LI Chunying, WANG Hongyi, CHEN Gaole, et al. Application of Surface-enhanced Raman Spectroscopy in Animal Derived Foods Safety[J]. Science and Technology of Food Industry, 2023, 44(16): 434−443. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090275.
Citation: LI Chunying, WANG Hongyi, CHEN Gaole, et al. Application of Surface-enhanced Raman Spectroscopy in Animal Derived Foods Safety[J]. Science and Technology of Food Industry, 2023, 44(16): 434−443. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090275.

Application of Surface-enhanced Raman Spectroscopy in Animal Derived Foods Safety

More Information
  • Received Date: September 26, 2022
  • Available Online: June 20, 2023
  • With the improvement of people's living standards and health awareness, the safety of animal-derived food has attracted worldwide attention. Chemical contamination (melamine, veterinary drug residues, food additive residues, etc.) and pathogenic microorganisms are the primary causes of food safety issues in animal-derived food products, potentially threatening human health and socioeconomic development. Therefore, it is essential to establish rapid detection methods for animal-derived food safety. Surface-enhanced Raman spectroscopy (SERS) has the advantages of rapid detection, good selectivity, and high sensitivity. It has shown great application potential in food safety, which has become one of the research hotspots. This paper reviews the application of SERS in the safety of animal-derived food detection and comprehensively introduces the use of SERS to detect melamine, foodborne pathogens, pesticide and veterinary drug residues, and food additives. Furthermore, it prospects the application of SERS technology in rapid residue detection, which would be believed to provide valuable insights into the field of SERS-based food safety evaluation.
  • loading
  • [1]
    崔震昆, 周威, 胡梁斌, 等. 动物源性食品安全检测技术研究进展[J]. 食品工业科技,2018,39(20):314−319. [CUI Z K, ZHOU W, HU L B, et al. Research progress on detection techniques for animal derived food safety[J]. Science and Technology of Food Industry,2018,39(20):314−319.

    CUI Z K, ZHOU W, HU L B, et al. Research progress on detection techniques for animal derived food safety[J]. Science and Technology of Food Industry, 2018, 39(20): 314-319.
    [2]
    GAO C, CUNNINGHAM D G, LIU H Y, et al. Development of a thiolysis HPLC method for the analysis of procyanidins in cranberry products[J]. Journal of Agricultural and Food Chemistry,2018,66(9):2159−2167. doi: 10.1021/acs.jafc.7b04625
    [3]
    VAVROUŠ A, ŠEVČÍK V, MARKÉTA D, et al. Easy and inexpensive method for multiclass analysis of 41 food contact-related contaminants in fatty food by liquid chromatography-tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry,2019,67(39):10968−10976. doi: 10.1021/acs.jafc.9b02544
    [4]
    WONG J W, ZHANG K, TECH K, et al. Multiresidue pesticide analysis in fresh produce by capillary gas chromatography-mass spectrometry/selective ion monitoring (GC-MS/SIM) and -tandem mass spectrometry (GC-MS/MS)[J]. Journal of Agricultural and Food Chemistry,2010,58(10):5868−5883. doi: 10.1021/jf903854n
    [5]
    LI C, ZHANG Y Y, EREMIN S A, et al. Detection of kanamycin and gentamicin residues in animal-derived food using IgY antibody based ic-ELISA and FPIA[J]. Food Chemistry,2017,227:48−54. doi: 10.1016/j.foodchem.2017.01.058
    [6]
    VEMIREDDY L R, ARCHAK S, NAGARAJU J. Capillary electrophoresis is essential for microsatellite marker based detection and quantification of adulteration of basmati rice (Oryza sativa)[J]. Journal of Agricultural and Food Chemistry,2007,55:8112−8117. doi: 10.1021/jf0714517
    [7]
    MIYAZAKI A, WATANABE S, OGATA K, et al. Real-time PCR detection methods for food allergens (wheat, buckwheat, and peanuts) using reference plasmids[J]. Journal of Agricultural and Food Chemistry,2019,67(19):5680−5686. doi: 10.1021/acs.jafc.9b01234
    [8]
    JIANG L, HASSAN M M, ALI S, et al. Evolving trends in SERS-based techniques for food quality and safety: A review[J]. Trends in Food Science & Technology,2021,112:225−240.
    [9]
    PANG Y F, WAN N, SHI L L, et al. Dual-recognition surface-enhanced Raman scattering (SERS) biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au[J]. Analytica Chimica Acta,2019,1077:288−296. doi: 10.1016/j.aca.2019.05.059
    [10]
    ERZINA M, TRELIN A, GUSELNIKOVA O, et al. Precise cancer detection via the combination of functionalized SERS surfaces and convolutional neural network with independent inputs[J]. Sensors and Actuators B: Chemical,2020,308:127660. doi: 10.1016/j.snb.2020.127660
    [11]
    WU Z Z, XU E, LONG J, et al. Comparison between ATR-IR, Raman, concatenated ATR-IR and Raman spectroscopy for the determination of total antioxidant capacity and total phenolic content of Chinese rice wine[J]. Food Chemistry,2016,194:671−679. doi: 10.1016/j.foodchem.2015.08.071
    [12]
    XU M L, GAO Y, HAN X X, et al. Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: A review[J]. Journal of Agricultural and Food Chemistry,2017,65(32):6719−6726. doi: 10.1021/acs.jafc.7b02504
    [13]
    STOKEL S, KIRCHHOFF J, NEUGEBAUER U, et al. The application of Raman spectroscopy for the detection and identification of microorganisms[J]. Journal of Raman Spectroscopy,2016,47:89−109. doi: 10.1002/jrs.4844
    [14]
    KNEIPP K, WANG Y, KNEIPP H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Physical Review Letters,1997,78(9):1667−1670. doi: 10.1103/PhysRevLett.78.1667
    [15]
    BLATCHFORD C G, KERKER M, WANG D S. Surface-enhanced Raman spectroscopy of water implications of the electromagnetic model[J]. Chemical Physics Letters,1983,100(3):230−235. doi: 10.1016/0009-2614(83)87282-0
    [16]
    KERKER M, WANG D S. Anisotropic photoelectron emission from small particles[J]. Journal of Colloid and Interface Science,1982,85(1):302−305. doi: 10.1016/0021-9797(82)90258-2
    [17]
    HUANG Y Q, WANG X H, LAI K Q, et al. Trace analysis of organic compounds in foods with surface-enhanced Raman spectroscopy: Methodology, progress, and challenges[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(2):622−642. doi: 10.1111/1541-4337.12531
    [18]
    LOMBARDI J R, BIRKE R L, LU T H, et al. Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-teller contributions[J]. The Journal of Chemical Physics,1986,84(8):4174−4180. doi: 10.1063/1.450037
    [19]
    OSAWA M, MATSUDA N, YOSHII K, et al. Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-teller contribution[J]. Journal of Physical Chemistry,1994,98:12702−12707. doi: 10.1021/j100099a038
    [20]
    聂彬彬. 中空 Ag-Au合金碗孔状微/纳结构阵列的可控合成及应用于三聚氰胺 SERS检测的研究[D]. 芜湖: 安徽师范大学, 2018.

    NIE B B. Controllable synthesis of hollow Ag-Au alloy bowl shaped micro/nano structure array and its application in SERS detection of melamine[D]. Wuhu: Anhui Normal University, 2018.
    [21]
    冯彦婷. 纳米银/多孔氧化铝膜为基底的表面增强拉曼技术在食品安全检测中的应用[D]. 湛江: 广东海洋大学, 2020.

    FENG Y T. The application of surface enhanced Raman technology based on nano silver/porous alumina membrane in food safety detection[D]. Zhanjiang: Guangdong Ocean University, 2020.
    [22]
    LIU Y, ZHOU F, WANG H C, et al. Micro-coffee-ring-patterned fiber SERS probes and their in situ detection application in complex liquid environments[J]. Sensors and Actuators B: Chemical,2019,299:126990. doi: 10.1016/j.snb.2019.126990
    [23]
    ZHANG C M, YOU T T, YANG N, et al. Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine[J]. Food Chemistry,2019,287:363−368. doi: 10.1016/j.foodchem.2019.02.094
    [24]
    DUAN N, CHANG B, ZHANG H, et al. Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor[J]. International Journal of Food Microbiology,2016,218:38−43. doi: 10.1016/j.ijfoodmicro.2015.11.006
    [25]
    ZHU X Y, ZHAO Y W, ZHANG Z S, et al. A disposable gold foil paper-based aptasensor for detection of enteropathogenic Escherichia coli with SERS analysis and magnetic separation technology[J]. Microchimica Acta,2021,188(11):396. doi: 10.1007/s00604-021-05052-0
    [26]
    WU Z Z. Simultaneous detection of Listeria monocytogenes and Salmonella typhimurium by a SERS-based lateral flow immunochromatographic assay[J]. Food Analytical Methods,2019,12(5):1086−1091. doi: 10.1007/s12161-019-01444-4
    [27]
    MUHAMMAD M, YAO G H, ZHONG J, et al. A facile and label-free SERS approach for inspection of fipronil in chicken eggs using SiO2@Au core/shell nanoparticles[J]. Talanta,2020,207:120324. doi: 10.1016/j.talanta.2019.120324
    [28]
    赵静晨, 黄丹丹, 朱树华. 树枝状表面增强拉曼散射基底制备及孔雀石绿痕量检测[J]. 食品科学,2020,41(14):294−299. [ZHAO J C, HUANG D D, ZHU S H. Preparation and application of dendritic surface-enhanced Raman scattering substrates in the detection of trace malachite green[J]. Food Science,2020,41(14):294−299. doi: 10.7506/spkx1002-6630-20190326-342

    ZHAO J C, HUANG D D, ZHU S H. Preparation and application of dendritic surface-enhanced Raman scattering substrates in the detection of trace malachite green[J]. Food Science, 2020, 41(14): 294-299. doi: 10.7506/spkx1002-6630-20190326-342
    [29]
    ZHAI Y, ZHENG Y S, MA Z Y, et al. Synergistic enhancement effect for boosting Raman detection sensitivity of antibiotics[J]. ACS Sensors,2019,4(11):2958−2965. doi: 10.1021/acssensors.9b01436
    [30]
    郭红青, 刘木华, 袁海超, 等. 表面增强拉曼光谱技术快速检测鸭肉中的土霉素[J]. 食品安全质量检测学报,2017,8(1):169−176. [GUO H Q, LIU M H, YUAN H C, et al. Rapid detection of oxytetracycline in duck meat by surface-enhanced Raman spectroscopy[J]. Journal of Food Safety and Quality,2017,8(1):169−176.

    GUO H Q, LIU M H, YUAN H C, et al. Rapid detection of oxytetracycline in duck meat by surface-enhanced Raman spectroscopy[J]. Journal of Food Safety and Quality, 2017, 8(1): 169-176.
    [31]
    施思倩, 杨方威, 姚卫蓉, 等. 表面增强拉曼光谱法快速检测猪肉中左旋咪唑残留[J]. 光谱学与光谱分析,2021,41(12):3759−3764. [SHI S Q, YANG F W, YAO W R, et al. Rapid detection of levamisole residue in pork by surface enhanced Raman spectroscopy[J]. Spectroscopy and Spectral Analysis,2021,41(12):3759−3764.

    SHI S Q, YANG F W, YAO W R, et al. Rapid detection of levamisole residue in pork by surface enhanced Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(12): 3759-3764.
    [32]
    WANG J J, HASSAN M M, AHMAD W, et al. A highly structured hollow ZnO@Ag nanosphere SERS substrate for sensing traces of nitrate and nitrite species in pickled food[J]. Sensors and Actuators B Chemical,2019,285:302−309. doi: 10.1016/j.snb.2019.01.052
    [33]
    陈泳, 薛平, 胡陈珊, 等. 衍生化-富集-表面增强拉曼光谱法快速筛查奶粉中亚硝酸盐[J]. 食品安全质量检测学报,2021,12(9):3748−3754. [CHEN Y, XUE P, HU C S, et al. Rapid detection of nitrite in milk powder by derivatization-enrichment-surface enhanced Raman spectroscopy[J]. Journal of Food Safety and Quality,2021,12(9):3748−3754.

    CHEN Y, XUE P, HU C S, et al. Rapid detection of nitrite in milk powder by derivatization-enrichment-surface enhanced Raman spectroscopy[J]. Journal of Food Safety and Quality, 2021, 12(9): 3748-3754.
    [34]
    张 渊, 夏婧竹, 于 爽, 等. 表面增强拉曼光谱法快速测定液态乳中三聚氰胺方法的研究和评价[J]. 食品安全质量检测学报,2021,12(2):552−559. [ZHANG Y, XIA J Z, YU S, et al. Research and evaluation of surface enhanced Raman spectroscopy in the rapid determination of melamine in liquid milk[J]. Journal of Food Safety and Quality,2021,12(2):552−559.

    ZHANG Y, XIA J Z, YU S, et al. Research and evaluation of surface enhanced Raman spectroscopy in the rapid determination of melamine in liquid milk[J]. Journal of Food Safety and Quality, 2021, 12(2): 552-559.
    [35]
    KALEEM A, AZMAT M, SHARMA A, et al. Melamine detection in liquid milk based on selective porous polymer monolith mediated with gold nanospheres by using surface enhanced Raman scattering[J]. Food Chemistry,2019,277:624−631. doi: 10.1016/j.foodchem.2018.11.027
    [36]
    HUANG C, LU F F, XU K, et al. Synthesis of magnetic polyphosphazene-Ag composite particles as surface enhanced Raman spectroscopy substrates for the detection of melamine[J]. Chinese Chemical Letters,2019,30(12):2009−2012. doi: 10.1016/j.cclet.2019.02.006
    [37]
    HE S, CHANG M Y, LIU P C, et al. Self-assembled deposition of Ag nano-particles on PPy@PEDOT: PSS films to detect melamine molecules[J]. Applied Physics A,2020,126(12):953. doi: 10.1007/s00339-020-04130-z
    [38]
    XIAO G N, LI L, YAN A M, et al. Direct detection of melamine in infant formula milk powder solution based on SERS effect of silver film over nanospheres[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2019,223:117269. doi: 10.1016/j.saa.2019.117269
    [39]
    XU D P, KANG W G, ZHANG S, et al. Quantitative determination of melamine in milk by surface-enhanced Raman scattering technique based on high surface roughness silver nanosheets assembled by nanowires[J]. Microchemical Journal,2019,148:190−196. doi: 10.1016/j.microc.2019.04.077
    [40]
    VIEHIRG M, RAJENDRAN S T, SANGER K, et al. Quantitative SERS assay on a single chip enabled by electrochemically assisted regeneration: A method for detection of melamine in milk[J]. Analytical Chemistry,2020,92(6):4317−4325. doi: 10.1021/acs.analchem.9b05060
    [41]
    魏彩姣. 大肠杆菌O157: H7活的不可培养状态诱导与食源性致病菌检测方法的研究[D]. 武汉: 武汉工程大学, 2017.

    WEI C J. Study on the induction of E. coli O157: H7 live and unculturable state and the detection method of foodborne pathogens[D]. Wuhan: Wuhan University of Engineering, 2017.
    [42]
    BOZKURT A G, BUYUKGOZ G G, SOFOROGLU M, et al. Alkaline phosphatase labeled SERS active sandwich immunoassay for detection of Escherichia coli[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2018,194:8−13. doi: 10.1016/j.saa.2017.12.057
    [43]
    YAN S S, LIU C, FANG S Q, et al. SERS-based lateral flow assay combined with machine learning for highly sensitive quantitative analysis of Escherichia coli O157: H7[J]. Analytical and Bioanalytical Chemistry,2020,412(28):7881−7890. doi: 10.1007/s00216-020-02921-0
    [44]
    WENG Y W, HU X D, JIANG L, et al. An all-in-one magnetic SERS nanosensor for ratiometric detection of Escherichia coli in foods[J]. Analytical and Bioanalytical Chemistry,2021,413(21):5419−5426. doi: 10.1007/s00216-021-03521-2
    [45]
    JIN D, KAO C Y, DARBY J, et al. Salmonella typhimurium myopericarditis: A case report and review of literature[J]. World Journal of Cardiology,2020,12(1):67−75. doi: 10.4330/wjc.v12.i1.67
    [46]
    CHATTOPADHYAY S, SABHARWAL P K, JAIN S, et al. Functionalized polymeric magnetic nanoparticle assisted SERS immunosensor for the sensitive detection of S. typhimurium[J]. Analytica Chimica Acta,2019,1067:98−106. doi: 10.1016/j.aca.2019.03.050
    [47]
    LI Y Z, LU C, ZHOU S S, et al. Sensitive and simultaneous detection of different pathogens by surface enhanced Raman scattering based on aptamer and Raman reporter comediated gold tags[J]. Sensors and Actuators B:Chemical,2020,317:128182. doi: 10.1016/j.snb.2020.128182
    [48]
    YANG E, LI D, YIN P K, et al. A novel surface-enhanced Raman scattering (SERS) strategy for ultrasensitive detection of bacteria based on three-dimensional (3D) DNA walker[J]. Biosensors and Bioelectronics,2021,172:112758. doi: 10.1016/j.bios.2020.112758
    [49]
    ALLERBERGER F, WAGNER M. Listeriosis: A resurgent foodborne infection[J]. Clinical Microbiology and Infectious Diseases,2010,16:16−23.
    [50]
    TEIXEIRA A, PARIS J L, ROUMANI F, et al. Multifuntional gold nanoparticles for the SERS detection of pathogens combined with a LAMP-in-microdroplets approach[J]. Materials (Basel),2020,13(8):1934−1953. doi: 10.3390/ma13081934
    [51]
    HUANG D Q, ZHUANG Z F, WANG Z, et al. Black phosphorus-Au filter paper-based three-dimensional SERS substrate for rapid detection of foodborne bacteria[J]. Applied Surface Science,2019,497:143825. doi: 10.1016/j.apsusc.2019.143825
    [52]
    WANG Y L, LI Q Y, ZHANG R, et al. SERS-based immunocapture and detection of pathogenic bacteria using a boronic acid-functionalized polydopamine-coated Au@Ag nanoprobe[J]. Microchimica Acta,2020,187(5):290. doi: 10.1007/s00604-020-04248-0
    [53]
    ZHANG H, MA X Y, LIU Y, et al. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus[J]. Biosensors and Bioelectronics,2015,74:872−877. doi: 10.1016/j.bios.2015.07.033
    [54]
    ZHANG Q, WANG X D, TIAN T, et al. Incorporation of multilayered silver nanoparticles into polymer brushes as 3-dimensional SERS substrates and their application for bacteria detection[J]. Applied Surface Science,2017,407:185−191. doi: 10.1016/j.apsusc.2017.02.202
    [55]
    TU Q, HICKEY M E, YANG T X, et al. A simple and rapid method for detecting the pesticide fipronil on egg shells and in liquid eggs by Raman microscopy[J]. Food Control,2019,96:16−21. doi: 10.1016/j.foodcont.2018.08.025
    [56]
    张梓涵, 赵志慧, 张苑怡, 等. 新型银包铜纳米线的制备及在检测罗非鱼中孔雀石绿残留中的应用[J]. 食品工业科技,2019,40(16):212−217. [ZHANG Z H, ZHAO Z H, ZHANG Y Y, et al. Preparation of a novel silver-coated copper nanowires and its application in the detection of malachite green residues in tilapia[J]. Science and Technology of Food Industry,2019,40(16):212−217.

    ZHANG Z H, ZHAO Z H, ZHANG Y Y, et al. Preparation of a novel silver-coated copper nanowires and its application in the detection of malachite green residues in tilapia [J]. Science and Technology of Food Industry, 2019, 40(16): 212-217.
    [57]
    CHEN J, HUANG M Z, KONG L L. Flexible Ag/nanocellulose fibers SERS substrate and its applications for insitu hazardous residues detection on food[J]. Applied Surface Science,2020,533:147454. doi: 10.1016/j.apsusc.2020.147454
    [58]
    ALYAMI A, QUINN A J, IACOPINO D. Flexible and transparent surface enhanced Raman scattering (SERS)-active Ag NPs/PDMS composites for in-situ detection of food contaminants[J]. Talanta,2019,201:58−64. doi: 10.1016/j.talanta.2019.03.115
    [59]
    PAN Y, FEI D W, LIU P H, et al. Surface-enhanced Raman scattering-based lateral flow immunoassay for the detection of chloramphenicol antibiotics using Au@Ag nanoparticles[J]. Food Analytical Methods,2021,14(12):2642−2650. doi: 10.1007/s12161-021-02091-4
    [60]
    XIE Y F, ZHAO M Y, HU Q, et al. Selective detection of chloramphenicol in milk based on a molecularly imprinted polymer-surface-enhanced Raman spectroscopic nanosensor[J]. Journal of Raman Spectroscopy,2017,48(2):204−210. doi: 10.1002/jrs.5034
    [61]
    WANG T S, WANG H, ZHU A N, et al. Preparation of gold core and silver shell substrate with inositol hexaphosphate inner gap for Raman detection of trace penicillin G[J]. Sensors and Actuators: B. Chemical,2021,346:130591. doi: 10.1016/j.snb.2021.130591
    [62]
    李耀, 刘木华, 袁海超, 等. 表面增强拉曼光谱法测定鸭肉中氧氟沙星残留[J]. 分析科学学报,2018,34(3):367−371. [LI Y, LIU M H, YUAN H C, et al. Detection of ofloxacin residues in duck meat by using surface-enhanced Raman spectroscopy[J]. Journal of Analytical Science,2018,34(3):367−371.

    LI Y, LIU M H, YUAN H C, et al. Detection of ofloxacin residues in duck meat by using surface-enhanced Raman spectroscopy[J]. Journal of Analytical Science, 2018, 34(3): 367-371.
    [63]
    孙琳, 张涵, 杜一平. 基于SBA - 15 的表面增强拉曼基底的制备及对鸡肉和鸡饲料中恩诺沙星的检测[J]. 高等学校化学学报,2018,39(3):455−462. [SUN L, ZHANG H, DU Y P. Preparation of surface enhanced Raman scattering substrates based on SBA-15 material and the detection of enrofloxacin in chicken and chicken feed[J]. Chemical Journal of Chinese Universities,2018,39(3):455−462.

    SUN L, ZHANG H, DU Y P. Preparation of surface enhanced Raman scattering substrates based on SBA-15 material and the detection of enrofloxacin in chicken and chicken feed[J]. Chemical Journal of Chinese Universities, 2018, 39(3): 455-462.
    [64]
    徐宁, 刘木华, 袁海超, 等. 鸡肉中磺胺二甲嘧啶和磺胺吡啶残留的SERS快速鉴别研究[J]. 光谱学与光谱分析,2021,41(3):924−931. [XU N, LIU M H, YUAN H C, et al. Rapid identification of sulfamethazine and sulfadiazine residues in chicken based on SERS[J]. Spectroscopy and Spectral Analysis,2021,41(3):924−931.

    XU N, LIU M H, YUAN H C, et al. Rapid identification of sulfamethazine and sulfadiazine residues in chicken based on SERS[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 924-931.
    [65]
    AI Y J, LIANG P, WU Y X, et al. Rapid qualitative and quantitative determination of food colorants by both Raman spectra and surface-enhanced Raman scattering (SERS)[J]. Food Chemistry,2018,241:427−433. doi: 10.1016/j.foodchem.2017.09.019
    [66]
    郭红燕, 赵爱武, 王儒敬, 等. 基于SERS的磁性试纸制备及其对亚硝酸根的检测研究[J]. 光谱学与光谱分析,2018,38(10):197−198. [GUO H Y, ZHAO A W, WANG R J, et al. Preparation of magnetic test strips and detection of nitrite based on SERS[J]. Spectroscopy and Spectral Analysis,2018,38(10):197−198.

    GUO H Y, ZHAO A W, WANG R J, et al. Preparation of magnetic test strips and detection of nitrite based on SERS[J]. Spectroscopy and Spectral Analysis, 2018, 38(10): 197-198.

Catalog

    Article Metrics

    Article views (301) PDF downloads (36) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return