] |
STONE A E B S, IRGEN G S, LÓPEZ A R, et al. Encapsulating CdSe/CdS QDs in the MOF ZIF-8 enhances their photoluminescence quantum yields in the solid state[J]. Chemistry of Materials,2022,34(4):1921−1929. doi: 10.1021/acs.chemmater.1c04355
|
[66] |
LIU L Z, YAO Z Z, YE Y X, et al. Enhancement of intrinsic proton conductivity and aniline sensitivity by introducing dye molecules into the MOF channel[J]. ACS Applied Materials & Interfaces,2019,11(18):16490−16495.
|
[67] |
SHI S C, CAO G J, CHEN Y M, et al. Facile synthesis of core-shell Co-MOF with hierarchical porosity for enhanced electrochemical detection of furaltadone in aquaculture water[J]. Analytica Chimica Acta,2023,1263:341296. doi: 10.1016/j.aca.2023.341296
|
[68] |
SHU H, LAI T R, YANG Z C, et al. High sensitivity electrochemical detection of ultra-trace imidacloprid in fruits and vegetables using a Fe-rich FeCoNi-MOF[J]. Food Chemistry,2023,408:135221. doi: 10.1016/j.foodchem.2022.135221
|
[69] |
ZHAO Y S, ZUO X, LU X, et al. Hierarchical porous hollow N-doped Cu-based MOF derivatives as highly sensitive electrochemical sensing platform for pesticides detection[J]. Sensors and Actuators B:Chemical,2022,362:131749. doi: 10.1016/j.snb.2022.131749
|
[70] |
SONG D D, XU X Y, HUANG X G, et al. Oriented design of transition-metal-oxide hollow multishelled micropolyhedron derived from bimetal-organic frameworks for the electrochemical detection of multipesticide residues[J]. Journal of Agricultural and Food Chemistry,2023,71(5):2600−2609. doi: 10.1021/acs.jafc.2c08818
|
[71] |
TU X L, GAO F, MA X J, et al. Mxene/carbon nanohorn/beta-cyclodextrin-Metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide[J]. Journal of Hazardous Materials, 2020, 396:122776.
|
[72] |
LIANG N N, HU X T, ZHANG X A, et al. Ratiometric sensing for ultratrace tetracycline using electrochemically active metal–organic frameworks as response signals[J]. Journal of Agricultural and Food Chemistry,2023,71(19):7584−7592. doi: 10.1021/acs.jafc.3c00846
|
[73] |
HE X, DUO Z, YU W X, et al. Electrochemically reduced graphene oxide/Cu-MOF/Pt nanoparticles composites as a high-performance sensing platform for sensitive detection of tetracycline[J]. Microchimica Acta, 2022, 189(5).
|
[74] |
SHU Z X, ZOU Y, WU X Y, et al. NH2-MIL-125(Ti)/reduced graphene oxide enhanced electrochemical detection of fenitrothion in agricultural products[J]. Foods,2023,12(7):1534. doi: 10.3390/foods12071534
|
[75] |
ZHANG Y X, LI B, WEI X H, et al. Amplified electrochemical antibiotic aptasensing based on electrochemically deposited AuNPs coordinated with PEI-functionalized Fe-based metal-organic framework[J]. Microchimica Acta,2021,188(8):286. doi: 10.1007/s00604-021-04912-z
|
[76] |
ZHAO Y Z, HAO H Y, WANG H B, et al. Antibiotic quantitative fluorescence chemical sensor based on Zn-MOF aggregation-induced emission characteristics[J]. Microchemical Journal,2023,190:108626. doi: 10.1016/j.microc.2023.108626
|
[77] |
HUANG S F, GAN N, ZHANG X Y, et al. Portable fluoride-selective electrode as signal transducer for sensitive and selective detection of trace antibiotics in complex samples[J]. Biosensors and Bioelectronics, 2019, 128:113−121.
|
[78] |
REDDICHERLA U, BUMJUN P, SONAM S, et al. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods[J]. Trends in Food Science & Technology,2021,119:69−89.
|
[79] |
XU G, CHENG C, YUAN W, et al. Smartphone-based battery-free and flexible electrochemical patch for calcium and chloride ions detections in biofluids[J]. Sensors and Actuators B:Chemical,2019,297(15):126743.
|
[80] |
HUSSAIN I, BOWDEN AUDREY K. Smartphone-based optical spectroscopic platforms for biomedical applications:A review[J]. Biomedical Optics Express,2021,12(4):1974−1998. doi: 10.1364/BOE.416753
|
[81] |
BANIK S, MELANTHOTA S K, ARBAAZ N, et al. Recent trends in smartphone-based detection for biomedical applications:A review[J]. Analytical and Bioanalytical Chemistry,2021,413:2389−2406. doi: 10.1007/s00216-021-03184-z
|
[82] |
LIU X F, SONG J Y, ZHANG X Y, et al. A highly selective and sensitive europium-organic framework sensor for the fluorescence detection of fipronil in tea[J]. Food Chemistry,2023,413:135639. doi: 10.1016/j.foodchem.2023.135639
|
[83] |
CAO Y Z, MO F Y, LIU Y H, et al. Portable and sensitive detection of non-glucose target by enzyme-encapsulated metal-organic-framework using personal glucose meter[J]. Biosensors and Bioelectronics 2022, 198:113819.
|
[84] |
GAO L P, LI Y, HUANG Z Z, et al. Integrated enzyme with stimuli-responsive coordination polymer for personal glucose meter-based portable immunoassay[J]. Analytica Chimica Acta,2021,1207:339774.
|
[85] |
NIE D X, ZHANG Z Q, GUO D K, et al. A flexible assay strategy for non-glucose targets based on sulfhydryl-terminated liposomes combined with personal glucometer[J]. Biosensors and Bioelectronics,2021,175:112884. doi: 10.1016/j.bios.2020.112884
|
[86] |
ELISSA K L, MIGUEL A P, BORIS J. Antibody-Invertase fusion protein enabl es quantitative detection of SARS-CoV-2[J]. Journal of the American Chemical Society,2022,144:11226−11237. doi: 10.1021/jacs.2c02537
|
[87] |
ZHANG X A, HUANG X Y, WANG Z L, et al. Bioinspired nanozyme enabling glucometer readout for portable monitoring of pesticide under resource-scarce environments[J]. Chemical Engineering Journal,2022,429:132243. doi: 10.1016/j.cej.2021.132243
|