Citation: | BAI Chenyu, WANG Tianhui, HU Xinna, et al. Research Progress on Preparation of Nanocellulose[J]. Science and Technology of Food Industry, 2023, 44(14): 465−473. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090298. |
[1] |
YADAV C, SAINI A, ZHANG W, et al. Plant-based nanocellulose: A review of routine and recent preparation methods with current progress in its applications as rheology modifier and 3D bioprinting[J]. International Journal of Biological Macromolecules,2021,166:1586−1616. doi: 10.1016/j.ijbiomac.2020.11.038
|
[2] |
隋文杰, 贾洪玉, 敬佩, 等. 中国果品加工固体废弃物资源化利用现状与分类管理研究[J]. 农业工程学报,2018,34(S1):172−180. [SUI W J, JIA H Y, JING P, et al. Research on utilization status and classification management of solid waste in fruit processing in China[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(S1):172−180.
SUI W J, JIA H Y, JING P, et al. Research on utilization status and classification management of solid waste in fruit processing in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(S1): 172-180.
|
[3] |
FAROOQ A, PATOARY M K, ZHANG M, et al. Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials[J]. International Journal of Biological Macromolecules,2020,154:1050−1073. doi: 10.1016/j.ijbiomac.2020.03.163
|
[4] |
VENTURA C, PINTO F, LOURENO A F, et al. On the toxicity of cellulose nanocrystals and nanofibrils in animal and cellular models[J]. Cellulose,2020,27:5509. doi: 10.1007/s10570-020-03176-9
|
[5] |
董秀瑜, 唐世英, 杨贺棋, 等. 纳米纤维素的制备及其在食品领域中的应用研究进展[J]. 食品工业科技,2021,42(24):434−444. [DONG X Y, TANG S Y, YANG H Q, et al. Preparation of nano-cellulose and its application in food field[J]. Science and Technology of Food Industry,2021,42(24):434−444.
DONG X Y, TANG S Y, YANG H Q, et al. Preparation of nano-cellulose and its application in food field[J]. Science and Technology of Food Industry, 2021, 42(24): 434-444.
|
[6] |
TAYEB A, AMINI E, GHASEMI S, et al. Cellulose nanomaterials—Binding properties and applications: A review[J]. Molecules,2018,23(10):2684. doi: 10.3390/molecules23102684
|
[7] |
MUENDUEN P, NIRUN J. Biosynthesis and characterization of bacteria cellulose-chitosan film[J]. Carbohydrate Polymers,2008,74(3):482−488. doi: 10.1016/j.carbpol.2008.04.004
|
[8] |
朱亚崇, 吴朝军, 于冬梅, 等. 纳米纤维素制备方法的研究现状[J]. 中国造纸,2020,39(9):74−83. [ZHU Y C, WU C J, YU D M, et al. Research status of nanocellulose preparation methods[J]. China Pulp and Paper,2020,39(9):74−83.
ZHU Y C, WU C J, YU D M, et al. Research status of nanocellulose preparation methods[J]. China Pulp and Paper, 2020, 39(9): 74-83.
|
[9] |
HABIBI Y. Key advances in the chemical modification of nanocelluloses[J]. Chemical Society Reviews,2014,43(5):1519−1542. doi: 10.1039/C3CS60204D
|
[10] |
VENTURA-CRUZ S, TECANTE A. Nanocellulose and microcrystalline cellulose from agricultural waste: Review on isolation and application as reinforcement in polymeric matrices[J]. Food Hydrocolloids,2021,118:106771. doi: 10.1016/j.foodhyd.2021.106771
|
[11] |
ZHANG H, CHEN Y, WANG S, et al. Extraction and comparison of cellulose nanocrystals from lemon (Citrus limon) seeds using sulfuric acid hydrolysis and oxidation methods[J]. Carbohydrate Polymers,2020,238:116180. doi: 10.1016/j.carbpol.2020.116180
|
[12] |
YU H, QIN Z, LIANG B, et al. Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions[J]. Journal of Materials Chemistry A,2013,1(12):3938. doi: 10.1039/c3ta01150j
|
[13] |
LIU C, LI B, DU H, et al. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods[J]. Carbohydrate Polymers,2016,151:716−724. doi: 10.1016/j.carbpol.2016.06.025
|
[14] |
ABU BAKAR N F, ABD RAHMAN N, MAHADI M B, et al. Nanocellulose from oil palm mesocarp fiber using hydrothermal treatment with low concentration of oxalic acid[J]. Materials Today:Proceedings,2022,48:1899−1904. doi: 10.1016/j.matpr.2021.09.357
|
[15] |
LI J, WEI X, WANG Q, et al. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization[J]. Carbohydrate Polymers,2012,90(4):1609−1613. doi: 10.1016/j.carbpol.2012.07.038
|
[16] |
LING Z, EDWARDS J V, GUO Z, et al. Structural variations of cotton cellulose nanocrystals from deep eutectic solvent treatment: Micro and nano scale[J]. Cellulose,2018,26(2):861.
|
[17] |
MA T, HU X N, LU S Y, et al. Nanocellulose: A promising green treasure from food wastes to available food materials[J]. Critical Reviews in Food Science and Nutrition,2022,62(4):989−1002. doi: 10.1080/10408398.2020.1832440
|
[18] |
吕天艺, 张书敏, 陈媛, 等. 不同形态纳米纤维素的制备方法研究进展[J]. 食品与发酵工业,2022,48(8):281−288. [LÜ T Y, ZHANG S M, CHEN Y, et al. Research progress on preparation methods of different morphologies of nanocellulose[J]. Food and Fermentation Industries,2022,48(8):281−288.
LYV T Y, ZHANG S M, CHEN Y, et al. Research progress on preparation methods of different morphologies of nanocellulose[J]. Food and Fermentation Industries, 2022, 48(8): 281-288.
|
[19] |
RANBY B G. The cellulose micelles[J]. Tappi,1952,35(2):53.
|
[20] |
LE GARS M, DOUARD L, BELGACEM N, et al. Cellulose nanocrystals: From classical hydrolysis to the use of deep eutectic solvents[M]. Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis. Intech Open, 2020.
|
[21] |
KUSMONO, LISTYANDA R F, WILDAN M W, et al. Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis[J]. Heliyon,2020,6(11):e05486. doi: 10.1016/j.heliyon.2020.e05486
|
[22] |
GUO Y, ZHANG Y, ZHENG D, et al. Isolation and characterization of nanocellulose crystals via acid hydrolysis from agricultural waste-tea stalk[J]. International Journal of Biological Macromolecules,2020,163:927−933. doi: 10.1016/j.ijbiomac.2020.07.009
|
[23] |
NOREMYLIA M B, HASSAN M Z, ISMAIL Z. Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review[J]. International Journal of Biological Macromolecules, 2022: 954-976.
|
[24] |
HUANG B, HE H, LIU H, et al. Multi-type cellulose nanocrystals from sugarcane bagasse and their nanohybrids constructed with polyhedral oligomeric silsesquioxane[J]. Carbohydrate Polymers,2020,227:115368. doi: 10.1016/j.carbpol.2019.115368
|
[25] |
吴巧妹, 王嘉伦, 刘晓泽, 等. 丝瓜络纳米纤维素晶体制备工艺的优化[J]. 西北农林科技大学学报(自然科学版),2015,43(4):179−184. [WU Q M, WANG J L, LIU X Z, et al. Optimizing preparation process for Luffa sponge nanocellulose crystals[J]. Journal of Northwest A&F University (Natural Science Edition),2015,43(4):179−184.
WU Q M, WANG J L, LIU X Z, et al. Optimizing preparation process for Luffa sponge nanocellulose crystals[J]. Journal of Northwest A&F University (Natural Science Edition), 2015, 43(4): 179-184.
|
[26] |
刘鹤. 纤维素纳米晶体及其复合物的制备与应用研究[D]. 北京: 中国林业科学研究院, 2011.
LIU H. Synthesis and applications of cellulose nanocrystals and its nanocomposites[D]. Beijing: Chinese Academy of Forestry, 2011.
|
[27] |
KONTTURI E, MERILUOTO A, PENTTILÄ P A, et al. Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals[J]. Angewandte Chemie-International Edition,2016,55(46):14455−14458. doi: 10.1002/anie.201606626
|
[28] |
MA T, HU X N, LU S Y, et al. Cellulose nanocrystals produced using recyclable sulfuric acid as hydrolysis media and their wetting molecular dynamics simulation[J]. International Journal of Biological Macromolecules,2021,184:405−414. doi: 10.1016/j.ijbiomac.2021.06.094
|
[29] |
杜海顺. 甲酸水解法制备纳米纤维素及其自组装膜的表征[D]. 天津: 天津科技大学, 2017.
DU H S. Preparation and characterization of nanocellulose and self-assembly nanocellulose films based on formic acid hydrolysis[D]. Tianjin: Tianjin University of Science and Technology, 2017.
|
[30] |
JIANG J, ZHU Y, ZARGAR S, et al. Rapid, high-yield production of lignin-containing cellulose nanocrystals using recyclable oxalic acid dihydrate[J]. Industrial Crops and Products,2021,173:114148. doi: 10.1016/j.indcrop.2021.114148
|
[31] |
王旺霞, 孙楠勋, 董继红, 等. 酸法制备纤维素纳米晶体的研究进展[J]. 生物化工,2020,6(2):133−138. [WANG W X, SUN N X, DONG J H, et al. Advances in cellulose nanocrystal preparation by acid hydrolysis[J]. Biological Chemical Engineering,2020,6(2):133−138.
WANG W X, SUN N X, DONG J H, et al. Advances in cellulose nanocrystal preparation by acid hydrolysis[J]. Biological Chemical Engineering, 2020, 6(2): 133-138.
|
[32] |
彭大钊. 葛渣中纤维素的分离及功能化研究[D]. 吉首: 吉首大学, 2021.
PENG D Z. Study on separation and functionalization of cellulose from Pueraria lobata residue[D]. Jishou: Jishou University, 2021.
|
[33] |
WANG H, DU H S, LIU K, et al. Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis[J]. Carbohydrate Polymers,2021,266:118107. doi: 10.1016/j.carbpol.2021.118107
|
[34] |
刘思洁, 陆燕玲, 黄家荣, 等. 离子液体催化生物质选择性转化[J]. 中国科学:化学,2021,51(10):1382−1390. [LIU S J, LU Y L, HUANG J R, et al. Selective conversion of biomass catalyzed by ionic liquids[J]. Scientia Sinica (Chimica),2021,51(10):1382−1390. doi: 10.1360/SSC-2021-0090
LIU S J, LU Y L, HUANG J R, et al. Selective conversion of biomass catalyzed by ionic liquids[J]. Scientia Sinica (Chimica), 2021, 51(10): 1382-1390. doi: 10.1360/SSC-2021-0090
|
[35] |
曹雨, 桑燊, 邓海波, 等. 离子液体中阳离子纤维素的制备及对酸性蓝40的吸附性能[J]. 高分子材料科学与工程,2021,37(6):8−16. [CAO Y, SANG S, DENG H B, et al. Preparation of cationic cellulose in lonic liquid and its adsorption for Anionic blue 40[J]. Polymer Materials Science and Engineering,2021,37(6):8−16.
CAO Y, SANG S, DENG H B, et al. Preparation of cationic cellulose in lonic liquid and its adsorption for Anionic blue 40[J]. Polymer Materials Science and Engineering, 2021, 37(6): 8-16.
|
[36] |
SWATLOSKI R P, SPEAR S K, HOLBREY J D, et al. Dissolution of cellulose with ionic liquids[J]. Journal of the American Chemical Society,2002,124(18):4974−4975. doi: 10.1021/ja025790m
|
[37] |
候其东, 鞠美庭, 李维尊, 等. 基于离子液体的生物质组分分离研究进展[J]. 化工进展,2016,35(10):3022−3031. [HOU Q D, JU M T, LI W Z, et al. Research progress on biomass fractionation using ionic liquids[J]. Chemical Industry and Engineering Progress,2016,35(10):3022−3031.
HOU Q D, JU M T, LI W Z, et al. Research progress on biomass fractionation using ionic liquids[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3022-3031.
|
[38] |
李俊峰, 张景顺, 李宁宁, 等. 离子液体在纤维素资源化利用中的应用研究进展[J]. 河南大学学报(自然科学版),2017,47(4):418−433. [LI J F, ZHANG J S, LI N N, et al. Progress of the application of lonic liquids in cellulose resource utilization[J]. Journal of Henan University (Natural Science),2017,47(4):418−433.
LI J F, ZHANG J S, LI N N, et al. Progress of the application of lonic liquids in cellulose resource utilization[J]. Journal of Henan University (Natural Science), 2017, 47(4): 418-433.
|
[39] |
张宁, 辛向东, 张月月, 等. 桑枝纤维素的低共熔溶剂法提取及其结构表征[J]. 蚕业科学,2021,47(5):451−458. [ZHANG N, XIN X D, ZHANG Y Y, et al. Extraction of cellulose from mulberry branch by deep eutecitic solvent and its structure characterization[J]. Acta Sericologica Sinica,2021,47(5):451−458.
ZHANG N, XIN X D, ZHANG Y Y, et al. Extraction of cellulose from mulberry branch by deep eutecitic solvent and its structure characterization[J]. Acta Sericologica Sinica, 2021, 47(5): 451-458.
|
[40] |
HONG S, SONG Y, YUAN Y, et al. Production and characterization of lignin containing nanocellulose from luffa through an acidic deep eutectic solvent treatment and systematic fractionation[J]. Industrial Crops and Products,2020,143:111913. doi: 10.1016/j.indcrop.2019.111913
|
[41] |
TIBOLLA H, PELISSARI F M, MARTINS J T, et al. Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment[J]. Food Hydrocolloids,2018,75:192−201. doi: 10.1016/j.foodhyd.2017.08.027
|
[42] |
冯彦洪, 周玉娇, 程天宇, 等. 纤维素纳米微纤机械制备方法进展[J]. 塑料,2015,44(4):28−31. [FENG Y H, ZHOU Y J, CHEN T Y, et al. Progress on mechanical production methods of microfibrillated cellulose[J]. Plastics,2015,44(4):28−31.
FENG Y H, ZHOU Y J, CHEN T Y, et al. Progress on mechanical production methods of microfibrillated cellulose[J]. Plastics, 2015, 44(4): 28-31.
|
[43] |
KAMEL R, EL-WAKIL N A, DUFRESNE A, et al. Nanocellulose: From an agricultural waste to a valuable pharmaceutical ingredient[J]. International Journal of Biological Macromolecules,2020,163:1579−1590. doi: 10.1016/j.ijbiomac.2020.07.242
|
[44] |
SERRA-PARAREDA F, TARRÉS Q, SANCHEZ-SALVADOR J L, et al. Tuning morphology and structure of non-woody nanocellulose: Ranging between nanofibers and nanocrystals[J]. Industrial Crops and Products,2021,171:113877. doi: 10.1016/j.indcrop.2021.113877
|
[45] |
陈欢, 钟洪浩, 王鲁峰. TEMPO氧化-高压均质联用制备柑橘纳米纤维素及其性质表征[J]. 食品科学技术学报,2022,40(4):35−44. [CHEN H, ZHONG H H, WANG L F. Preparation of citrus nanofibers by tempo oxidation-hiah pressure homogenization and its characterization[J]. Journal of Food Science and Technology,2022,40(4):35−44.
CHEN H, ZHONG H H, WANG L F. Preparation of citrus nanofibers by tempo oxidation-hiah pressure homogenization and its characterization[J]. Journal of Food Science and Technology, 2022, 40(4): 35-44.
|
[46] |
林凤采, 卢麒麟, 卢贝丽, 等. 纳米纤维素及其聚合物纳米复合材料的研究进展[J]. 化工进展,2018,37(9):3454−3470. [LIN F C, LU Q L, LU B L, et al. Research progress of nanocellulose and its polymer nanocomposites[J]. Chemical Industry and Engineering Progress,2018,37(9):3454−3470.
LIN F C, LU Q L, LU B L, et al. Research progress of nanocellulose and its polymer nanocomposites[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3454-3470.
|
[47] |
王思. 甘草渣纤维素基抗菌材料的制备及其性能研究[D]. 天津: 天津科技大学, 2019.
WANG S. Research on preparation and properties of antibacterial composites based on licorice residues cellulose[D]. Tianjin: Tianjin University of Science and Technology, 2019.
|
[48] |
MARIÑO M, LOPES DA SILVA L, DURÁN N, et al. Enhanced materials from nature: Nanocellulose from citrus waste[J]. Molecules,2015,20(4):5908−5923. doi: 10.3390/molecules20045908
|
[49] |
XU J, KRIETEMEYER E F, BODDU V M, et al. Production and characterization of cellulose nanofibril (CNF) from agricultural waste corn stover[J]. Carbohydrate Polymers,2018,192:202−207. doi: 10.1016/j.carbpol.2018.03.017
|
[50] |
WANG Q Q, ZHU J Y, GLEISNER R, et al. Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation[J]. Cellulose,2012,19(5):1631−1643. doi: 10.1007/s10570-012-9745-x
|
[51] |
姜亚妮, 周骥平, 张琦, 等. 4种方法从葎草中制备的纳米纤维素性能[J]. 草业科学,2017,34(8):1748−1754. [JIANG Y N, ZHOU J P, ZHANG Q, et al. Comparative analysis of nanocellulose from Humulus scandens stems using four isolation methods[J]. Pratacultural Science,2017,34(8):1748−1754.
JIANG Y N, ZHOU J P, ZHANG Q, et al. Comparative analysis of nanocellulose from Humulus scandens stems using four isolation methods[J]. Pratacultural Science, 2017, 34(8): 1748-1754.
|
[52] |
FERRER A, FILPPONEN I, RODRÍGUEZ A, et al. Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper[J]. Bioresource Technology,2012,125:249−255. doi: 10.1016/j.biortech.2012.08.108
|
[53] |
MONTAÑO-LEYVA B, RODRIGUEZ-FELIX F, TORRES-CHÁVEZ P, et al. Preparation and characterization of durum wheat (Triticum durum) straw cellulose nanofibers by electrospinning[J]. Journal of Agricultural and Food Chemistry,2011,59(3):870−875. doi: 10.1021/jf103364a
|
[54] |
MIDHUN DOMINIC C D, RAJ V, NEENU K V, et al. Chlorine-free extraction and structural characterization of cellulose nanofibers from waste husk of millet (Pennisetum glaucum)[J]. International Journal of Biological Macromolecules,2022,206:92−104. doi: 10.1016/j.ijbiomac.2022.02.078
|
[55] |
DAVOUDPOUR Y, HOSSAIN S, KHALIL H P S A, et al. Optimization of high pressure homogenization parameters for the isolation of cellulosic nanofibers using response surface methodology[J]. Industrial Crops and Products,2015,74:381−387. doi: 10.1016/j.indcrop.2015.05.029
|
[56] |
LI M, WANG L J, LI D, et al. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp[J]. Carbohydrate Polymers,2014,102:136−143. doi: 10.1016/j.carbpol.2013.11.021
|
[57] |
王宝霞. 花生壳纤维素纳米纤维及其复合材料的制备与性能研究[D]. 南京: 南京林业大学, 2017.
WANG B X. Preparation and properties of peanut shell cellulose nanofibers and its composites[D]. Nanjing: Nanjing Forestry University, 2017.
|
[58] |
陶鹏. 蔗渣纳米纤维素的制备及其热稳定性影响机制研究[D]. 南宁: 广西大学, 2019.
TAO P. Preparation of bagasse nanocellulose and its influence mechanism of thermal stability[D]. Nanning: Guangxi University, 2019.
|
[59] |
张晓晓. 木薯渣纳米纤维素/木薯淀粉复合薄膜的制备与性能研究[D]. 南宁: 广西大学, 2019.
ZHANG X X. Preparation and properties of cassava residue nanocellulose/cassava starch composite films[D]. Nanning: Guangxi University, 2019.
|
[60] |
吴国栋. 基于生物质精炼的龙须草制浆过程及纳米纤维素制备的研究[D]. 青岛: 青岛科技大学, 2019.
WU G D. Pulpand nanocellulose from Eulaliopsis binata based on biorefinefy[D]. Qingdao: Qingdao University of Science and Technology, 2019.
|
[61] |
YANG Y, LIU H, WU M, et al. Bio-based antimicrobial packaging from sugarcane bagasse nanocellulose/nisin hybrid films[J]. International Journal of Biological Macromolecules,2020,161:627−635. doi: 10.1016/j.ijbiomac.2020.06.081
|
[62] |
GALLEGO R, PIRAS C C, RUTGEERTS L A J, et al. Green approach for the activation and functionalization of jute fibers through ball milling[J]. Cellulose,2020,27(2):643−656. doi: 10.1007/s10570-019-02831-0
|
[63] |
YI T, ZHAO H Y, MO Q, et al. From cellulose to cellulose nanofibrils-a comprehensive review of the preparation and modification of cellulose nanofibrils[J]. Materials (Basel),2020,13(22):5062. doi: 10.3390/ma13225062
|
[64] |
SZYMAŃSKA-CHARGOT M, CHYLIŃSKA M, PIECZYWEK P M, et al. Tailored nanocellulose structure depending on the origi. Example of apple parenchyma and carrot root celluloses[J]. Carbohydrate Polymers,2019,210:186−195. doi: 10.1016/j.carbpol.2019.01.070
|
[65] |
KHAWAS P, DEKA S C. Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment[J]. Carbohydrate Polymers,2016,137:608−616. doi: 10.1016/j.carbpol.2015.11.020
|
[66] |
KASSAB Z, MANSOURI S, TAMRAOUI Y, et al. Identifying Juncus plant as viable source for the production of micro-and nano-cellulose fibers: Application for PVA composite materials development[J]. Industrial Crops and Products,2020,144:112035. doi: 10.1016/j.indcrop.2019.112035
|
[67] |
王增义. 稻草纤维素纳米纤维及其复合材料薄膜的制备与性能研究[D]. 上海: 上海交通大学, 2019.
WANG Z Y. Preparation and properties of rice straw cellulose nanofibrils and their composite films[D]. Shanghai: Shanghai Jiao Tong University, 2019.
|
[68] |
史杏娟, 蔡志江. 静电纺丝法制备纤维素纳米纤维的研究进展[J]. 高分子通报,2013(8):45−50. [SHI X J, CAI Z J. Advances in preparation of cellulose nanofibers by electrospinning method[J]. Polymer Bulletin,2013(8):45−50.
SHI X J, CAI Z J. Advances in preparation of cellulose nanofibers by electrospinning method[J]. Polymer Bulletin, 2013(8): 45-50.
|
[69] |
DEEPA B, ABRAHAM E, CHERIAN B M, et al. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion[J]. Bioresource Technology,2011,102(2):1988−1997. doi: 10.1016/j.biortech.2010.09.030
|
[70] |
THOMAS M G, ABRAHAM E, JYOTISHKUMAR P, et al. Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization[J]. International Journal of Biological Macromolecules,2015,81:768−777. doi: 10.1016/j.ijbiomac.2015.08.053
|