Citation: | WANG Xiqi, LIU Ziyu, LIANG Xiaoyun, et al. Polydopamine Nanomaterials and Their Applications in Food Field[J]. Science and Technology of Food Industry, 2024, 45(5): 402−411. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050055. |
[1] |
LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science,2007,318(5849):426−430. doi: 10.1126/science.1147241
|
[2] |
LEE H A, MA Y F, ZHOU F, et al. Material-independent surface chemistry beyond polydopamine coating[J]. Accounts of Chemical Research,2019,52(3):704−713. doi: 10.1021/acs.accounts.8b00583
|
[3] |
CHENG W, ZENG X W, CHEN H Z, et al. Versatile polydopamine platforms:Synthesis and promising applications for surface modification and advanced nanomedicine[J]. Acs Nano,2019,13(8):8537−8565. doi: 10.1021/acsnano.9b04436
|
[4] |
DU L Y, WANG X D, LIU T T, et al. Magnetic solid-phase extraction of organophosphorus pesticides from fruit juices using NiFe2O4@polydopamine@Mg/Al-layered double hydroxides nanocomposites as an adsorbent[J]. Microchemical Journal,2019,150:104128. doi: 10.1016/j.microc.2019.104128
|
[5] |
YU J L, WEI D, LI S Y, et al. High-performance multifunctional polyvinyl alcohol/starch based active packaging films compatibilized with bioinspired polydopamine nanoparticles[J]. International Journal of Biological Macromolecules,2022,210:654−662. doi: 10.1016/j.ijbiomac.2022.04.221
|
[6] |
LEE H, RHO J, MESSERSMITH P B. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings[J]. Advanced Materials,2009,21(4):431−434. doi: 10.1002/adma.200801222
|
[7] |
LIN K P, GAN Y, ZHU P D, et al. Hollow mesoporous polydopamine nanospheres:Synthesis, biocompatibility and drug delivery[J]. Nanotechnology,2021,32(28):285602. doi: 10.1088/1361-6528/abf4a9
|
[8] |
ZHENG P, DING B B, LI G. Polydopamine-incorporated nanoformulations for biomedical applications[J]. Macromolecular Bioscience,2020,20(12):2000228. doi: 10.1002/mabi.202000228
|
[9] |
WANG Z, ZOU Y, LI Y W, et al. Metal-containing polydopamine nanomaterials:Catalysis, energy, and theranostics[J]. Small,2020,16(18):1907042. doi: 10.1002/smll.201907042
|
[10] |
刘娜, 曹强, 肖雨诗, 等. 基于多巴胺及其衍生物的传感器在食品快速检测中的研究进展[J]. 食品科学,2021,42(5):332−339. [LIU N, CAO Q, XIAO Y S, et al. Research progress of sensors based on dopamine and its derivatives in the rapid detection of food[J]. Food Science,2021,42(5):332−339.] doi: 10.7506/spkx1002-6630-20200310-164
|
[11] |
LI N, WANG H B, THIA L, et al. Enzymatic-reaction induced production of polydopamine nanoparticles for sensitive and visual sensing of urea[J]. Analyst,2015,140(2):449−455. doi: 10.1039/C4AN01900H
|
[12] |
LI F, YU Y, WANG Q, et al. Polymerization of dopamine catalyzed by laccase:Comparison of enzymatic and conventional methods[J]. Enzyme and Microbial Technology,2018,119:58−64. doi: 10.1016/j.enzmictec.2018.09.003
|
[13] |
WANG J L, LI B C, LI Z J, et al. Electropolymerization of dopamine for surface modification of complex-shaped cardiovascular stents[J]. Biomaterials,2014,35(27):7679−7689. doi: 10.1016/j.biomaterials.2014.05.047
|
[14] |
BERNSMANN F, BALL V, ADDIEGO F, et al. Dopamine-melanin film deposition depends on the used oxidant and buffer solution[J]. Langmuir,2011,27(6):2819−2825. doi: 10.1021/la104981s
|
[15] |
DELLA VECCHIA N F, LUCHINI A, NAPOLITANO A, et al. Tris buffer modulates polydopamine growth, aggregation, and paramagnetic properties[J]. Langmuir,2014,30(32):9811−9818. doi: 10.1021/la501560z
|
[16] |
LIU B, BURDINE L, KODADEK T. Chemistry of periodate-mediated cross-linking of 3,4-dihydroxylphenylalanine-containing molecules to proteins[J]. Journal of the American Chemical Society,2006,128(47):15228−15235. doi: 10.1021/ja065794h
|
[17] |
DREYER D R, MILLER D J, FREEMAN B D, et al. Elucidating the structure of poly(dopamine)[J]. Langmuir,2012,28(15):6428−6435. doi: 10.1021/la204831b
|
[18] |
HONG S, NA Y S, CHOI S, et al. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation[J]. Advanced Functional Materials,2012,22(22):4711−4717. doi: 10.1002/adfm.201201156
|
[19] |
DELLA VECCHIA N F, AVOLIO R, ALFE M, et al. Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point[J]. Advanced Functional Materials,2013,23(10):1331−1340. doi: 10.1002/adfm.201202127
|
[20] |
PONZIO F, PAYAMYAR P, SCHNEIDER A, et al. Polydopamine films from the forgotten air/water interface[J]. Journal of Physical Chemistry Letters,2014,5(19):3436−3440. doi: 10.1021/jz501842r
|
[21] |
ZHANG C, OU Y, LEI W X, et al. CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability[J]. Angewandte Chemie-International Edition,2016,55(9):3054−3057. doi: 10.1002/anie.201510724
|
[22] |
ZHU J Y, TSEHAYE M T, WANG J, et al. A rapid deposition of polydopamine coatings induced by iron (III) chloride/hydrogen peroxide for loose nanofiltration[J]. Journal of Colloid and Interface Science,2018,523(1):86−97.
|
[23] |
DUAN S Y, WANG D H, JIANG Q P, et al. Oxidant-accelerated polydopamine modification process for the fast fabrication of PDA on HMX with improved mechanical stability[J]. Propellants Explosives Pyrotechnics,2021,46(5):751−757. doi: 10.1002/prep.202000095
|
[24] |
LEE M, LEE S H, OH I K, et al. Microwave-accelerated rapid, chemical oxidant-free, material-independent surface chemistry of poly(dopamine)[J]. Small,2017,13(4):1600443. doi: 10.1002/smll.201600443
|
[25] |
HO C C, DING S J. The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery[J]. Journal of Materials Science-Materials in Medicine,2013,24(10):2381−2390. doi: 10.1007/s10856-013-4994-2
|
[26] |
ZHENG W C, FAN H L, WANG L, et al. Oxidative self-polymerization of dopamine in an acidic environment[J]. Langmuir,2015,31(42):11671−11677. doi: 10.1021/acs.langmuir.5b02757
|
[27] |
张弘弢, 蒋金泓, 莫梦婷, 等. 反应介质对聚多巴胺纳米粒子制备的影响[J]. 功能高分子学报,2014,27(4):413−418. [ZHANG H T, JIANG J H, MO M T, et al. Effect of reaction medium on preparation of polydopamine nanoparticles[J]. Journal of Functional Polymers,2014,27(4):413−418.]
|
[28] |
WU M, WANG T, MULLER L, et al. Adjustable synthesis of polydopamine nanospheres and their nucleation and growth[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2020,603:125196.
|
[29] |
POSTMA A, YAN Y, WANG Y J, et al. Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules[J]. Chemistry of Materials,2009,21(14):3042−3044. doi: 10.1021/cm901293e
|
[30] |
LIN C Y, FU J W, LIU S J. Facile preparation of au nanoparticle-embedded polydopamine hollow microcapsule and its catalytic activity for the reduction of methylene blue[J]. Journal of Macromolecular Science Part a-Pure and Applied Chemistry,2019,56(12):1104−1113. doi: 10.1080/10601325.2019.1658526
|
[31] |
XUE J H, ZHENG W C, WANG L, et al. Scalable fabrication of polydopamine nanotubes based on curcumin crystals[J]. Acs Biomaterials Science & Engineering,2016,2(4):489−493.
|
[32] |
ZHANG M Z, WANG S S, LI L J, et al. Digital numbers constructed by fine patterned polydopamine on DNA templates[J]. Macromolecular Rapid Communications,2021,42(21):2100441. doi: 10.1002/marc.202100441
|
[33] |
CUI J W, WANG Y J, POSTMA A, et al. Monodisperse polymer capsules:Tailoring size, shell thickness, and hydrophobic cargo loading via emulsion templating[J]. Advanced Functional Materials,2010,20(10):1625−1631. doi: 10.1002/adfm.201000209
|
[34] |
NI Y Z, JIANG W F, TONG G S, et al. Preparation of polydopamine nanocapsules in a miscible tetrahydrofuran-buffer mixture[J]. Organic & Biomolecular Chemistry,2015,13(3):686−690.
|
[35] |
JIANG W W, ZHANG X Y, LUAN Y F, et al. Using gamma-ray polymerization-induced assemblies to synthesize polydopamine nanocapsules[J]. Polymers,2019,11(11):1754. doi: 10.3390/polym11111754
|
[36] |
TANG C X, LI Y Z, PUN J, et al. Polydopamine microcapsules from cellulose nanocrystal stabilized Pickering emulsions for essential oil and pesticide encapsulation[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2019,570:403−413.
|
[37] |
SUN Y Z, DAVIS E. Bowl-shaped polydopamine nanocapsules:Control of morphology via template-free synthesis[J]. Langmuir,2020,36(32):9333−9342. doi: 10.1021/acs.langmuir.0c00790
|
[38] |
AMIN D R, HIGGINSON C J, KORPUSIK A B, et al. Untemplated resveratrol-mediated polydopamine nanocapsule formation[J]. Acs Applied Materials & Interfaces,2018,10(40):34792−34801.
|
[39] |
TANG J, LIU J, LI C L, et al. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles[J]. Angewandte Chemie-International Edition,2015,54(2):588−593. doi: 10.1002/anie.201407629
|
[40] |
CHEN F, XING Y X, WANG Z Q, et al. Nanoscale polydopamine (PDA) meets pi-pi interactions:An interface-directed coassembly approach for mesoporous nanoparticles[J]. Langmuir,2016,32(46):12119−12128. doi: 10.1021/acs.langmuir.6b03294
|
[41] |
GUAN B Y, YU L, LOU X W. Formation of asymmetric bowl-like mesoporous particles via emulsion-induced interface anisotropic assembly[J]. Journal of the American Chemical Society,2016,138(35):11306−11311. doi: 10.1021/jacs.6b06558
|
[42] |
FENG J J, ZHANG P P, WANG A J, et al. One-step synthesis of monodisperse polydopamine-coated silver core-shell nanostructures for enhanced photocatalysis[J]. New Journal of Chemistry,2012,36(1):148−154. doi: 10.1039/C1NJ20850K
|
[43] |
SI J Y, YANG H. Preparation and characterization of bio-compatible Fe3O4@Polydopamine spheres with core/shell nanostructure[J]. Materials Chemistry and Physics,2011,128(3):519−524. doi: 10.1016/j.matchemphys.2011.03.039
|
[44] |
XIE Y J, YAN B, XU H L, et al. Highly regenerable mussel-inspired Fe3O4@Polydopamine-Ag core-shell microspheres as catalyst and adsorbent for methylene blue removal[J]. Acs Applied Materials & Interfaces,2014,6(11):8845−8852.
|
[45] |
TU Y X, LEI C F, DENG F, et al. Core-shell ZIF-8@polydopamine nanoparticles obtained by mitigating the polydopamine coating induced self-etching of MOFs:Prototypical metal ion reservoirs for sticking to and killing bacteria[J]. New Journal of Chemistry,2021,45(19):8701−8713. doi: 10.1039/D1NJ00461A
|
[46] |
ZHU D W, TAO W, ZHANG H L, et al. Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system fore the treatment of liver cancer[J]. Acta Biomaterialia,2016,30(2):144−154.
|
[47] |
WU C J, ZHANG G X, XIA T, et al. Bioinspired synthesis of polydopamine/Ag nanocomposite particles with antibacterial activities[J]. Materials Science & Engineering C-Materials for Biological Applications,2015,55:155−165.
|
[48] |
PRABHAKAR P, SEN R K, MAYANDI V, et al. Mussel-inspired chemistry to design biodegradable food packaging films with antimicrobial properties[J]. Process Safety and Environmental Protection,2022,162:17−29. doi: 10.1016/j.psep.2022.03.033
|
[49] |
XU Y Z, ZHENG D Y, CHEN X J, et al. Mussel-inspired polydopamine-modified cellulose nanocrystal fillers for the preparation of reinforced and UV-shielding poly (lactic acid) films[J]. Journal of Materials Research and Technology-Jmr & T,2022,19:4350−4359.
|
[50] |
YILMAZ M T, AKMAN P K, BOZKURT F, et al. An effective polydopamine coating to improve stability and bioactivity of carvacrol-loaded zein nanoparticles[J]. International Journal of Food Science and Technology,2021,56(11):6011−6024. doi: 10.1111/ijfs.15296
|
[51] |
WU Q, FAN J X, CHEN X R, et al. Sandwich structured membrane adsorber with metal organic frameworks for aflatoxin B1 removal[J]. Separation and Purification Technology,2020,246:116907. doi: 10.1016/j.seppur.2020.116907
|
[52] |
ZHANG J Y, LI S H, WANG W J, et al. Bacteriocin assisted food functional membrane for simultaneous exclusion and inactivation of alicyclobacillus acidoterrestris in apple juice[J]. Journal of Membrane Science,2021,618:118741. doi: 10.1016/j.memsci.2020.118741
|
[53] |
BARCLAY T G, HEGAB H M, MICHELMORE A, et al. Multidentate polyzwitterion attachment to polydopamine modified ultrafiltration membranes for dairy processing:Characterization, performance and durability[J]. Journal of Industrial and Engineering Chemistry,2018,61:356−367. doi: 10.1016/j.jiec.2017.12.035
|
[54] |
XIONG Y S, LI W, LU H Q, et al. Polydopamine-modified ceramic membrane for filtering brown sugar redissolved syrup:Characterisation, experiments, and advanced modelling[J]. Journal of Membrane Science,2022,657:120607. doi: 10.1016/j.memsci.2022.120607
|
[55] |
杨强剑, 罗建泉, 郭世伟, 等. 聚醚砜超滤膜处理糖蜜中的膜污染控制[J]. 膜科学与技术,2019,39(6):94−102. [YANG Q J, LUO J Q, GUO S W, et al. Membrane pollution control in molasses treated by polyether sulfone ultrafiltration membrane[J]. Membrane Science and Technology,2019,39(6):94−102.]
|
[56] |
XU X Y, LIU R L, GUO P Q, et al. Fabrication of a novel magnetic mesoporous molecularly imprinted polymer based on pericarpium granati-derived carrier for selective absorption of bromelain[J]. Food Chemistry,2018,256(Aug.1):91−97.
|
[57] |
AMALY N, EL-MOGHAZY A Y, SUN G. Fabrication of polydopamine-based NIR-light responsive imprinted nanofibrous membrane for effective lysozyme extraction and controlled release from chicken egg white[J]. Food Chemistry,2021,357(Sep.30):129613.
|
[58] |
ASMAT S, ANWER A H, HUSAIN Q. Immobilization of lipase onto novel constructed polydopamine grafted multiwalled carbon nanotube impregnated with magnetic cobalt and its application in synthesis of fruit flavours[J]. International Journal of Biological Macromolecules,2019,140:484−495. doi: 10.1016/j.ijbiomac.2019.08.086
|
[59] |
YAO G H, WANG X J, YANG M L, et al. Co-immobilization of bi-lipases on magnetic nanoparticles as an efficient catalyst for synthesis of functional oil rich in diacylglycerols, phytosterol esters and alpha-linolenic acid[J]. LWT-Food Science and Technology,2020,129(9):109522.
|
[60] |
GAO X M, YAO X, ZHONG Z T, et al. Rapid and sensitive detection of Staphylococcus aureus assisted by polydopamine modified magnetic nanoparticles[J]. Talanta,2018,186:147−153. doi: 10.1016/j.talanta.2018.04.046
|
[61] |
CHAI W B, WANG H J, ZHANG Y, et al. Preparation of polydopamine-coated magnetic nanoparticles for dispersive solid-phase extraction of water-soluble synthetic colorants in beverage samples with HPLC analysis[J]. Talanta,2016,149:13−20. doi: 10.1016/j.talanta.2015.11.026
|
[62] |
BONYADI S, GHANBARI K. Development of highly sensitive and selective sensor based on molecular imprinted polydopamine-coated silica nanoparticles for electrochemical determination of sunset yellow[J]. Microchemical Journal,2021,167:116322.
|
[63] |
SCARANO S, PASCALE E, PALLADINO P, et al. Determination of fermentable sugars in beer wort by gold nanoparticles@polydopamine:A layer-by-layer approach for localized surface plasmon resonance measurements at fixed wavelength[J]. Talanta,2018,183:24−32. doi: 10.1016/j.talanta.2018.02.044
|
[64] |
TIAN Y M, BU T, ZHANG M, et al. Metal-polydopamine framework based lateral flow assay for high sensitive detection of tetracycline in food samples[J]. Food Chemistry,2021,339(Mar.1):127854.
|
[65] |
LI S M, LI Z X, PANG J F, et al. Polydopamine-mediated carrier with stabilizing and self-antioxidative properties for polyphenol delivery systems[J]. Industrial & Engineering Chemistry Research,2018,57(2):590−599.
|
[66] |
任丹丹, 吴梦, 肖天钰, 等. 血小板膜伪装介孔聚多巴胺纳米药物传递系统的制备及应用[J]. 精细化工,2021,38(7):1430−1435,1493. [REN D D, WU M, XIAO T Y, et al. Preparation and application of platelet membrane camouflaged mesoporous polydopamine nanodrug delivery system[J]. Fine Chemicals,2021,38(7):1430−1435,1493.]
|
[67] |
SUN X, LI L, ZHANG H, et al. Near-infrared light-regulated drug-food homologous bioactive molecules and photothermal collaborative precise antibacterial therapy nanoplatform with controlled release property[J]. Advanced Healthcare Materials,2021,10(16):e2100546. doi: 10.1002/adhm.202100546
|