Citation: | LI Bin, WANG Lin, YUE Jian, et al. Research Progress on the Effects of Anthocyanidin Compounds on Physicochemical Properties of Starch[J]. Science and Technology of Food Industry, 2024, 45(1): 343−351. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020169. |
[1] |
张子睿. 低GI马铃薯馒头的开发及其对原花青素体外释放的研究[D]. 杭州:浙江大学, 2021. [ZHANG Z R. The development of low GI potato steamed bread and its effect on the in vitro digestion release of procyanidins[D]. Hangzhou:Zhejiang University, 2021.]
ZHANG Z R. The development of low GI potato steamed bread and its effect on the in vitro digestion release of procyanidins[D]. Hangzhou: Zhejiang University, 2021.
|
[2] |
LIN X, LI S, YIN J, et al. Anthocyanin-loaded double pickering emulsion stabilized by octenylsuccinate quinoa starch:Preparation, stability and in vitro gastrointestinal digestion[J]. International Journal of Biological Macromolecules,2020,152:1223−1241.
|
[3] |
XU J, LI X, CHEN J, et al. Effect of polymeric proanthocyanidin on the physicochemical and in vitro digestive properties of different starches[J]. LWT-Food Science and Technology,2022,148:11713.
|
[4] |
王思琪, 许秀颖, 崔维建, 等. 大豆异黄酮对玉米淀粉老化的影响及体系水分迁移研究[J]. 中国食品学报,2022,22(6):232−241. [WANG S Q, XU X Y, CUI W J, et al. Effect of soy is oflavones on the retrogradation properties of corn starch[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(6):232−241.]
WANG S Q, XU X Y, CUI W J, et al. Effect of soy is oflavones on the retrogradation properties of corn starch[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(6): 232−241.
|
[5] |
董慧娜, 汪磊, 陈洁, 等. 板栗淀粉-脂质复合物对淀粉老化性质的影响[J]. 河南工业大学学报(自然科学版), 2022, 43(1):49−57. [DONG H N, WANG L, CHEN J, et al. Effects of fatty acids and cooking methods on aging properties of chestnut starch[J] Journal of Henan University of Technology (Natural Science Edition), 2022, 43(1):49−57.]
DONG H N, WANG L, CHEN J, et al. Effects of fatty acids and cooking methods on aging properties of chestnut starch[J] Journal of Henan University of Technology (Natural Science Edition), 2022, 43(1): 49−57.
|
[6] |
郭佳欣, 张慧君, 刘鑫宇, 等. 玉米淀粉和马铃薯淀粉糊化后的流变性及热力学性质比较[J]. 中国果菜,2022,42(3):1−5,39. [GUO J X, ZHANG H J, LIU X Y, et al. Comparison of rheological and thermodynamic properties of gelatinized corn starch and potato starch China[J]. Fruit & Vegetable,2022,42(3):1−5,39.]
GUO J X, ZHANG H J, LIU X Y, et al. Comparison of rheological and thermodynamic properties of gelatinized corn starch and potato starch China[J]. Fruit & Vegetable, 2022, 42(3): 1−5,39.
|
[7] |
MIAO L, XU Y, JIA C, et al. Structural changes of rice starch and activity inhibition of starch digestive enzymes by anthocyanins retarded starch digestibility[J]. Carbohydrate Polymers,2021,261:117841. doi: 10.1016/j.carbpol.2021.117841
|
[8] |
GUSTAVO A C, EDITH A, MIRNA M S, et al. Effect on in vitro starch digestibility of mexican blue maize anthocyanins[J]. Food Chemistry,2016,211:281−284. doi: 10.1016/j.foodchem.2016.05.024
|
[9] |
许晨. 原花青素抑制玉米淀粉老化作用的研究[D]. 天津:天津科技大学, 2016. [XU C. Study on preventing the retrogradation of maize starch using proanthocyanidins[D]. Tianjin:Tianjin University of Science and Technology, 2016.]
XU C. Study on preventing the retrogradation of maize starch using proanthocyanidins[D]. Tianjin: Tianjin University of Science and Technology, 2016.
|
[10] |
徐佳慧. 高聚原花青素对淀粉性质的影响研究及产品开发[D]. 南昌:南昌大学, 2022. [XU J H. Effect of polyprocyanidins on starch properties and product development[D]. Nanchang:Nanchang University, 2022.]
XU J H. Effect of polyprocyanidins on starch properties and product development[D]. Nanchang: Nanchang University, 2022.
|
[11] |
PROMYOS N, TEMVIRIYANUKUL P, SUYYISANSANEE U, et al. Investigation of anthocyanidins and anthocyanins for targeting alpha-glucosidase in diabetes mellitus[J]. Preventive Nutrition and Food Science,2020,25(3):263−271. doi: 10.3746/pnf.2020.25.3.263
|
[12] |
RATSEEWO J, WARREN F J, SIRIAMOMPUN S, et al. The influence of starch structure and anthocyanin content on the digestibility of thai pigmented rice[J]. Food Chemistry,2019,298:124949. doi: 10.1016/j.foodchem.2019.06.016
|
[13] |
吴莉. 花青素类化合物抗氧化活性的密度泛函理论研究[D]. 新乡:河南师范大学, 2015. [WU L. Density functional theory calculations on the antioxidant activity of anthocyanins[D]. Xinxiang:Henan Normal University, 2015.]
WU L. Density functional theory calculations on the antioxidant activity of anthocyanins[D]. Xinxiang: Henan Normal University, 2015.
|
[14] |
LUIZ B D S S, FRANCESCO C, SOLENE S, et al. Anthocyanins formulated with carboxymethyl starch for gastric and intestinal delivery[J]. Molecules,2022,27:7271. doi: 10.3390/molecules27217271
|
[15] |
SEAN J L O, JINGYING Y, et al. Effects of anthocyanins on bread microstructure, and their combined impact on starch digestibility[J]. Food Chemistry,2022,374:131744. doi: 10.1016/j.foodchem.2021.131744
|
[16] |
HUSEYIN A, TURGUT C, ASIYE A, et al. Anthocyanins:Metabolic digestion, bioavailability, therapeutic effects, current pharmaceutical/industrial use, and innovation potential[J]. Antioxidants,2023(48):2−19.
|
[17] |
刘梦溪, 林绍艳, 曾其龙, 等. 3个南高丛蓝莓品种果实主要风味品质比较[J]. 中国果树,2023(3):54−59. [LIU M X, LIN S Y, ZENG Q L, et al. Comparison of fruit flavor and quality of three southern highbush blueberry varieties[J]. Chinese Fruit Tree,2023(3):54−59.]
LIU M X, LIN S Y, ZENG Q L, et al. Comparison of fruit flavor and quality of three southern highbush blueberry varieties[J]. Chinese Fruit Tree, 2023(3): 54−59.
|
[18] |
DAS A B , GOUD V V , DAS C, et al. Microencapsulation of anthocyanin extract from purple rice bran using modified rice starch and its effect on rice dough rheology[J]. International Journal of Biological Macromolecules,2019(124):573−581.
|
[19] |
涂园, 李晓玺, 陆萍, 等. 发酵过程中原花青素对淀粉多尺度结构及体外消化特性的调控[J]. 现代食品科技,2022,38(3):152−158,285. [TU Y, LI X X, LU P, et al. Procyanidins regulate the multi-scale structures and in vitro digestibility of rice starch during fermentation[J]. Modern Food Science and Technology,2022,38(3):152−158,285.]
TU Y, LI X X, LU P, et al. Procyanidins regulate the multi-scale structures and in vitro digestibility of rice starch during fermentation[J]. Modern Food Science and Technology, 2022, 38(3): 152−158,285.
|
[20] |
许永亮, 程科, 邱承光, 等. 不同品种淀粉的流变学特性研究[J]. 中国粮油学报,2006,21(4):16−20. [XU Y L, CHENG K, QIU C G, et al. Study on rheological properties of different varieties of starch[J]. Journal of the Chinese Cereals and Oils Association,2006,21(4):16−20.]
XU Y L, CHENG K, QIU C G, et al. Study on rheological properties of different varieties of starch[J]. Journal of the Chinese Cereals and Oils Association, 2006, 21(4): 16−20.
|
[21] |
ALAMRI M S, MOHAMED A, AHUSSAIN S, et al. Effects of alkaline-soluble okra gum on rheological and thermal properties of systems with wheat or corn starch[J]. Food Hydrocolloids,2013,30(2):541−551. doi: 10.1016/j.foodhyd.2012.07.003
|
[22] |
CHAI Y, WANG M, ZHANG G, et al. Interaction between amylose and tea polyphenols modulates the postprandial glycemic response to high-amylose maize starch[J]. Journal of Agricultural and Food Chemistry,2013,61(36):8608−8615. doi: 10.1021/jf402821r
|
[23] |
LEI C, DIE Z, LING F W, et al. Structural and mechanistic insights into starch microgel/anthocyanincomplex assembly and controlled release performance[J]. International Journal of Biological Macromolecules,2022,213:718−727. doi: 10.1016/j.ijbiomac.2022.05.166
|
[24] |
苗兰鸽, 许燕, 赵思明, 等. 花青素对不同直链淀粉含量的淀粉理化特性的影响[J]. 食品工业科技,2020,41(14):22−28. [MIAO L G, XU Y, ZHAO S M, et al. Effects of anthocyanins on physicochemical properties of amylose with different amylose content[J]. Science and Technology of Food Industry,2020,41(14):22−28.]
MIAO L G, XU Y, ZHAO S M, et al. Effects of anthocyanins on physicochemical properties of amylose with different amylose content[J]. Science and Technology of Food Industry, 2020, 41(14): 22−28.
|
[25] |
ZHANG H, SUN B, ZHANG S, et al. Inhibition of wheat starch retrogradation by tea derivatives[J]. Carbohydrate Polymers,2015,134:413−417. doi: 10.1016/j.carbpol.2015.08.018
|
[26] |
张成浩. 原花青素对不同淀粉理化性质的影响[D]. 南昌:南昌大学, 2020. [ZHANG C H. Effects of proanthocyanidins on physicochemical properties of different starches [D]. Nanchang:Nanchang University, 2020.]
ZHANG C H. Effects of proanthocyanidins on physicochemical properties of different starches [D]. Nanchang: Nanchang University, 2020.
|
[27] |
李蟠莹, 戴涛涛, 陈军, 等 原花青素对大米淀粉老化性质的影响[J]. 食品工业科技, 2018, 39(18):6−11. [LI F Y, DAI T T, CHEN J, et al. Effect of proanthocyanidins on retrogradation of rice starch[J]. Science and Technology of Food Industry, 2018, 39(18):6−11.]
LI F Y, DAI T T, CHEN J, et al. Effect of proanthocyanidins on retrogradation of rice starch[J]. Science and Technology of Food Industry, 2018, 39(18): 6−11.
|
[28] |
汪婷婷, 沈月, 邓蒙蒙, 等. 黑米花青素对大米淀粉热力学、回生及流变学特性的影响[C]. 中国食品科学技术学会, 2020:357-358. [WANG T T, SHEN Y, DENG M M, et al. Effects of black rice anthocyanin on thermodynamic, regenerative and rheological properties of rice starch[C]. Chinese Society of Food Science and Technology, 2020:357-358.]
WANG T T, SHEN Y, DENG M M, et al. Effects of black rice anthocyanin on thermodynamic, regenerative and rheological properties of rice starch[C]. Chinese Society of Food Science and Technology, 2020: 357-358.
|
[29] |
LIU R, XU C, CONG X, et al. Effects of oligomeric procyanidins on the retrogradation properties of maize starch with different amylose/amylopectin ratios[J]. Food Chemistry,2017,221:2010−2017. doi: 10.1016/j.foodchem.2016.10.131
|
[30] |
王梦婷. 杨梅叶原花色素基于调控淀粉消化吸收和肝糖代谢的降血糖作用机制[D]. 杭州:浙江大学, 2021. [WANG M T. Hypoglycemic mechanism of proanthocyanidins from bayberry leaves via regulating starch digestion and absorption together with hepatic glucose metabolism[D]. Hangzhou:Zhejiang University, 2021.]
WANG M T. Hypoglycemic mechanism of proanthocyanidins from bayberry leaves via regulating starch digestion and absorption together with hepatic glucose metabolism[D]. Hangzhou: Zhejiang University, 2021.
|
[31] |
李姝琪. 欧李主要多酚物质成分分析及原花青素对马铃薯淀粉消化抑制作用研究[D]. 银川:宁夏大学, 2021. [LI S Q. Analysis of main polyphenols of plum and inhibitory effect of proanthocyanidins on digestion of potato starch[D]. Yinchuan:Ningxia University, 2021.]
LI S Q. Analysis of main polyphenols of plum and inhibitory effect of proanthocyanidins on digestion of potato starch[D]. Yinchuan: Ningxia University, 2021.
|
[32] |
王新文. 糯米中淀粉及其糊化特性探讨[J]. 现代食品,2020(18):181−183,201. [WANG X W. Starch in glutinous rice and its gelatinization characteristics[J]. Modern Food,2020(18):181−183,201.]
WANG X W. Starch in glutinous rice and its gelatinization characteristics[J]. Modern Food, 2020(18): 181−183,201.
|
[33] |
张子睿, 田金虎, 张惠玲, 等. 葡萄籽原花色素对马铃薯馒头中淀粉消化特性的影响[J]. 中国食品学报,2021,21(7):234−240. [ZHANG Z R, TIAN J H, ZHANG H L, et al. Effect of grape seed proanthocyanidin on digestion characteristics of starch in potato steamed bread[J]. Chinese Journal of Food Science,2021,21(7):234−240.]
ZHANG Z R, TIAN J H, ZHANG H L, et al. Effect of grape seed proanthocyanidin on digestion characteristics of starch in potato steamed bread[J]. Chinese Journal of Food Science, 2021, 21(7): 234−240.
|
[34] |
任顺成, 胡海洋, 李柯柯, 等. 多酚对淀粉的热力学特性的影响[J]. 中国食品学报,2021,21(7):18−27. [REN S C, HU H Y, LI K K, et al. Effects of polyphenols on thermodynamic properties of starch[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(7):18−27.]
REN S C, HU H Y, LI K K, et al. Effects of polyphenols on thermodynamic properties of starch[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(7): 18−27.
|
[35] |
谭沙, 朱仁威, 刘庆庆, 等. 外源添加物对淀粉理化性质和消化特性影响的研究进展[J]. 中国粮油学报,2022,37(12):286−292. [TAN S, ZHU R W, LIU Q Q, et al. Research progress on the effects of exogenous additives on the physicochemical properties and digestibility of starch[J]. Journal of the Chinese Cereals and Oils Association,2022,37(12):286−292.] doi: 10.3969/j.issn.1003-0174.2022.12.040
TAN S, ZHU R W, LIU Q Q, et al. Research progress on the effects of exogenous additives on the physicochemical properties and digestibility of starch[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(12): 286−292. doi: 10.3969/j.issn.1003-0174.2022.12.040
|
[36] |
LI C L, GIDDLEY M J. Starch structure and exchangeable protons contribute to reduced aging of high-amylose wheat bread[J]. Food Chemistry,2022,385(15):132673.
|
[37] |
房子蔚, 王雨生, 于真, 等. 油酸和麦芽糖醇混合物对玉米淀粉老化特性的影响[J]. 食品科学,2022,43(20):109−116. [FANG Z W, WANG Y S, YU Z, et al. Effects of different proportions of oleic acid and maltitol mixture on the retrogradation properties of corn starch[J]. Food Science,2022,43(20):109−116.] doi: 10.7506/spkx1002-6630-20211129-350
FANG Z W, WANG Y S, YU Z, et al. Effects of different proportions of oleic acid and maltitol mixture on the retrogradation properties of corn starch[J]. Food Science, 2022, 43(20): 109−116. doi: 10.7506/spkx1002-6630-20211129-350
|
[38] |
乔炳乾, 付田田, 牛丽亚, 等. 葡萄籽原花青素对不同淀粉理化性质影响的研究[J]. 中国粮油学报,2020,35(6):59−64. [QIAO B Q, FU T T, NIU L Y, et al. Effect of grape seed proanthocyanidins on physicochemical properties of different starch[J]. Journal of the Chinese Cereals and Oils Association,2020,35(6):59−64.] doi: 10.3969/j.issn.1003-0174.2020.06.009
QIAO B Q, FU T T, NIU L Y, et al. Effect of grape seed proanthocyanidins on physicochemical properties of different starch[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(6): 59−64. doi: 10.3969/j.issn.1003-0174.2020.06.009
|
[39] |
江帆. 藜麦淀粉理化特性及其纳米颗粒性质研究[D]. 杨凌:西北农林科技大学, 2020. [JIANG F. Physicochemical properties of starch and starch nanoparticles from quinoa[D]. Yangling:Northwest Agriculture & Forestry University, 2020.]
JIANG F. Physicochemical properties of starch and starch nanoparticles from quinoa[D]. Yangling: Northwest Agriculture & Forestry University, 2020.
|
[40] |
孙健. 亚麻籽胶对肉制品保水性、乳化性、淀粉糊化和老化特性影响及其应用[D]. 南京:南京农业大学, 2011. [SUN J. Effects of flaxseed gum on water-holding capacities, emulsion capacities celatinisation and anti-retaogradation od starch in meat product [D]. Nanjing:Nanjing Agricultural University, 2011.]
SUN J. Effects of flaxseed gum on water-holding capacities, emulsion capacities celatinisation and anti-retaogradation od starch in meat product [D]. Nanjing: Nanjing Agricultural University, 2011.
|
[41] |
WANG M T, CHEN J C, CHEN S G, et al. Inhibition effect of three common proanthocyanidins from grape seed, peanut skins and pine barks on maize starch retrogradation[J]. Carbohydrate Polymers,2021,252:117−172.
|
[42] |
WU Y, NIU M, XU H, et al. Pasting behaviors, gel rheological properties, and freeze-thaw stability of rice flour and starch modified by green tea polyphenols[J]. LWT, 2020, 118, doi: 10.1016/j.lwt.2019.108796.
|
[43] |
张仲柏, 牛黎莉, 汪月, 等. X-射线和红外光谱研究马铃薯蛋糕老化特性[J]. 食品与生物技术学报,2019,38(8):119−125. [ZHANG Z B, NIU L L, WANG Y, et al. X-Ray and FT-IR research on staling characteristics of potato cake[J]. Ournal of Food Science and Biotechnology,2019,38(8):119−125.]
ZHANG Z B, NIU L L, WANG Y, et al. X-Ray and FT-IR research on staling characteristics of potato cake[J]. Ournal of Food Science and Biotechnology, 2019, 38(8): 119−125.
|
[44] |
吴跃林, 亲录, 陈正行, 等. 茶多酚对籼米淀粉回生抑制作用的研究[J]. 食品工业科技,2011,32(12):78−80,84. [WU Y L, QIN L, CHEN Z X, et al. Study on preventing the retrogradation of long-shaped rice starch using tea polyphenols (TPLs)[J]. Science and Technology of Food Industry,2011,32(12):78−80,84.]
WU Y L, QIN L, CHEN Z X, et al. Study on preventing the retrogradation of long-shaped rice starch using tea polyphenols (TPLs)[J]. Science and Technology of Food Industry, 2011, 32(12): 78−80,84.
|
[45] |
VEMON-CARTER E J, ALVAREZ-RAMIREL J, BELLO-PEREZB A, et al. Supplementing white maize masa with anthocyanins:Effects on masa rheology and on the in vitro digestibility and hardness of tortillas[J]. Journal of Cereal Science,2020,91:102883. doi: 10.1016/j.jcs.2019.102883
|
[46] |
SEBASTIAN M P, CRISTIMA N M, TERESA P G, et al. Flour functional properties of purple maize (Zea mays L.) from Argentina. Influence of environmental growing conditions[J]. International Journal of Biological Macromolecules,2020,146:311−319. doi: 10.1016/j.ijbiomac.2019.12.246
|
[47] |
张明珠, 郝明欣, 桑喆, 等. 玉米淀粉的扫描电镜分析方法[J]. 理化检验-物理分册, 2022, 58(8):21−24, 28. [ZHANG M Z, HAO M X, SANG Z, et al. Scanning electron microscope analysis method for corn starch[J]. Part A:Physical Testing, 2022, 58(8):21−24, 28.]
ZHANG M Z, HAO M X, SANG Z, et al. Scanning electron microscope analysis method for corn starch[J]. Part A: Physical Testing, 2022, 58(8): 21−24, 28.
|
[48] |
BELLO-PEREZ L A P C, SIFUENTES-NIEVES I, AGAMA-ACEVEDO, et al. Controlling starch digestibility and glycaemic response in maize-based foods[J]. Journal of Cereal Science, 2021, 99: 103222.
|
[49] |
YANG J, HE H, LU Y, et al. Four flavonoid compounds from phyllostachys edulis leaf extract retard the digestion of starch and its working mechanisms[J]. Journal of Agricultural and Food Chemistry,2014,62(31):7760−7770. doi: 10.1021/jf501931m
|
[50] |
XUE Q H, MING W Z, RUI F Z, et al. Physicochemical interactions between rice starch and different polyphenols and structural characterization of their complexes[J]. LWT-Food Science and Technology,2020,125:109277.
|
[51] |
JIANG J K, GAO H Y, ZENG J, et al. Determination of subfreezing temperature and gel retrogradation characteristics of potato starch gel[J]. LWT-Food Science and Technology,2021,149:112037. doi: 10.1016/j.lwt.2021.112037
|
[52] |
FU Z, BEMILLER J N. Effect of hydrocolloids and salts on retrogradation of native and modified maize starch[J]. Food Hydrocolloids,2017,69:36−48. doi: 10.1016/j.foodhyd.2017.01.023
|
[53] |
李奎, 魏代巍, 李姝琪, 等. 欧李原花青素对马铃薯淀粉消化的影响[J]. 食品与发酵工业,2023,49(2):212−217. [LI K, WEI D W, LI S Q, et al. Study on the effect of Prunus proanthocyanidins on the digestion of potato starch[J]. Food and Fermentation Industries,2023,49(2):212−217.]
LI K, WEI D W, LI S Q, et al. Study on the effect of Prunus proanthocyanidins on the digestion of potato starch[J]. Food and Fermentation Industries, 2023, 49(2): 212−217.
|
[54] |
BAE I Y, AN J S, OH I K, et al. Optimized preparation of anthocyanin-rich extract from black rice and its effects on in vitro digestibility[J]. Food Science and Biotechnology,2017,26:1415−1422. doi: 10.1007/s10068-017-0188-x
|
[55] |
张玮. 低血糖生成指数膳食在初诊2型糖尿病营养治疗中的效果观察[J]. 临床医药文献电子杂志,2019,6(79):31−33. [ZHANG W. Efficacy of low glycemic index diet in nutritional treatment of newly diagnosed type 2 diabetes mellitus[J]. Electronic Journal of Clinical Medical Literature,2019,6(79):31−33.]
ZHANG W. Efficacy of low glycemic index diet in nutritional treatment of newly diagnosed type 2 diabetes mellitus[J]. Electronic Journal of Clinical Medical Literature, 2019, 6(79): 31−33.
|
[56] |
朱宋达, 刘超. 抗性淀粉:2型糖尿病患者的明智之选[J]. 中国临床研究,2022,35(7):889−893. [ZHU S D, LIU C. Resistant starch:A wise choice for patients with type 2 diabetes mellitus[J]. Chinese Clinical Research,2022,35(7):889−893.]
ZHU S D, LIU C. Resistant starch: A wise choice for patients with type 2 diabetes mellitus[J]. Chinese Clinical Research, 2022, 35(7): 889−893.
|
[57] |
ROCCHETTI G, GUIBERTI G, BUSCONI M, et al. Pigmented sorghum polyphenols as potential inhibitors of starch digestibility:An in vitro study combining starch digestion and untargeted metabolomics[J]. Food Chemistry, 2020, 312(15):126077.
|
[58] |
LIAO X, ZHANG K, LUO Q, et al. A possible structure of retrograded maize starch speculated by UV and IR spectra of it and its components[J]. International Journal of Biological Macromolecules,2012,50:119−124.
|
[59] |
WANG L B, WANG L J, WANG T T, et al. Comparison of quercetin and rutin inhibitory influence on tartary buckwheat starch digestion in vitro and their differences in binding sites with the digestive enzyme[J]. Food Chemistry,2022,367(15):130762.
|
[60] |
杨雪娜. 不同来源原花青素的α-淀粉酶抑制活性及应用研究[D]. 福州:福州大学, 2016. [YANG X N. Studies on. the α-amylase inhibition activities and applications of proanthoyanidins from plants [D]. Fuzhou:Fuzhou University, 2016.]
YANG X N. Studies on. the α-amylase inhibition activities and applications of proanthoyanidins from plants [D]. Fuzhou: Fuzhou University, 2016.
|
[61] |
杨扬. 紫薯花色苷干预淀粉消化与改善高果糖高脂诱导代谢综合征的机制研究[D]. 武汉:华中农业大学, 2021. [YANG Y. Effect of anthocyanins on starch digestion and metabolism syndrome induced by high fructose and high fat in purple potato[D]. Wuhan:Huazhong Agricultural University, 2021.]
YANG Y. Effect of anthocyanins on starch digestion and metabolism syndrome induced by high fructose and high fat in purple potato[D]. Wuhan: Huazhong Agricultural University, 2021.
|
[62] |
YANG Y, ZHANG J I, SHEN L H, et al. Inhibition mechanism of diacylated anthocyanins from purple sweet potato (Ipomoea batatas L.) against α-amylase and α-glucosidase[J]. Food Chemistry,2021,359:29934.
|
[63] |
CIANCIOSI D, REGOLO L, FORBES-HENANDEZ T Y, et al. The reciprocal interaction between polyphenols and other dietary compounds:Impact on bioavailability, antioxidant capacity and other physico-chemical and nutritional parameters[J]. Food Chemistry,2022,375:131904. doi: 10.1016/j.foodchem.2021.131904
|
[64] |
KAN L, OLIVIERO T, VERKERK R, et al. Interaction of bread and berry polyphenols affects starch digestibility and polyphenols bio-accessibility[J]. Journal of Functional Foods,2020,68:103924. doi: 10.1016/j.jff.2020.103924
|
[65] |
TAN Y, CHANG S K C, ZHANG Y, et al. Comparison of a-amylase, a-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different gener.[J]. Food Chemistry,2017,214:259−268. doi: 10.1016/j.foodchem.2016.06.100
|
[66] |
周培羽, 张灵敏, 李灵犀, 等. 不同聚合度葡萄籽原花青素对三种消化酶抑制作用机制[J]. 沈阳药科大学学报,2019,36(5):436−445. [ZHOU P Y, ZHANG L M, LI L X, et al. The inhibitory mechanism of grape seed anthocyanins with different degrees of polymerization on three digestive enzymes[J]. Journal of Shenyang Pharmaceutical University,2019,36(5):436−445.]
ZHOU P Y, ZHANG L M, LI L X, et al. The inhibitory mechanism of grape seed anthocyanins with different degrees of polymerization on three digestive enzymes[J]. Journal of Shenyang Pharmaceutical University, 2019, 36(5): 436−445.
|