BAI Chenyu, WANG Tianhui, HU Xinna, et al. Research Progress on Preparation of Nanocellulose[J]. Science and Technology of Food Industry, 2023, 44(14): 465−473. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090298.
Citation: BAI Chenyu, WANG Tianhui, HU Xinna, et al. Research Progress on Preparation of Nanocellulose[J]. Science and Technology of Food Industry, 2023, 44(14): 465−473. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090298.

Research Progress on Preparation of Nanocellulose

More Information
  • Received Date: September 27, 2022
  • Available Online: May 09, 2023
  • Nanocellulose is a sustainable resource that combines a modifiable surface with excellent mechanical strength. It has been increasingly applied to applications in different fields. Plant-based nanocellulose primarily contains cellulose nanocrystal and cellulose nanofibrils. This review summarizes the preparation methods for cellulose nanocrystal and cellulose nanofibrils that emerged from agricultural by-products. The different sorts of cellulose nanocrystal preparation methods that have been discussed include the inorganic acid hydrolysis method, organic acid hydrolysis method, ionic liquid method, deep eutectic solvent method, and so forth. Also, several methods of pretreatment and preparation of cellulose nanofibrils are characterized, encompassing the oxidation pretreatment represented by 2,2,6,6-tetramethylpiperidine-1-oxy radical oxidation and enzymatic pretreatment. The high pressure homogenization, fine grinding, high-strength ultrasound and high pressure microfluidization techniques are used to prepare cellulose nanofibrils. This review's objective is to offer a theoretical framework for the economical and environmentally responsible manufacturing of nanocellulose.
  • loading
  • [1]
    YADAV C, SAINI A, ZHANG W, et al. Plant-based nanocellulose: A review of routine and recent preparation methods with current progress in its applications as rheology modifier and 3D bioprinting[J]. International Journal of Biological Macromolecules,2021,166:1586−1616. doi: 10.1016/j.ijbiomac.2020.11.038
    [2]
    隋文杰, 贾洪玉, 敬佩, 等. 中国果品加工固体废弃物资源化利用现状与分类管理研究[J]. 农业工程学报,2018,34(S1):172−180. [SUI W J, JIA H Y, JING P, et al. Research on utilization status and classification management of solid waste in fruit processing in China[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(S1):172−180.

    SUI W J, JIA H Y, JING P, et al. Research on utilization status and classification management of solid waste in fruit processing in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(S1): 172-180.
    [3]
    FAROOQ A, PATOARY M K, ZHANG M, et al. Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials[J]. International Journal of Biological Macromolecules,2020,154:1050−1073. doi: 10.1016/j.ijbiomac.2020.03.163
    [4]
    VENTURA C, PINTO F, LOURENO A F, et al. On the toxicity of cellulose nanocrystals and nanofibrils in animal and cellular models[J]. Cellulose,2020,27:5509. doi: 10.1007/s10570-020-03176-9
    [5]
    董秀瑜, 唐世英, 杨贺棋, 等. 纳米纤维素的制备及其在食品领域中的应用研究进展[J]. 食品工业科技,2021,42(24):434−444. [DONG X Y, TANG S Y, YANG H Q, et al. Preparation of nano-cellulose and its application in food field[J]. Science and Technology of Food Industry,2021,42(24):434−444.

    DONG X Y, TANG S Y, YANG H Q, et al. Preparation of nano-cellulose and its application in food field[J]. Science and Technology of Food Industry, 2021, 42(24): 434-444.
    [6]
    TAYEB A, AMINI E, GHASEMI S, et al. Cellulose nanomaterials—Binding properties and applications: A review[J]. Molecules,2018,23(10):2684. doi: 10.3390/molecules23102684
    [7]
    MUENDUEN P, NIRUN J. Biosynthesis and characterization of bacteria cellulose-chitosan film[J]. Carbohydrate Polymers,2008,74(3):482−488. doi: 10.1016/j.carbpol.2008.04.004
    [8]
    朱亚崇, 吴朝军, 于冬梅, 等. 纳米纤维素制备方法的研究现状[J]. 中国造纸,2020,39(9):74−83. [ZHU Y C, WU C J, YU D M, et al. Research status of nanocellulose preparation methods[J]. China Pulp and Paper,2020,39(9):74−83.

    ZHU Y C, WU C J, YU D M, et al. Research status of nanocellulose preparation methods[J]. China Pulp and Paper, 2020, 39(9): 74-83.
    [9]
    HABIBI Y. Key advances in the chemical modification of nanocelluloses[J]. Chemical Society Reviews,2014,43(5):1519−1542. doi: 10.1039/C3CS60204D
    [10]
    VENTURA-CRUZ S, TECANTE A. Nanocellulose and microcrystalline cellulose from agricultural waste: Review on isolation and application as reinforcement in polymeric matrices[J]. Food Hydrocolloids,2021,118:106771. doi: 10.1016/j.foodhyd.2021.106771
    [11]
    ZHANG H, CHEN Y, WANG S, et al. Extraction and comparison of cellulose nanocrystals from lemon (Citrus limon) seeds using sulfuric acid hydrolysis and oxidation methods[J]. Carbohydrate Polymers,2020,238:116180. doi: 10.1016/j.carbpol.2020.116180
    [12]
    YU H, QIN Z, LIANG B, et al. Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions[J]. Journal of Materials Chemistry A,2013,1(12):3938. doi: 10.1039/c3ta01150j
    [13]
    LIU C, LI B, DU H, et al. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods[J]. Carbohydrate Polymers,2016,151:716−724. doi: 10.1016/j.carbpol.2016.06.025
    [14]
    ABU BAKAR N F, ABD RAHMAN N, MAHADI M B, et al. Nanocellulose from oil palm mesocarp fiber using hydrothermal treatment with low concentration of oxalic acid[J]. Materials Today:Proceedings,2022,48:1899−1904. doi: 10.1016/j.matpr.2021.09.357
    [15]
    LI J, WEI X, WANG Q, et al. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization[J]. Carbohydrate Polymers,2012,90(4):1609−1613. doi: 10.1016/j.carbpol.2012.07.038
    [16]
    LING Z, EDWARDS J V, GUO Z, et al. Structural variations of cotton cellulose nanocrystals from deep eutectic solvent treatment: Micro and nano scale[J]. Cellulose,2018,26(2):861.
    [17]
    MA T, HU X N, LU S Y, et al. Nanocellulose: A promising green treasure from food wastes to available food materials[J]. Critical Reviews in Food Science and Nutrition,2022,62(4):989−1002. doi: 10.1080/10408398.2020.1832440
    [18]
    吕天艺, 张书敏, 陈媛, 等. 不同形态纳米纤维素的制备方法研究进展[J]. 食品与发酵工业,2022,48(8):281−288. [LÜ T Y, ZHANG S M, CHEN Y, et al. Research progress on preparation methods of different morphologies of nanocellulose[J]. Food and Fermentation Industries,2022,48(8):281−288.

    LYV T Y, ZHANG S M, CHEN Y, et al. Research progress on preparation methods of different morphologies of nanocellulose[J]. Food and Fermentation Industries, 2022, 48(8): 281-288.
    [19]
    RANBY B G. The cellulose micelles[J]. Tappi,1952,35(2):53.
    [20]
    LE GARS M, DOUARD L, BELGACEM N, et al. Cellulose nanocrystals: From classical hydrolysis to the use of deep eutectic solvents[M]. Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis. Intech Open, 2020.
    [21]
    KUSMONO, LISTYANDA R F, WILDAN M W, et al. Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis[J]. Heliyon,2020,6(11):e05486. doi: 10.1016/j.heliyon.2020.e05486
    [22]
    GUO Y, ZHANG Y, ZHENG D, et al. Isolation and characterization of nanocellulose crystals via acid hydrolysis from agricultural waste-tea stalk[J]. International Journal of Biological Macromolecules,2020,163:927−933. doi: 10.1016/j.ijbiomac.2020.07.009
    [23]
    NOREMYLIA M B, HASSAN M Z, ISMAIL Z. Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review[J]. International Journal of Biological Macromolecules, 2022: 954-976.
    [24]
    HUANG B, HE H, LIU H, et al. Multi-type cellulose nanocrystals from sugarcane bagasse and their nanohybrids constructed with polyhedral oligomeric silsesquioxane[J]. Carbohydrate Polymers,2020,227:115368. doi: 10.1016/j.carbpol.2019.115368
    [25]
    吴巧妹, 王嘉伦, 刘晓泽, 等. 丝瓜络纳米纤维素晶体制备工艺的优化[J]. 西北农林科技大学学报(自然科学版),2015,43(4):179−184. [WU Q M, WANG J L, LIU X Z, et al. Optimizing preparation process for Luffa sponge nanocellulose crystals[J]. Journal of Northwest A&F University (Natural Science Edition),2015,43(4):179−184.

    WU Q M, WANG J L, LIU X Z, et al. Optimizing preparation process for Luffa sponge nanocellulose crystals[J]. Journal of Northwest A&F University (Natural Science Edition), 2015, 43(4): 179-184.
    [26]
    刘鹤. 纤维素纳米晶体及其复合物的制备与应用研究[D]. 北京: 中国林业科学研究院, 2011.

    LIU H. Synthesis and applications of cellulose nanocrystals and its nanocomposites[D]. Beijing: Chinese Academy of Forestry, 2011.
    [27]
    KONTTURI E, MERILUOTO A, PENTTILÄ P A, et al. Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals[J]. Angewandte Chemie-International Edition,2016,55(46):14455−14458. doi: 10.1002/anie.201606626
    [28]
    MA T, HU X N, LU S Y, et al. Cellulose nanocrystals produced using recyclable sulfuric acid as hydrolysis media and their wetting molecular dynamics simulation[J]. International Journal of Biological Macromolecules,2021,184:405−414. doi: 10.1016/j.ijbiomac.2021.06.094
    [29]
    杜海顺. 甲酸水解法制备纳米纤维素及其自组装膜的表征[D]. 天津: 天津科技大学, 2017.

    DU H S. Preparation and characterization of nanocellulose and self-assembly nanocellulose films based on formic acid hydrolysis[D]. Tianjin: Tianjin University of Science and Technology, 2017.
    [30]
    JIANG J, ZHU Y, ZARGAR S, et al. Rapid, high-yield production of lignin-containing cellulose nanocrystals using recyclable oxalic acid dihydrate[J]. Industrial Crops and Products,2021,173:114148. doi: 10.1016/j.indcrop.2021.114148
    [31]
    王旺霞, 孙楠勋, 董继红, 等. 酸法制备纤维素纳米晶体的研究进展[J]. 生物化工,2020,6(2):133−138. [WANG W X, SUN N X, DONG J H, et al. Advances in cellulose nanocrystal preparation by acid hydrolysis[J]. Biological Chemical Engineering,2020,6(2):133−138.

    WANG W X, SUN N X, DONG J H, et al. Advances in cellulose nanocrystal preparation by acid hydrolysis[J]. Biological Chemical Engineering, 2020, 6(2): 133-138.
    [32]
    彭大钊. 葛渣中纤维素的分离及功能化研究[D]. 吉首: 吉首大学, 2021.

    PENG D Z. Study on separation and functionalization of cellulose from Pueraria lobata residue[D]. Jishou: Jishou University, 2021.
    [33]
    WANG H, DU H S, LIU K, et al. Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis[J]. Carbohydrate Polymers,2021,266:118107. doi: 10.1016/j.carbpol.2021.118107
    [34]
    刘思洁, 陆燕玲, 黄家荣, 等. 离子液体催化生物质选择性转化[J]. 中国科学:化学,2021,51(10):1382−1390. [LIU S J, LU Y L, HUANG J R, et al. Selective conversion of biomass catalyzed by ionic liquids[J]. Scientia Sinica (Chimica),2021,51(10):1382−1390. doi: 10.1360/SSC-2021-0090

    LIU S J, LU Y L, HUANG J R, et al. Selective conversion of biomass catalyzed by ionic liquids[J]. Scientia Sinica (Chimica), 2021, 51(10): 1382-1390. doi: 10.1360/SSC-2021-0090
    [35]
    曹雨, 桑燊, 邓海波, 等. 离子液体中阳离子纤维素的制备及对酸性蓝40的吸附性能[J]. 高分子材料科学与工程,2021,37(6):8−16. [CAO Y, SANG S, DENG H B, et al. Preparation of cationic cellulose in lonic liquid and its adsorption for Anionic blue 40[J]. Polymer Materials Science and Engineering,2021,37(6):8−16.

    CAO Y, SANG S, DENG H B, et al. Preparation of cationic cellulose in lonic liquid and its adsorption for Anionic blue 40[J]. Polymer Materials Science and Engineering, 2021, 37(6): 8-16.
    [36]
    SWATLOSKI R P, SPEAR S K, HOLBREY J D, et al. Dissolution of cellulose with ionic liquids[J]. Journal of the American Chemical Society,2002,124(18):4974−4975. doi: 10.1021/ja025790m
    [37]
    候其东, 鞠美庭, 李维尊, 等. 基于离子液体的生物质组分分离研究进展[J]. 化工进展,2016,35(10):3022−3031. [HOU Q D, JU M T, LI W Z, et al. Research progress on biomass fractionation using ionic liquids[J]. Chemical Industry and Engineering Progress,2016,35(10):3022−3031.

    HOU Q D, JU M T, LI W Z, et al. Research progress on biomass fractionation using ionic liquids[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3022-3031.
    [38]
    李俊峰, 张景顺, 李宁宁, 等. 离子液体在纤维素资源化利用中的应用研究进展[J]. 河南大学学报(自然科学版),2017,47(4):418−433. [LI J F, ZHANG J S, LI N N, et al. Progress of the application of lonic liquids in cellulose resource utilization[J]. Journal of Henan University (Natural Science),2017,47(4):418−433.

    LI J F, ZHANG J S, LI N N, et al. Progress of the application of lonic liquids in cellulose resource utilization[J]. Journal of Henan University (Natural Science), 2017, 47(4): 418-433.
    [39]
    张宁, 辛向东, 张月月, 等. 桑枝纤维素的低共熔溶剂法提取及其结构表征[J]. 蚕业科学,2021,47(5):451−458. [ZHANG N, XIN X D, ZHANG Y Y, et al. Extraction of cellulose from mulberry branch by deep eutecitic solvent and its structure characterization[J]. Acta Sericologica Sinica,2021,47(5):451−458.

    ZHANG N, XIN X D, ZHANG Y Y, et al. Extraction of cellulose from mulberry branch by deep eutecitic solvent and its structure characterization[J]. Acta Sericologica Sinica, 2021, 47(5): 451-458.
    [40]
    HONG S, SONG Y, YUAN Y, et al. Production and characterization of lignin containing nanocellulose from luffa through an acidic deep eutectic solvent treatment and systematic fractionation[J]. Industrial Crops and Products,2020,143:111913. doi: 10.1016/j.indcrop.2019.111913
    [41]
    TIBOLLA H, PELISSARI F M, MARTINS J T, et al. Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment[J]. Food Hydrocolloids,2018,75:192−201. doi: 10.1016/j.foodhyd.2017.08.027
    [42]
    冯彦洪, 周玉娇, 程天宇, 等. 纤维素纳米微纤机械制备方法进展[J]. 塑料,2015,44(4):28−31. [FENG Y H, ZHOU Y J, CHEN T Y, et al. Progress on mechanical production methods of microfibrillated cellulose[J]. Plastics,2015,44(4):28−31.

    FENG Y H, ZHOU Y J, CHEN T Y, et al. Progress on mechanical production methods of microfibrillated cellulose[J]. Plastics, 2015, 44(4): 28-31.
    [43]
    KAMEL R, EL-WAKIL N A, DUFRESNE A, et al. Nanocellulose: From an agricultural waste to a valuable pharmaceutical ingredient[J]. International Journal of Biological Macromolecules,2020,163:1579−1590. doi: 10.1016/j.ijbiomac.2020.07.242
    [44]
    SERRA-PARAREDA F, TARRÉS Q, SANCHEZ-SALVADOR J L, et al. Tuning morphology and structure of non-woody nanocellulose: Ranging between nanofibers and nanocrystals[J]. Industrial Crops and Products,2021,171:113877. doi: 10.1016/j.indcrop.2021.113877
    [45]
    陈欢, 钟洪浩, 王鲁峰. TEMPO氧化-高压均质联用制备柑橘纳米纤维素及其性质表征[J]. 食品科学技术学报,2022,40(4):35−44. [CHEN H, ZHONG H H, WANG L F. Preparation of citrus nanofibers by tempo oxidation-hiah pressure homogenization and its characterization[J]. Journal of Food Science and Technology,2022,40(4):35−44.

    CHEN H, ZHONG H H, WANG L F. Preparation of citrus nanofibers by tempo oxidation-hiah pressure homogenization and its characterization[J]. Journal of Food Science and Technology, 2022, 40(4): 35-44.
    [46]
    林凤采, 卢麒麟, 卢贝丽, 等. 纳米纤维素及其聚合物纳米复合材料的研究进展[J]. 化工进展,2018,37(9):3454−3470. [LIN F C, LU Q L, LU B L, et al. Research progress of nanocellulose and its polymer nanocomposites[J]. Chemical Industry and Engineering Progress,2018,37(9):3454−3470.

    LIN F C, LU Q L, LU B L, et al. Research progress of nanocellulose and its polymer nanocomposites[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3454-3470.
    [47]
    王思. 甘草渣纤维素基抗菌材料的制备及其性能研究[D]. 天津: 天津科技大学, 2019.

    WANG S. Research on preparation and properties of antibacterial composites based on licorice residues cellulose[D]. Tianjin: Tianjin University of Science and Technology, 2019.
    [48]
    MARIÑO M, LOPES DA SILVA L, DURÁN N, et al. Enhanced materials from nature: Nanocellulose from citrus waste[J]. Molecules,2015,20(4):5908−5923. doi: 10.3390/molecules20045908
    [49]
    XU J, KRIETEMEYER E F, BODDU V M, et al. Production and characterization of cellulose nanofibril (CNF) from agricultural waste corn stover[J]. Carbohydrate Polymers,2018,192:202−207. doi: 10.1016/j.carbpol.2018.03.017
    [50]
    WANG Q Q, ZHU J Y, GLEISNER R, et al. Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation[J]. Cellulose,2012,19(5):1631−1643. doi: 10.1007/s10570-012-9745-x
    [51]
    姜亚妮, 周骥平, 张琦, 等. 4种方法从葎草中制备的纳米纤维素性能[J]. 草业科学,2017,34(8):1748−1754. [JIANG Y N, ZHOU J P, ZHANG Q, et al. Comparative analysis of nanocellulose from Humulus scandens stems using four isolation methods[J]. Pratacultural Science,2017,34(8):1748−1754.

    JIANG Y N, ZHOU J P, ZHANG Q, et al. Comparative analysis of nanocellulose from Humulus scandens stems using four isolation methods[J]. Pratacultural Science, 2017, 34(8): 1748-1754.
    [52]
    FERRER A, FILPPONEN I, RODRÍGUEZ A, et al. Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper[J]. Bioresource Technology,2012,125:249−255. doi: 10.1016/j.biortech.2012.08.108
    [53]
    MONTAÑO-LEYVA B, RODRIGUEZ-FELIX F, TORRES-CHÁVEZ P, et al. Preparation and characterization of durum wheat (Triticum durum) straw cellulose nanofibers by electrospinning[J]. Journal of Agricultural and Food Chemistry,2011,59(3):870−875. doi: 10.1021/jf103364a
    [54]
    MIDHUN DOMINIC C D, RAJ V, NEENU K V, et al. Chlorine-free extraction and structural characterization of cellulose nanofibers from waste husk of millet (Pennisetum glaucum)[J]. International Journal of Biological Macromolecules,2022,206:92−104. doi: 10.1016/j.ijbiomac.2022.02.078
    [55]
    DAVOUDPOUR Y, HOSSAIN S, KHALIL H P S A, et al. Optimization of high pressure homogenization parameters for the isolation of cellulosic nanofibers using response surface methodology[J]. Industrial Crops and Products,2015,74:381−387. doi: 10.1016/j.indcrop.2015.05.029
    [56]
    LI M, WANG L J, LI D, et al. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp[J]. Carbohydrate Polymers,2014,102:136−143. doi: 10.1016/j.carbpol.2013.11.021
    [57]
    王宝霞. 花生壳纤维素纳米纤维及其复合材料的制备与性能研究[D]. 南京: 南京林业大学, 2017.

    WANG B X. Preparation and properties of peanut shell cellulose nanofibers and its composites[D]. Nanjing: Nanjing Forestry University, 2017.
    [58]
    陶鹏. 蔗渣纳米纤维素的制备及其热稳定性影响机制研究[D]. 南宁: 广西大学, 2019.

    TAO P. Preparation of bagasse nanocellulose and its influence mechanism of thermal stability[D]. Nanning: Guangxi University, 2019.
    [59]
    张晓晓. 木薯渣纳米纤维素/木薯淀粉复合薄膜的制备与性能研究[D]. 南宁: 广西大学, 2019.

    ZHANG X X. Preparation and properties of cassava residue nanocellulose/cassava starch composite films[D]. Nanning: Guangxi University, 2019.
    [60]
    吴国栋. 基于生物质精炼的龙须草制浆过程及纳米纤维素制备的研究[D]. 青岛: 青岛科技大学, 2019.

    WU G D. Pulpand nanocellulose from Eulaliopsis binata based on biorefinefy[D]. Qingdao: Qingdao University of Science and Technology, 2019.
    [61]
    YANG Y, LIU H, WU M, et al. Bio-based antimicrobial packaging from sugarcane bagasse nanocellulose/nisin hybrid films[J]. International Journal of Biological Macromolecules,2020,161:627−635. doi: 10.1016/j.ijbiomac.2020.06.081
    [62]
    GALLEGO R, PIRAS C C, RUTGEERTS L A J, et al. Green approach for the activation and functionalization of jute fibers through ball milling[J]. Cellulose,2020,27(2):643−656. doi: 10.1007/s10570-019-02831-0
    [63]
    YI T, ZHAO H Y, MO Q, et al. From cellulose to cellulose nanofibrils-a comprehensive review of the preparation and modification of cellulose nanofibrils[J]. Materials (Basel),2020,13(22):5062. doi: 10.3390/ma13225062
    [64]
    SZYMAŃSKA-CHARGOT M, CHYLIŃSKA M, PIECZYWEK P M, et al. Tailored nanocellulose structure depending on the origi. Example of apple parenchyma and carrot root celluloses[J]. Carbohydrate Polymers,2019,210:186−195. doi: 10.1016/j.carbpol.2019.01.070
    [65]
    KHAWAS P, DEKA S C. Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment[J]. Carbohydrate Polymers,2016,137:608−616. doi: 10.1016/j.carbpol.2015.11.020
    [66]
    KASSAB Z, MANSOURI S, TAMRAOUI Y, et al. Identifying Juncus plant as viable source for the production of micro-and nano-cellulose fibers: Application for PVA composite materials development[J]. Industrial Crops and Products,2020,144:112035. doi: 10.1016/j.indcrop.2019.112035
    [67]
    王增义. 稻草纤维素纳米纤维及其复合材料薄膜的制备与性能研究[D]. 上海: 上海交通大学, 2019.

    WANG Z Y. Preparation and properties of rice straw cellulose nanofibrils and their composite films[D]. Shanghai: Shanghai Jiao Tong University, 2019.
    [68]
    史杏娟, 蔡志江. 静电纺丝法制备纤维素纳米纤维的研究进展[J]. 高分子通报,2013(8):45−50. [SHI X J, CAI Z J. Advances in preparation of cellulose nanofibers by electrospinning method[J]. Polymer Bulletin,2013(8):45−50.

    SHI X J, CAI Z J. Advances in preparation of cellulose nanofibers by electrospinning method[J]. Polymer Bulletin, 2013(8): 45-50.
    [69]
    DEEPA B, ABRAHAM E, CHERIAN B M, et al. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion[J]. Bioresource Technology,2011,102(2):1988−1997. doi: 10.1016/j.biortech.2010.09.030
    [70]
    THOMAS M G, ABRAHAM E, JYOTISHKUMAR P, et al. Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization[J]. International Journal of Biological Macromolecules,2015,81:768−777. doi: 10.1016/j.ijbiomac.2015.08.053

Catalog

    Article Metrics

    Article views (347) PDF downloads (48) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return