Citation: | LI Huilin, LIU Hao, LI Jue, et al. Process Optimization and in Vitro Digestion Research of Raphanus sativus Seeds Sulforaphane Prepared by Enzymolysis Method[J]. Science and Technology of Food Industry, 2024, 45(9): 159−167. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050037. |
[1] |
RUHEE R T, SUZUKI K. The integrative role of sulforaphane in preventing inflammation, oxidative stress and fatigue:A review of a potential protective phytochemical[J]. Antioxidants,2020,9(6):1−13.
|
[2] |
TRISKA J, BALIK J, HOUSKA M, et al. Factors influencing sulforaphane content in broccoli sprouts and subsequent sulforaphane extraction[J]. Foods,2021,10(8):1−12.
|
[3] |
张静, 马永强, 冯进, 等. 响应面法优化纤维素酶辅助提取西蓝花萝卜硫素工艺研究[J]. 食品科技,2020,45(12):188−195. [ZHANG Jing, MA Yongqiang, FENG Jin, et al. Study on the optimization of cellulase assisted extraction process of sulforaphane from West blue flower by response surface method[J]. Food Science and Technology,2020,45(12):188−195.]
ZHANG Jing, MA Yongqiang, FENG Jin, et al. Study on the optimization of cellulase assisted extraction process of sulforaphane from West blue flower by response surface method[J]. Food Science and Technology, 2020, 45(12): 188−195.
|
[4] |
吴元锋, 徐维亮, 申雨珂, 等. 萝卜硫素制备及纯化工艺研究进展[J]. 食品工业科技,2016,37(19):381−386. [WU Yuanfeng, XU Weiliang, SHEN Yuke, et al. Research progress of preparation and purification technology of sulforaphane[J]. Food Industry Science and Technology,2016,37(19):381−386.]
WU Yuanfeng, XU Weiliang, SHEN Yuke, et al. Research progress of preparation and purification technology of sulforaphane[J]. Food Industry Science and Technology, 2016, 37(19): 381−386.
|
[5] |
张璇, 田明硕, 王健, 等. 萝卜硫素提取纯化及其抗癌功能研究进展[J]. 食品工业科技,2022,43(17):424−434. [ZHANG Xuan, TIAN Mingshuo, WANG Jian, et al. Research progress on extraction and purification of sulforaphane and its anticancer function[J]. Food Industry Science and Technology,2022,43(17):424−434.]
ZHANG Xuan, TIAN Mingshuo, WANG Jian, et al. Research progress on extraction and purification of sulforaphane and its anticancer function[J]. Food Industry Science and Technology, 2022, 43(17): 424−434.
|
[6] |
高磊, 张茜, 华刚, 等. 炒莱菔子中萝卜苷、芥子碱硫氰酸盐在肠道菌群体外代谢的研究[J]. 中成药,2022,44(7):2396−2400. [GAO L, ZHANG Q, HUA G, et al. Study on metabolism of glucoraphanin and sinapine thiocyanate in the seeds of fried raphani in intestinal bacteria[J]. Chinese Patent Medicine,2022,44(7):2396−2400.]
GAO L, ZHANG Q, HUA G, et al. Study on metabolism of glucoraphanin and sinapine thiocyanate in the seeds of fried raphani in intestinal bacteria[J]. Chinese Patent Medicine, 2022, 44(7): 2396−2400.
|
[7] |
何珺, 谢述琼, 杨佳年, 等. 12种十字花科蔬菜种子中萝卜硫素含量研究[J]. 食品研究与开发,2015,36(4):11−13. [HE Jun, XIE Shuqiong, YANG Jianian, et al. A study on the content of sulforaphane in 12 cruciferous vegetable seeds[J]. Food Research and Development,2015,36(4):11−13.] doi: 10.3969/j.issn.1005-6521.2015.04.004
HE Jun, XIE Shuqiong, YANG Jianian, et al. A study on the content of sulforaphane in 12 cruciferous vegetable seeds[J]. Food Research and Development, 2015, 36(4): 11−13. doi: 10.3969/j.issn.1005-6521.2015.04.004
|
[8] |
CHEN W, WANG Y, XU L, et al. Methyl jasmonate, salicylic acid and abscisic acid enhance the accumulation of glucosinolates and sulforaphane in radish (Raphanus sativus L.) taproot[J]. Scientia Horticulturae,2019,250:159−167. doi: 10.1016/j.scienta.2019.02.024
|
[9] |
阳晖, 赵学勤, 李昌满, 等. 胭脂萝卜废渣中提取萝卜硫素的酶解工艺优化[J]. 食品工业科技,2016,37(5):207−211. [YANG Hui, ZHAO Xueqin, LI Changman, et al. Optimization of enzymatic hydrolysis process for extracting sulforaphane from carmine radish waste[J]. Food Industry Science and Technology,2016,37(5):207−211.]
YANG Hui, ZHAO Xueqin, LI Changman, et al. Optimization of enzymatic hydrolysis process for extracting sulforaphane from carmine radish waste[J]. Food Industry Science and Technology, 2016, 37(5): 207−211.
|
[10] |
王兆玲, 冯尚彩, 况鹏群. 响应面法优化萝卜芽苗中还原型萝卜硫素的制备工艺研究[J]. 药学研究,2018,37(8):460−465. [WANG Zhaoling, FENG Shangcai, KUANG Pengqun. Optimization of preparation technology of reduced sulforaphane from radish sprout by response surface method[J]. Pharmaceutical Research,2018,37(8):460−465.]
WANG Zhaoling, FENG Shangcai, KUANG Pengqun. Optimization of preparation technology of reduced sulforaphane from radish sprout by response surface method[J]. Pharmaceutical Research, 2018, 37(8): 460−465.
|
[11] |
SARVAN I, KRAMER E, BOUWMEESTER H, et al. Sulforaphane formation and bioaccessibility are more affected by steaming time than meal composition during in vitro digestion of broccoli[J]. Food Chemistry,2017,214:580−586. doi: 10.1016/j.foodchem.2016.07.111
|
[12] |
胡翠珍, 李胜, 马绍英, 等. 响应面优化西兰花中萝卜硫素复合提取工艺[J]. 食品工业科技,2016,37(4):271−277. [HU Cuizhen, LI Sheng, MA Shaoying, et al. Optimization of compound extraction process of sulforaphane from broccoli using response surface methodology[J]. Food Industry Technology,2016,37(4):271−277.]
HU Cuizhen, LI Sheng, MA Shaoying, et al. Optimization of compound extraction process of sulforaphane from broccoli using response surface methodology[J]. Food Industry Technology, 2016, 37(4): 271−277.
|
[13] |
TANONGKANKIT Y, SABLANI S S, CHIEWCHAN N, et al. Microwave-assisted extraction of sulforaphane from white cabbages:Effects of extraction condition, solvent and sample pretreatment[J]. Food Engineering,2013,117(1):151−157. doi: 10.1016/j.jfoodeng.2013.02.011
|
[14] |
卢旭, 马绍英, 李胜, 等. 不同烹饪方式下烹饪时间对西兰花中萝卜硫苷和萝卜硫素的影响[J]. 食品科学,2020,41(1):41−47. [LU Xu, MA Shaoying, LI Sheng, et al. The effect of cooking time on radish glucoside and radish sulfur in broccoli under different cooking methods[J]. Food science,2020,41(1):41−47.] doi: 10.7506/spkx1002-6630-20181201-005
LU Xu, MA Shaoying, LI Sheng, et al. The effect of cooking time on radish glucoside and radish sulfur in broccoli under different cooking methods[J]. Food science, 2020, 41(1): 41−47. doi: 10.7506/spkx1002-6630-20181201-005
|
[15] |
LÜ X G, MENG G L, LI W N, et al. Sulforaphane and its antioxidative effects in broccoli seeds and sprouts of different cultivars[J]. Food Chemistry,2020,316:1−39.
|
[16] |
郭丽萍, 朱英莲, 唐娟. 十字花科芽苗菜与成熟蔬菜生物活性成分的比较[J]. 营养学报,2017,39(6):588−593. [GUO Lipin, ZHU Yinlian, TANG Juan. Comparison of bioactive components between cruciferous sprouted vegetables and mature vegetables[J]. Journal of Nutrition,2017,39(6):588−593.] doi: 10.3969/j.issn.0512-7955.2017.06.014
GUO Lipin, ZHU Yinlian, TANG Juan. Comparison of bioactive components between cruciferous sprouted vegetables and mature vegetables[J]. Journal of Nutrition, 2017, 39(6): 588−593. doi: 10.3969/j.issn.0512-7955.2017.06.014
|
[17] |
龙芳. 响应面优化西兰花茎硫苷提取及其抗氧化性研究[J]. 食品研究与开发,2018,39(23):61−67. [LONG Fang. Optimization of extraction and antioxidant activity of thioside from broccoli stem by response surface methodology[J]. Food Research and Development,2018,39(23):61−67.] doi: 10.3969/j.issn.1005-6521.2018.23.011
LONG Fang. Optimization of extraction and antioxidant activity of thioside from broccoli stem by response surface methodology[J]. Food Research and Development, 2018, 39(23): 61−67. doi: 10.3969/j.issn.1005-6521.2018.23.011
|
[18] |
WANG S Y, JIAO H J. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen[J]. Journal of Agricultural and Food Chemistry,2000,48(11):5677−5684. doi: 10.1021/jf000766i
|
[19] |
LIU Y B, ZHANG D, LI X D, et al. Enhancement of ultrasound-assisted extraction of sulforaphane from broccoli seeds via the application of microwave pretreatment[J]. Ultrasonics Sonochemistry,2022,87:1−7.
|
[20] |
GONZALEZ F, QUINTERO J, DEL RIO R, et al. Optimization of an extraction process to obtain a food-grade sulforaphane-rich extract from broccoli (Brassica oleracea var. italica)[J]. Molecules,2021,26(13):1−11.
|
[21] |
MAHN A, QUINTERO J, CASTILLO N, et al. Effect of ultrasound-assisted blanching on myrosinase activity and sulforaphane content in broccoli florets[J]. Catalysts,2020,10(6):1−9.
|
[22] |
GALDOV H, POLOZSANYI Z, BREIER A, et al. Sulphoraphane affinity-based chromatography for the purification of myrosinase from Lepidium sativum seeds[J]. Biomolecules,2022,12(3):1−9.
|
[23] |
陈明媚, 李俊杰, 李晓丹, 等. 响应面优化西兰花种子酶解生成萝卜硫素的条件[J]. 青岛农业大学学报(自然科学版),2021,38(2):113−118. [CHEN Mingmei, LI Junjie, LI Xiaodan, et al. Response surface optimization of sulforaphane production from broccoli seeds[J]. Journal of Qingdao Agricultural University (Natural Science Edition),2021,38(2):113−118.] doi: 10.3969/J.ISSN.1674-148X.2021.02.006
CHEN Mingmei, LI Junjie, LI Xiaodan, et al. Response surface optimization of sulforaphane production from broccoli seeds[J]. Journal of Qingdao Agricultural University (Natural Science Edition), 2021, 38(2): 113−118. doi: 10.3969/J.ISSN.1674-148X.2021.02.006
|
[24] |
张锦华, 郭楠, 杨妍, 等. 西兰花副产物中萝卜硫素提取、纯化及鉴定[J]. 食品科学,2019,40(88):248−255. [ZHANG Jinhua, GUO Nan, YANG Yan, et al. Extraction, purification, and identification of sulforaphane from byproducts of broccoli[J]. Food science,2019,40(88):248−255.] doi: 10.7506/spkx1002-6630-20180907-077
ZHANG Jinhua, GUO Nan, YANG Yan, et al. Extraction, purification, and identification of sulforaphane from byproducts of broccoli[J]. Food science, 2019, 40(88): 248−255. doi: 10.7506/spkx1002-6630-20180907-077
|
[25] |
SHEN L Q, SU G Y, WANG X Y, et al. Endogenous and exogenous enzymolysis of vegetable-sourced glucosinolates and influencing factors[J]. Food Chemistry,2010,119(3):987−994. doi: 10.1016/j.foodchem.2009.08.003
|
[26] |
郭彩慧, 许雅欣, 宋明翰, 等. 西兰花中萝卜硫素的提取工艺优化及功能活性分析[J]. 食品科技,2021,46(10):155−161. [GUO Caihui, XU Yaxin, SONG Minghan, et al. Optimization of extraction process and functional activity analysis of sulforaphane from broccoli[J]. Food Technology,2021,46(10):155−161.] doi: 10.3969/j.issn.1005-9989.2021.10.spkj202110025
GUO Caihui, XU Yaxin, SONG Minghan, et al. Optimization of extraction process and functional activity analysis of sulforaphane from broccoli[J]. Food Technology, 2021, 46(10): 155−161. doi: 10.3969/j.issn.1005-9989.2021.10.spkj202110025
|
[27] |
LUCAS-GONZALEZ R, VIUDA-MARTOS M, PEREZ-ALVAREZ J A, et al. In vitro digestion models suitable for foods:Opportunities for new fields of application and challenges[J]. Food Research International,2018,107:423−436. doi: 10.1016/j.foodres.2018.02.055
|
[28] |
SUN Y F, TANG Z C, HAO T T, et al. Simulated digestion and fermentation in vitro by obese human gut microbiota of sulforaphane from broccoli seeds[J]. Foods,2022,11(24):1−14.
|
[29] |
李茹, 朱毅. 体外模拟胃、肠消化对萝卜苗中活性物质、抗氧化功能及代谢差异物的影响[J]. 中国食品学报,2019,19(4):61−71. [LI Ru, ZHU Yi. The effects of in vitro simulated gastric and intestinal digestion on active substances, antioxidant function, and metabolic differences in radish seedlings[J]. Chinese Journal of Food Science,2019,19(4):61−71.]
LI Ru, ZHU Yi. The effects of in vitro simulated gastric and intestinal digestion on active substances, antioxidant function, and metabolic differences in radish seedlings[J]. Chinese Journal of Food Science, 2019, 19(4): 61−71.
|
[30] |
WANG L, ROSE D J, ZHANG Y. Development of prolamin-based composite nanoparticles for controlled release of sulforaphane[J]. Journal of Agricultural and Food Chemistry,2020,68(46):13083−13092. doi: 10.1021/acs.jafc.9b06970
|
[31] |
FIGUEIREDO S M, BINDA N S, NOGUEIRA-MACHADO J A, et al. The antioxidant properties of organosulfur compounds (sulforaphane)[J]. Recent Patents on Endocrine Metabolic & Immune Drug Discovery,2015,9(1):24−39.
|
[32] |
ZHANG B, LIU P T, SHENG H K, et al. New insight into the potential protective function of sulforaphene against ROS-Mediated oxidative stress damage in vitro and in vivo[J]. International Journal of Molecular Sciences,2023,24(17):1−20.
|