Citation: | CHEN Minghao, LIU Zhihao, WANG Yonghong. Lactic Acid Fermentation by Bacillus coagulans with Mixed Carbon Sources[J]. Science and Technology of Food Industry, 2023, 44(6): 155−161. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050186. |
[1] |
WANG C, CUI Y, QU X. Mechanisms and improvement of acid resistance in lactic acid bacteria[J]. Archives of Microbiology,2018,200(2):195−201. doi: 10.1007/s00203-017-1446-2
|
[2] |
HOU Y, GAO B, CUI J, et al. Combination of multi-enzyme expression fine-tuning and co-substrates addition improves phenyllactic acid production with an Escherichia coli whole-cell biocatalyst[J]. Bioresource Technology,2019,287:121423. doi: 10.1016/j.biortech.2019.121423
|
[3] |
赵士友, 吴润光, 杨婷婷, 等. 立构复合聚乳酸纤维制备技术的研究进展[J]. 棉纺织技术,2021,49(11):79−84. [ZHAO Shiyou, WU Runguang, YANG Tingting, et al. Research progress of stereo-complexed polylactide fiber preparation technology[J]. Cotton Textile Technology,2021,49(11):79−84. doi: 10.3969/j.issn.1001-7415.2021.11.022
|
[4] |
WANG Y, CAO W, LUO J, et al. One step open fermentation for lactic acid production from inedible starchy biomass by thermophilic Bacillus coagulans IPE22[J]. Bioresource Technology,2019,272:398−406. doi: 10.1016/j.biortech.2018.10.043
|
[5] |
BU C Y, YAN Y X, ZOU L H, et al. One-pot biosynthesis of furfuryl alcohol and lactic acid via a glucose coupled biphasic system using single Bacillus coagulans NL01[J]. Bioresource Technology,2020,313:123705. doi: 10.1016/j.biortech.2020.123705
|
[6] |
ALVES DE OLIVEIRA R, SCHNEIDER R, VAZ ROSSELL C E, et al. Polymer grade l-lactic acid production from sugarcane bagasse hemicellulosic hydrolysate using Bacillus coagulans[J]. Bioresource Technology Reports,2019,6:26−31. doi: 10.1016/j.biteb.2019.02.003
|
[7] |
孙研, 王永红. 不同凝结芽孢杆菌在单一及混合碳源下的发酵特性[J]. 食品工业科技,2020,41(16):74−80. [SUN Yan, WANG Yonghong. Fermentation characteristics of different strains of Bacillus coagulans with single and mixed carbon sources[J]. Science and Technology of Food Industry,2020,41(16):74−80. doi: 10.13386/j.issn1002-0306.2020.16.013
|
[8] |
NAIR A, SARMA S J. The impact of carbon and nitrogen catabolite repression in microorganisms[J]. Microbiological Research,2021,251:126831. doi: 10.1016/j.micres.2021.126831
|
[9] |
ABDEL RAHMAN M A, HASSAN S E D, ALREFAEY H M A, et al. Efficient co-utilization of biomass-derived mixed sugars for lactic acid production by Bacillus coagulans Azu-10[J]. Fermentation,2021,7(1):28−45. doi: 10.3390/fermentation7010028
|
[10] |
ZIMMERMAN T, IBRAHIM S A. Autolysis and cell death is affected by pH in L. reuteri DSM 20016 cells[J]. Foods,2021,10(1026):1026.
|
[11] |
ABE K, TOYOFUKU M, NOMURA N, et al. Autolysis-mediated membrane vesicle formation in Bacillus subtilis[J]. Environmental Microbiology,2021,23(5):2632−2647. doi: 10.1111/1462-2920.15502
|
[12] |
JUTURU V, WU J C. Production of high concentration of l-lactic acid from oil palm empty fruit bunch by thermophilic Bacillus coagulans JI12: Microbial production of l-lactic acid from Lignocellulose[J]. Biotechnology and Applied Biochemistry,2018,65(2):145−149. doi: 10.1002/bab.1567
|
[13] |
CHEN Y, DONG F, WANG Y. Systematic development and optimization of chemically defined medium supporting high cell density growth of Bacillus coagulans[J]. Applied Microbiology and Biotechnology,2016,100(18):8121−8134. doi: 10.1007/s00253-016-7644-z
|
[14] |
孙研. 凝结芽孢杆菌恒化培养及其在混合碳源中的代谢特性研究[D]. 上海: 华东理工大学, 2020
SUN Yan. Study on metabolic characteristics of Bacillus coagulans in chemostat culture and mixed carbon sources[D]. Shanghai: East China University of Science and Technology, 2020.
|
[15] |
VERMASSEN A, LEROY S, TALON R, et al. Cell wall hydrolases in bacteria: insight on the diversity of cell wall amidases, glycosidases and peptidases toward peptidoglycan[J]. Frontiers in Microbiology,2019,10:331. doi: 10.3389/fmicb.2019.00331
|
[16] |
WANG Y, CAO W, LUO J, et al. Exploring the potential of lactic acid production from lignocellulosic hydrolysates with various ratios of hexose versus pentose by Bacillus coagulans IPE22[J]. Bioresource Technology,2018,261:342−349. doi: 10.1016/j.biortech.2018.03.135
|
[17] |
LI F, WEI X, SUN Q, et al. Production of L-lactic acid in Saccharomyces cerevisiae through metabolic engineering and rational cofactor Engineering[J]. Sugar Tech,2022:1−12.
|
[18] |
QU C, CHEN L, LI Y, et al. The redox-sensing transcriptional repressor Rex is important for regulating the products distribution in Thermoanaerobacterium aotearoense SCUT27[J]. Applied Microbiology and Biotechnology,2020,104(12):5605−5617. doi: 10.1007/s00253-020-10554-7
|
[19] |
PARK J, CHOI Y. Cofactor engineering in cyanobacteria to overcome imbalance between NADPH and NADH: A mini review[J]. Frontiers of Chemical Science and Engineering,2017,11(1):66−71. doi: 10.1007/s11705-016-1591-1
|
[20] |
MISIOU O, ZOUROU C, KOUTSOUMANIS K. Development and validation of a predictive model for the effect of temperature, pH and water activity on the growth kinetics of Bacillus coagulans in non-refrigerated ready-to-eat food products[J]. Food Research International,2021,149:110705. doi: 10.1016/j.foodres.2021.110705
|
[21] |
LAVRENTEV F V, ASHIKHMINA M S, ULASEVICH S A, et al. Perspectives of Bacillus coagulans MTCC 5856 in the production of fermented dairy products[J]. LWT,2021,148:111623. doi: 10.1016/j.lwt.2021.111623
|
[22] |
BAGKAR P, GUPTA A K, MAITY C. Effect of high pressure processing (HPP) on spore preparation of probiotic Bacillus coagulans LBSC [DSM 17654][J]. International Journal of Food Engineering,2021,17(9):747−753. doi: 10.1515/ijfe-2020-0336
|
[23] |
CHEN Y, SUN Y, LIU Z, et al. Genome-scale modeling for Bacillus coagulans to understand the metabolic characteristics[J]. Biotechnology and Bioengineering,2020,117(11):3545−3558. doi: 10.1002/bit.27488
|
[24] |
ZHANG C, ZHOU C, ASSAVASIRIJINDA N, et al. Non-sterilized fermentation of high optically pure D-lactic acid by a genetically modified thermophilic Bacillus coagulans strain[J]. Microbial Cell Factories,2017,16(1):213. doi: 10.1186/s12934-017-0827-1
|
[25] |
TIAN X, WANG Y, CHU J, et al. L-Lactic acid production benefits from reduction of environmental osmotic stress through neutralizing agent combination[J]. Bioprocess and Biosystems Engineering,2014,37(9):1917−1923. doi: 10.1007/s00449-014-1166-9
|
[26] |
BURCHAM L R, HILL R A, CAULKINS R C, et al. Streptococcus pneumoniae metal homeostasis alters cellular metabolism[J]. Metallomics, The Royal Society of Chemistry,2020,12(9):1416−1427.
|
[27] |
KONG F, REN H Y, ZHAO L, et al. Semi-continuous lipid production and sedimentation of Scenedesmus sp. by metal ions addition in the anaerobic fermentation effluent[J]. Energy Conversion and Management,2020,203:112216. doi: 10.1016/j.enconman.2019.112216
|
[28] |
WANG X, AN P, GU Z, et al. Mitochondrial metal ion transport in cell metabolism and disease[J]. International Journal of Molecular Sciences,2021,22(14):7525. doi: 10.3390/ijms22147525
|
[29] |
ZHONG W, MENG W, ZHANG T, et al. Effects of metal ions on the reduction of penicillin fermentation residue by thermophilic bacteria[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,2017,39(18):1942−1947. doi: 10.1080/15567036.2017.1390013
|
[30] |
MAYER C, KLUJ R M, MUEHLECK M, et al. Bacteria’s different ways to recycle their own cell wall[J]. International Journal of Medical Microbiology,2019,309(7):151326. doi: 10.1016/j.ijmm.2019.06.006
|
[31] |
LO S C, YANG C Y, MATHEW D C, et al. Growth and autolysis of the kefir yeast Kluyveromyces marxianus in lactate culture[J]. Scientific Reports,2021,11(1):14552. doi: 10.1038/s41598-021-94101-y
|