Citation: | LI Chunying, WANG Hongyi, CHEN Gaole, et al. Application of Surface-enhanced Raman Spectroscopy in Animal Derived Foods Safety[J]. Science and Technology of Food Industry, 2023, 44(16): 434−443. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090275. |
[1] |
崔震昆, 周威, 胡梁斌, 等. 动物源性食品安全检测技术研究进展[J]. 食品工业科技,2018,39(20):314−319. [CUI Z K, ZHOU W, HU L B, et al. Research progress on detection techniques for animal derived food safety[J]. Science and Technology of Food Industry,2018,39(20):314−319.
CUI Z K, ZHOU W, HU L B, et al. Research progress on detection techniques for animal derived food safety[J]. Science and Technology of Food Industry, 2018, 39(20): 314-319.
|
[2] |
GAO C, CUNNINGHAM D G, LIU H Y, et al. Development of a thiolysis HPLC method for the analysis of procyanidins in cranberry products[J]. Journal of Agricultural and Food Chemistry,2018,66(9):2159−2167. doi: 10.1021/acs.jafc.7b04625
|
[3] |
VAVROUŠ A, ŠEVČÍK V, MARKÉTA D, et al. Easy and inexpensive method for multiclass analysis of 41 food contact-related contaminants in fatty food by liquid chromatography-tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry,2019,67(39):10968−10976. doi: 10.1021/acs.jafc.9b02544
|
[4] |
WONG J W, ZHANG K, TECH K, et al. Multiresidue pesticide analysis in fresh produce by capillary gas chromatography-mass spectrometry/selective ion monitoring (GC-MS/SIM) and -tandem mass spectrometry (GC-MS/MS)[J]. Journal of Agricultural and Food Chemistry,2010,58(10):5868−5883. doi: 10.1021/jf903854n
|
[5] |
LI C, ZHANG Y Y, EREMIN S A, et al. Detection of kanamycin and gentamicin residues in animal-derived food using IgY antibody based ic-ELISA and FPIA[J]. Food Chemistry,2017,227:48−54. doi: 10.1016/j.foodchem.2017.01.058
|
[6] |
VEMIREDDY L R, ARCHAK S, NAGARAJU J. Capillary electrophoresis is essential for microsatellite marker based detection and quantification of adulteration of basmati rice (Oryza sativa)[J]. Journal of Agricultural and Food Chemistry,2007,55:8112−8117. doi: 10.1021/jf0714517
|
[7] |
MIYAZAKI A, WATANABE S, OGATA K, et al. Real-time PCR detection methods for food allergens (wheat, buckwheat, and peanuts) using reference plasmids[J]. Journal of Agricultural and Food Chemistry,2019,67(19):5680−5686. doi: 10.1021/acs.jafc.9b01234
|
[8] |
JIANG L, HASSAN M M, ALI S, et al. Evolving trends in SERS-based techniques for food quality and safety: A review[J]. Trends in Food Science & Technology,2021,112:225−240.
|
[9] |
PANG Y F, WAN N, SHI L L, et al. Dual-recognition surface-enhanced Raman scattering (SERS) biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au[J]. Analytica Chimica Acta,2019,1077:288−296. doi: 10.1016/j.aca.2019.05.059
|
[10] |
ERZINA M, TRELIN A, GUSELNIKOVA O, et al. Precise cancer detection via the combination of functionalized SERS surfaces and convolutional neural network with independent inputs[J]. Sensors and Actuators B: Chemical,2020,308:127660. doi: 10.1016/j.snb.2020.127660
|
[11] |
WU Z Z, XU E, LONG J, et al. Comparison between ATR-IR, Raman, concatenated ATR-IR and Raman spectroscopy for the determination of total antioxidant capacity and total phenolic content of Chinese rice wine[J]. Food Chemistry,2016,194:671−679. doi: 10.1016/j.foodchem.2015.08.071
|
[12] |
XU M L, GAO Y, HAN X X, et al. Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: A review[J]. Journal of Agricultural and Food Chemistry,2017,65(32):6719−6726. doi: 10.1021/acs.jafc.7b02504
|
[13] |
STOKEL S, KIRCHHOFF J, NEUGEBAUER U, et al. The application of Raman spectroscopy for the detection and identification of microorganisms[J]. Journal of Raman Spectroscopy,2016,47:89−109. doi: 10.1002/jrs.4844
|
[14] |
KNEIPP K, WANG Y, KNEIPP H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Physical Review Letters,1997,78(9):1667−1670. doi: 10.1103/PhysRevLett.78.1667
|
[15] |
BLATCHFORD C G, KERKER M, WANG D S. Surface-enhanced Raman spectroscopy of water implications of the electromagnetic model[J]. Chemical Physics Letters,1983,100(3):230−235. doi: 10.1016/0009-2614(83)87282-0
|
[16] |
KERKER M, WANG D S. Anisotropic photoelectron emission from small particles[J]. Journal of Colloid and Interface Science,1982,85(1):302−305. doi: 10.1016/0021-9797(82)90258-2
|
[17] |
HUANG Y Q, WANG X H, LAI K Q, et al. Trace analysis of organic compounds in foods with surface-enhanced Raman spectroscopy: Methodology, progress, and challenges[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(2):622−642. doi: 10.1111/1541-4337.12531
|
[18] |
LOMBARDI J R, BIRKE R L, LU T H, et al. Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-teller contributions[J]. The Journal of Chemical Physics,1986,84(8):4174−4180. doi: 10.1063/1.450037
|
[19] |
OSAWA M, MATSUDA N, YOSHII K, et al. Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-teller contribution[J]. Journal of Physical Chemistry,1994,98:12702−12707. doi: 10.1021/j100099a038
|
[20] |
聂彬彬. 中空 Ag-Au合金碗孔状微/纳结构阵列的可控合成及应用于三聚氰胺 SERS检测的研究[D]. 芜湖: 安徽师范大学, 2018.
NIE B B. Controllable synthesis of hollow Ag-Au alloy bowl shaped micro/nano structure array and its application in SERS detection of melamine[D]. Wuhu: Anhui Normal University, 2018.
|
[21] |
冯彦婷. 纳米银/多孔氧化铝膜为基底的表面增强拉曼技术在食品安全检测中的应用[D]. 湛江: 广东海洋大学, 2020.
FENG Y T. The application of surface enhanced Raman technology based on nano silver/porous alumina membrane in food safety detection[D]. Zhanjiang: Guangdong Ocean University, 2020.
|
[22] |
LIU Y, ZHOU F, WANG H C, et al. Micro-coffee-ring-patterned fiber SERS probes and their in situ detection application in complex liquid environments[J]. Sensors and Actuators B: Chemical,2019,299:126990. doi: 10.1016/j.snb.2019.126990
|
[23] |
ZHANG C M, YOU T T, YANG N, et al. Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine[J]. Food Chemistry,2019,287:363−368. doi: 10.1016/j.foodchem.2019.02.094
|
[24] |
DUAN N, CHANG B, ZHANG H, et al. Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor[J]. International Journal of Food Microbiology,2016,218:38−43. doi: 10.1016/j.ijfoodmicro.2015.11.006
|
[25] |
ZHU X Y, ZHAO Y W, ZHANG Z S, et al. A disposable gold foil paper-based aptasensor for detection of enteropathogenic Escherichia coli with SERS analysis and magnetic separation technology[J]. Microchimica Acta,2021,188(11):396. doi: 10.1007/s00604-021-05052-0
|
[26] |
WU Z Z. Simultaneous detection of Listeria monocytogenes and Salmonella typhimurium by a SERS-based lateral flow immunochromatographic assay[J]. Food Analytical Methods,2019,12(5):1086−1091. doi: 10.1007/s12161-019-01444-4
|
[27] |
MUHAMMAD M, YAO G H, ZHONG J, et al. A facile and label-free SERS approach for inspection of fipronil in chicken eggs using SiO2@Au core/shell nanoparticles[J]. Talanta,2020,207:120324. doi: 10.1016/j.talanta.2019.120324
|
[28] |
赵静晨, 黄丹丹, 朱树华. 树枝状表面增强拉曼散射基底制备及孔雀石绿痕量检测[J]. 食品科学,2020,41(14):294−299. [ZHAO J C, HUANG D D, ZHU S H. Preparation and application of dendritic surface-enhanced Raman scattering substrates in the detection of trace malachite green[J]. Food Science,2020,41(14):294−299. doi: 10.7506/spkx1002-6630-20190326-342
ZHAO J C, HUANG D D, ZHU S H. Preparation and application of dendritic surface-enhanced Raman scattering substrates in the detection of trace malachite green[J]. Food Science, 2020, 41(14): 294-299. doi: 10.7506/spkx1002-6630-20190326-342
|
[29] |
ZHAI Y, ZHENG Y S, MA Z Y, et al. Synergistic enhancement effect for boosting Raman detection sensitivity of antibiotics[J]. ACS Sensors,2019,4(11):2958−2965. doi: 10.1021/acssensors.9b01436
|
[30] |
郭红青, 刘木华, 袁海超, 等. 表面增强拉曼光谱技术快速检测鸭肉中的土霉素[J]. 食品安全质量检测学报,2017,8(1):169−176. [GUO H Q, LIU M H, YUAN H C, et al. Rapid detection of oxytetracycline in duck meat by surface-enhanced Raman spectroscopy[J]. Journal of Food Safety and Quality,2017,8(1):169−176.
GUO H Q, LIU M H, YUAN H C, et al. Rapid detection of oxytetracycline in duck meat by surface-enhanced Raman spectroscopy[J]. Journal of Food Safety and Quality, 2017, 8(1): 169-176.
|
[31] |
施思倩, 杨方威, 姚卫蓉, 等. 表面增强拉曼光谱法快速检测猪肉中左旋咪唑残留[J]. 光谱学与光谱分析,2021,41(12):3759−3764. [SHI S Q, YANG F W, YAO W R, et al. Rapid detection of levamisole residue in pork by surface enhanced Raman spectroscopy[J]. Spectroscopy and Spectral Analysis,2021,41(12):3759−3764.
SHI S Q, YANG F W, YAO W R, et al. Rapid detection of levamisole residue in pork by surface enhanced Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(12): 3759-3764.
|
[32] |
WANG J J, HASSAN M M, AHMAD W, et al. A highly structured hollow ZnO@Ag nanosphere SERS substrate for sensing traces of nitrate and nitrite species in pickled food[J]. Sensors and Actuators B Chemical,2019,285:302−309. doi: 10.1016/j.snb.2019.01.052
|
[33] |
陈泳, 薛平, 胡陈珊, 等. 衍生化-富集-表面增强拉曼光谱法快速筛查奶粉中亚硝酸盐[J]. 食品安全质量检测学报,2021,12(9):3748−3754. [CHEN Y, XUE P, HU C S, et al. Rapid detection of nitrite in milk powder by derivatization-enrichment-surface enhanced Raman spectroscopy[J]. Journal of Food Safety and Quality,2021,12(9):3748−3754.
CHEN Y, XUE P, HU C S, et al. Rapid detection of nitrite in milk powder by derivatization-enrichment-surface enhanced Raman spectroscopy[J]. Journal of Food Safety and Quality, 2021, 12(9): 3748-3754.
|
[34] |
张 渊, 夏婧竹, 于 爽, 等. 表面增强拉曼光谱法快速测定液态乳中三聚氰胺方法的研究和评价[J]. 食品安全质量检测学报,2021,12(2):552−559. [ZHANG Y, XIA J Z, YU S, et al. Research and evaluation of surface enhanced Raman spectroscopy in the rapid determination of melamine in liquid milk[J]. Journal of Food Safety and Quality,2021,12(2):552−559.
ZHANG Y, XIA J Z, YU S, et al. Research and evaluation of surface enhanced Raman spectroscopy in the rapid determination of melamine in liquid milk[J]. Journal of Food Safety and Quality, 2021, 12(2): 552-559.
|
[35] |
KALEEM A, AZMAT M, SHARMA A, et al. Melamine detection in liquid milk based on selective porous polymer monolith mediated with gold nanospheres by using surface enhanced Raman scattering[J]. Food Chemistry,2019,277:624−631. doi: 10.1016/j.foodchem.2018.11.027
|
[36] |
HUANG C, LU F F, XU K, et al. Synthesis of magnetic polyphosphazene-Ag composite particles as surface enhanced Raman spectroscopy substrates for the detection of melamine[J]. Chinese Chemical Letters,2019,30(12):2009−2012. doi: 10.1016/j.cclet.2019.02.006
|
[37] |
HE S, CHANG M Y, LIU P C, et al. Self-assembled deposition of Ag nano-particles on PPy@PEDOT: PSS films to detect melamine molecules[J]. Applied Physics A,2020,126(12):953. doi: 10.1007/s00339-020-04130-z
|
[38] |
XIAO G N, LI L, YAN A M, et al. Direct detection of melamine in infant formula milk powder solution based on SERS effect of silver film over nanospheres[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2019,223:117269. doi: 10.1016/j.saa.2019.117269
|
[39] |
XU D P, KANG W G, ZHANG S, et al. Quantitative determination of melamine in milk by surface-enhanced Raman scattering technique based on high surface roughness silver nanosheets assembled by nanowires[J]. Microchemical Journal,2019,148:190−196. doi: 10.1016/j.microc.2019.04.077
|
[40] |
VIEHIRG M, RAJENDRAN S T, SANGER K, et al. Quantitative SERS assay on a single chip enabled by electrochemically assisted regeneration: A method for detection of melamine in milk[J]. Analytical Chemistry,2020,92(6):4317−4325. doi: 10.1021/acs.analchem.9b05060
|
[41] |
魏彩姣. 大肠杆菌O157: H7活的不可培养状态诱导与食源性致病菌检测方法的研究[D]. 武汉: 武汉工程大学, 2017.
WEI C J. Study on the induction of E. coli O157: H7 live and unculturable state and the detection method of foodborne pathogens[D]. Wuhan: Wuhan University of Engineering, 2017.
|
[42] |
BOZKURT A G, BUYUKGOZ G G, SOFOROGLU M, et al. Alkaline phosphatase labeled SERS active sandwich immunoassay for detection of Escherichia coli[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2018,194:8−13. doi: 10.1016/j.saa.2017.12.057
|
[43] |
YAN S S, LIU C, FANG S Q, et al. SERS-based lateral flow assay combined with machine learning for highly sensitive quantitative analysis of Escherichia coli O157: H7[J]. Analytical and Bioanalytical Chemistry,2020,412(28):7881−7890. doi: 10.1007/s00216-020-02921-0
|
[44] |
WENG Y W, HU X D, JIANG L, et al. An all-in-one magnetic SERS nanosensor for ratiometric detection of Escherichia coli in foods[J]. Analytical and Bioanalytical Chemistry,2021,413(21):5419−5426. doi: 10.1007/s00216-021-03521-2
|
[45] |
JIN D, KAO C Y, DARBY J, et al. Salmonella typhimurium myopericarditis: A case report and review of literature[J]. World Journal of Cardiology,2020,12(1):67−75. doi: 10.4330/wjc.v12.i1.67
|
[46] |
CHATTOPADHYAY S, SABHARWAL P K, JAIN S, et al. Functionalized polymeric magnetic nanoparticle assisted SERS immunosensor for the sensitive detection of S. typhimurium[J]. Analytica Chimica Acta,2019,1067:98−106. doi: 10.1016/j.aca.2019.03.050
|
[47] |
LI Y Z, LU C, ZHOU S S, et al. Sensitive and simultaneous detection of different pathogens by surface enhanced Raman scattering based on aptamer and Raman reporter comediated gold tags[J]. Sensors and Actuators B:Chemical,2020,317:128182. doi: 10.1016/j.snb.2020.128182
|
[48] |
YANG E, LI D, YIN P K, et al. A novel surface-enhanced Raman scattering (SERS) strategy for ultrasensitive detection of bacteria based on three-dimensional (3D) DNA walker[J]. Biosensors and Bioelectronics,2021,172:112758. doi: 10.1016/j.bios.2020.112758
|
[49] |
ALLERBERGER F, WAGNER M. Listeriosis: A resurgent foodborne infection[J]. Clinical Microbiology and Infectious Diseases,2010,16:16−23.
|
[50] |
TEIXEIRA A, PARIS J L, ROUMANI F, et al. Multifuntional gold nanoparticles for the SERS detection of pathogens combined with a LAMP-in-microdroplets approach[J]. Materials (Basel),2020,13(8):1934−1953. doi: 10.3390/ma13081934
|
[51] |
HUANG D Q, ZHUANG Z F, WANG Z, et al. Black phosphorus-Au filter paper-based three-dimensional SERS substrate for rapid detection of foodborne bacteria[J]. Applied Surface Science,2019,497:143825. doi: 10.1016/j.apsusc.2019.143825
|
[52] |
WANG Y L, LI Q Y, ZHANG R, et al. SERS-based immunocapture and detection of pathogenic bacteria using a boronic acid-functionalized polydopamine-coated Au@Ag nanoprobe[J]. Microchimica Acta,2020,187(5):290. doi: 10.1007/s00604-020-04248-0
|
[53] |
ZHANG H, MA X Y, LIU Y, et al. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus[J]. Biosensors and Bioelectronics,2015,74:872−877. doi: 10.1016/j.bios.2015.07.033
|
[54] |
ZHANG Q, WANG X D, TIAN T, et al. Incorporation of multilayered silver nanoparticles into polymer brushes as 3-dimensional SERS substrates and their application for bacteria detection[J]. Applied Surface Science,2017,407:185−191. doi: 10.1016/j.apsusc.2017.02.202
|
[55] |
TU Q, HICKEY M E, YANG T X, et al. A simple and rapid method for detecting the pesticide fipronil on egg shells and in liquid eggs by Raman microscopy[J]. Food Control,2019,96:16−21. doi: 10.1016/j.foodcont.2018.08.025
|
[56] |
张梓涵, 赵志慧, 张苑怡, 等. 新型银包铜纳米线的制备及在检测罗非鱼中孔雀石绿残留中的应用[J]. 食品工业科技,2019,40(16):212−217. [ZHANG Z H, ZHAO Z H, ZHANG Y Y, et al. Preparation of a novel silver-coated copper nanowires and its application in the detection of malachite green residues in tilapia[J]. Science and Technology of Food Industry,2019,40(16):212−217.
ZHANG Z H, ZHAO Z H, ZHANG Y Y, et al. Preparation of a novel silver-coated copper nanowires and its application in the detection of malachite green residues in tilapia [J]. Science and Technology of Food Industry, 2019, 40(16): 212-217.
|
[57] |
CHEN J, HUANG M Z, KONG L L. Flexible Ag/nanocellulose fibers SERS substrate and its applications for insitu hazardous residues detection on food[J]. Applied Surface Science,2020,533:147454. doi: 10.1016/j.apsusc.2020.147454
|
[58] |
ALYAMI A, QUINN A J, IACOPINO D. Flexible and transparent surface enhanced Raman scattering (SERS)-active Ag NPs/PDMS composites for in-situ detection of food contaminants[J]. Talanta,2019,201:58−64. doi: 10.1016/j.talanta.2019.03.115
|
[59] |
PAN Y, FEI D W, LIU P H, et al. Surface-enhanced Raman scattering-based lateral flow immunoassay for the detection of chloramphenicol antibiotics using Au@Ag nanoparticles[J]. Food Analytical Methods,2021,14(12):2642−2650. doi: 10.1007/s12161-021-02091-4
|
[60] |
XIE Y F, ZHAO M Y, HU Q, et al. Selective detection of chloramphenicol in milk based on a molecularly imprinted polymer-surface-enhanced Raman spectroscopic nanosensor[J]. Journal of Raman Spectroscopy,2017,48(2):204−210. doi: 10.1002/jrs.5034
|
[61] |
WANG T S, WANG H, ZHU A N, et al. Preparation of gold core and silver shell substrate with inositol hexaphosphate inner gap for Raman detection of trace penicillin G[J]. Sensors and Actuators: B. Chemical,2021,346:130591. doi: 10.1016/j.snb.2021.130591
|
[62] |
李耀, 刘木华, 袁海超, 等. 表面增强拉曼光谱法测定鸭肉中氧氟沙星残留[J]. 分析科学学报,2018,34(3):367−371. [LI Y, LIU M H, YUAN H C, et al. Detection of ofloxacin residues in duck meat by using surface-enhanced Raman spectroscopy[J]. Journal of Analytical Science,2018,34(3):367−371.
LI Y, LIU M H, YUAN H C, et al. Detection of ofloxacin residues in duck meat by using surface-enhanced Raman spectroscopy[J]. Journal of Analytical Science, 2018, 34(3): 367-371.
|
[63] |
孙琳, 张涵, 杜一平. 基于SBA - 15 的表面增强拉曼基底的制备及对鸡肉和鸡饲料中恩诺沙星的检测[J]. 高等学校化学学报,2018,39(3):455−462. [SUN L, ZHANG H, DU Y P. Preparation of surface enhanced Raman scattering substrates based on SBA-15 material and the detection of enrofloxacin in chicken and chicken feed[J]. Chemical Journal of Chinese Universities,2018,39(3):455−462.
SUN L, ZHANG H, DU Y P. Preparation of surface enhanced Raman scattering substrates based on SBA-15 material and the detection of enrofloxacin in chicken and chicken feed[J]. Chemical Journal of Chinese Universities, 2018, 39(3): 455-462.
|
[64] |
徐宁, 刘木华, 袁海超, 等. 鸡肉中磺胺二甲嘧啶和磺胺吡啶残留的SERS快速鉴别研究[J]. 光谱学与光谱分析,2021,41(3):924−931. [XU N, LIU M H, YUAN H C, et al. Rapid identification of sulfamethazine and sulfadiazine residues in chicken based on SERS[J]. Spectroscopy and Spectral Analysis,2021,41(3):924−931.
XU N, LIU M H, YUAN H C, et al. Rapid identification of sulfamethazine and sulfadiazine residues in chicken based on SERS[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 924-931.
|
[65] |
AI Y J, LIANG P, WU Y X, et al. Rapid qualitative and quantitative determination of food colorants by both Raman spectra and surface-enhanced Raman scattering (SERS)[J]. Food Chemistry,2018,241:427−433. doi: 10.1016/j.foodchem.2017.09.019
|
[66] |
郭红燕, 赵爱武, 王儒敬, 等. 基于SERS的磁性试纸制备及其对亚硝酸根的检测研究[J]. 光谱学与光谱分析,2018,38(10):197−198. [GUO H Y, ZHAO A W, WANG R J, et al. Preparation of magnetic test strips and detection of nitrite based on SERS[J]. Spectroscopy and Spectral Analysis,2018,38(10):197−198.
GUO H Y, ZHAO A W, WANG R J, et al. Preparation of magnetic test strips and detection of nitrite based on SERS[J]. Spectroscopy and Spectral Analysis, 2018, 38(10): 197-198.
|