Citation: | HAO Shiqi, LI Yafei, WU Xiaoyun, et al. Effects of Camel Milk on Glucolipid Metabolism in Mice with Nonalcoholic Fatty Liver Disease[J]. Science and Technology of Food Industry, 2023, 44(6): 376−383. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060164. |
[1] |
HUANAN C, SANGSANG L, AMOAH A N, et al. Relationship between triglyceride glucose index and the incidence of non-alcoholic fatty liver disease in the elderly: A retrospective cohort study in China[J]. BMJ Open,2020,10(11):1−8. doi: 10.1136/bmjopen-2020-038271corr1
|
[2] |
LIU Y, WANG W. Sex-specific contribution of lipid accumulation product and cardiometabolic index in the identification of nonalcoholic fatty liver disease among Chinese adults[J]. Lipids Health Dis,2022,21(1):1−8. doi: 10.1186/s12944-021-01613-7
|
[3] |
HU X, ZHOU R, LI H, et al. Alterations of gut microbiome and serum metabolome in coronary artery disease patients complicated with non-alcoholic fatty liver disease are associated with adverse cardiovascular outcomes[J]. Front Cardiovasc Med,2021,8:1−19.
|
[4] |
YUN C H, JHUANG J R, TSOU M T. Pericardial fat, thoracic peri-aortic adipose tissue, and systemic inflammatory marker in nonalcoholic fatty liver and abdominal obesity phenotype[J]. Sci Rep,2022,12(1):1−9. doi: 10.1038/s41598-021-99269-x
|
[5] |
LI Y, WANG D, PING X, et al. Local hyperthermia therapy induces browning of white fat and treats obesity[J]. Cell,2022,185(6):949−966. doi: 10.1016/j.cell.2022.02.004
|
[6] |
ALLAHYARI M, SAMADI-NOSHAHR Z, HOSSEINIAN S, et al. Camel milk and allopurinol attenuated adenine-induced acute renal failure in rats[J]. Iranian Journal of Science and Technology, Transactions A:Science,2021,45(5):1539−1548. doi: 10.1007/s40995-021-01155-8
|
[7] |
KHALESI M, SALAMI M, MOSLEHISHAD M, et al. Biomolecular content of camel milk: A traditional superfood towards future healthcare industry[J]. Trends in Food Science & Technology,2017,62:49−58.
|
[8] |
SARIN S K, KUMAR M, ESLAM M, et al. Liver diseases in the Asia-Pacific region: A lancet gastroenterology & hepatology commission[J]. The Lancet Gastroenterology & Hepatology,2020,5(2):167−228.
|
[9] |
AYOUB M A, PALAKKOTT A R, ASHRAF A, et al. The molecular basis of the anti-diabetic properties of camel milk[J]. Diabetes Res Clin Pract,2018,146:305−312. doi: 10.1016/j.diabres.2018.11.006
|
[10] |
CHEN Y Z, LI C, GU J, et al. Anti-oxidative and immuno-protective effect of camel milk on radiation-induced intestinal injury in C57BL/6 J mice[J]. Dose Response,2021,19(1):1−8.
|
[11] |
ALHAJ O A, METWALLI A A, ISMAIL E A, et al. Angiotensin converting enzyme-inhibitory activity and antimicrobial effect of fermented camel milk (Camelus dromedarius)[J]. International Journal of Dairy Technology,2018,71(1):27−35. doi: 10.1111/1471-0307.12383
|
[12] |
YAHYA M A, ALHAJ O A, AL-KHALIFAH A S. Antihypertensive effect of fermented skim camel (Camelus dromedarius) milk on spontaneously hypertensive rats[J]. Nutr Hosp,2017,34(2):416−421. doi: 10.20960/nh.1163
|
[13] |
ALMNAIZEL A T, AL-KHALIFAH A S, ALHAJ O A, et al. Hypocholesterolemic effect of camel milk on rats fed a high-cholesterol diet[J]. Emirates Journal of Food and Agriculture,2018,30(4):288−294. doi: 10.9755/ejfa.2018.v30.i4.1664
|
[14] |
KHAN M Z, XIAO J, MA Y, et al. Research development on anti-microbial and antioxidant properties of camel milk and its role as an anti-cancer and anti-hepatitis agent[J]. Antioxidants,2021,10(5):1−16.
|
[15] |
IBRAHIM M A B, WANI F A, RAHIMAN S. Hepatorprotective effect of olive oil and camel milk on acetaminophen-induced liver toxicity in mice[J]. Medical Science and Public Health,2017,6:168−171.
|
[16] |
EL-FAKHARANY E M, EL-BAKY N A, LINJAWI M H, et al. Influence of camel milk on the hepatitis C virus burden of infected patients[J]. Exp Ther Med,2017,13(4):1313−1320. doi: 10.3892/etm.2017.4159
|
[17] |
ARAB H H, EID A H, GAD A M, et al. Inhibition of oxidative stress and apoptosis by camel milk mitigates cyclosporine-induced nephrotoxicity: Targeting Nrf2/HO-1 and AKT/eNOS/NO pathways[J]. Food Sci Nutr,2021,9(6):3177−3190. doi: 10.1002/fsn3.2277
|
[18] |
HUSSAIN H, WATTOO F H, WATTOO M H S, et al. Camel milk as an alternative treatment regimen for diabetes therapy[J]. Food Sci Nutr,2021,9(3):1347−1356. doi: 10.1002/fsn3.2078
|
[19] |
KHAN F B, ANWAR I, REDWAN E M, et al. Camel and bovine milk lactoferrins activate insulin receptor and its related AKT and ERK1/2 pathways[J]. J Dairy Sci,2022,105(3):1848−1861. doi: 10.3168/jds.2021-20934
|
[20] |
何静, 高婉婷, 海勒, 等. 驼乳对2型糖尿病小鼠肝脏损伤的保护作用[J]. 中国食品学报,2019,19(7):36−41. [HE J, GAO W T, HAI L, et al. Protective effect of camel milk on liver injury in type 2 diabetic mice[J]. Chinese Journal of Food Science,2019,19(7):36−41. doi: 10.16429/j.1009-7848.2019.07.005
|
[21] |
VILALTA A, GUTIERREZ J A, CHAVES S, et al. Adipose tissue measurement in clinical research for obesity, type 2 diabetes and NAFLD/NASH[J]. Endocrinol Diabetes Metab,2022:1−9.
|
[22] |
ZHANG Q, WANG J, HUANG F, et al. Leptin induces NAFLD progression through infiltrated CD8+ T lymphocytes mediating pyroptotic-like cell death of hepatocytes and macrophages[J]. Dig Liver Dis,2021,53(5):598−605. doi: 10.1016/j.dld.2020.10.025
|
[23] |
ALNAFEA H M, KORISH A A. Activation of the peroxisome proliferator-activated receptors (PPAR-alpha/gamma) and the fatty acid metabolizing enzyme protein CPT1A by camel milk treatment counteracts the high-fat diet-induced nonalcoholic fatty liver disease[J]. PPAR Res,2021,2021:1−12.
|
[24] |
KIM Y, LIM J H, KIM E N, et al. Adiponectin receptor agonist ameliorates cardiac lipotoxicity via enhancing ceramide metabolism in type 2 diabetic mice[J]. Cell Death Dis,2022,13(3):282−302. doi: 10.1038/s41419-022-04726-8
|
[25] |
MONDAL A, BOSE D, SAHA P, et al. Lipocalin 2 induces neuroinflammation and blood-brain barrier dysfunction through liver-brain axis in murine model of nonalcoholic steatohepatitis[J]. J Neuroinflammation,2020,17(1):201−216. doi: 10.1186/s12974-020-01876-4
|
[26] |
江云, 高月求, 朱明清, 等. C57BL/6小鼠非酒精性脂肪肝模型的建立研究[J]. 蚌埠医学院学报,2018,43(5):573−576. [JIANG Y, GAO Y Q, ZHU M Q, et al. Establishment of nonalcoholic fatty liver model in C57BL/6 mice[J]. Journal of Bengbu Medical College,2018,43(5):573−576. doi: 10.13898/j.cnki.issn.1000-2200.2018.05.003
|
[27] |
马媛媛, 葛圣金. 高质饮食诱导C57BL/6J小鼠肥胖及减重手术模型的建立[J]. 复旦学报(医学版),2022,49(1):88−94. [MA Y Y, GE S J. Establishment of obesity and weight loss surgery model in C57BL/6J mice induced by high quality diet[J]. Fudan J Med,2022,49(1):88−94. doi: 10.3969/j.issn.1672-8467.2022.01.012
|
[28] |
张晶晶, 赵文欣, 李佳潞, 等. C57BL/6J 小鼠构建肥胖动物模型评价[J]. 医学食疗与健康,2021,9:7−9. [ZHANG J J, ZHAO W X, LI J L, et al. Evaluation of obesity animal model constructed by C57BL/6J mice[J]. Medical Dietotherapy and Health,2021,9:7−9.
|
[29] |
李想, 吕琴, 吴秋月, 等. 高脂高糖饮食联合STZ诱导C57BL/6J品系小鼠构建糖尿病肾病模型的研究[J]. 重庆医学,2022,51(1):16−20. [LI X, LÜ Q, WU Q Y, et al. Establishment of diabetic nephropathy model in C57BL/6J mice induced by high-fat and high-sugar diet combined with STZ[J]. Chongqing Medical Journal,2022,51(1):16−20. doi: 10.3969/j.issn.1671-8348.2022.01.004
|
[30] |
李美蕖, 田书云, 张迪. 非酒精性脂肪肝C57BL/6J小鼠模型建立[J]. 山东化工,2021,50(20):162−167. [LI M Q, TIAN S Y, ZHANG D. Establishment of C57BL/6J mouse model of nonalcoholic fatty liver disease[J]. Shandong Chemical Industry,2021,50(20):162−167. doi: 10.3969/j.issn.1008-021X.2021.20.058
|
[31] |
马浩鑫, 朱桂达, 张晓霞, 等. 一种非酒精性脂肪肝小鼠模型的建立方法[J]. 安徽农业科学,2021,49:80−85. [MA H X, ZHU G D, ZHANG X X, et al. Establishment of a mouse model of non-alcoholic fatty liver disease[J]. Journal of Anhui Agricultural Sciences,2021,49:80−85. doi: 10.3969/j.issn.0517-6611.2021.01.021
|
[32] |
LOOMBA R, FRIEDMAN S L, SHULMAN G I. Mechanisms and disease consequences of nonalcoholic fatty liver disease[J]. Cell,2021,184(10):2537−2564. doi: 10.1016/j.cell.2021.04.015
|
[33] |
DU T, FANG Q, ZHANG Z, et al. Lentinan protects against nonalcoholic fatty liver disease by reducing oxidative stress and apoptosis via the PPARalpha pathway[J]. Metabolites,2022,12(1):55. doi: 10.3390/metabo12010055
|
[34] |
ZHU S, ZHANG J, WANG W, et al. Blockage of NDUFB9-SCD1 pathway inhibits adipogenesis[J]. Journal of Physiology and Biochemistry,2022,78(2):377−388. doi: 10.1007/s13105-022-00876-7
|
[35] |
李晓晓, 魏承亮, 刘朝奇, 等. 木瓜发酵物通过miR-350-3p/TLR4信号通路改善小鼠非酒精性脂肪性肝炎[J]. 中药新药与临床药理,2022,33(4):419−426. [LI X X, WEI C L, LIU C Q, et al. Papaya fermentation improves nonalcoholic steatohepatitis in mice by miR-350-3p /TLR4 signaling pathway[J]. New Drugs and Clinical Pharmacology of Traditional Chinese Medicine,2022,33(4):419−426. doi: 10.19378/j.issn.1003-9783.2022.04.001
|