WANG Caiyue, TIAN Kangming. Optimization of Enzymatic Hydrolysis of Jerusalem Artichoke to Produce Fructooligosaccharide Syrup and Its Function Evaluation[J]. Science and Technology of Food Industry, 2023, 44(2): 270−277. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050181.
Citation: WANG Caiyue, TIAN Kangming. Optimization of Enzymatic Hydrolysis of Jerusalem Artichoke to Produce Fructooligosaccharide Syrup and Its Function Evaluation[J]. Science and Technology of Food Industry, 2023, 44(2): 270−277. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050181.

Optimization of Enzymatic Hydrolysis of Jerusalem Artichoke to Produce Fructooligosaccharide Syrup and Its Function Evaluation

More Information
  • Received Date: May 16, 2022
  • Available Online: November 17, 2022
  • Jerusalem artichoke tuber (JAT) is rich in inulin and it is considered as one of the most important feedstocks for fructooligosaccharides (FOS) production. Direct enzymatic production of functional syrup from fresh JAT can benefit comprehensive processing of Jerusalem artichoke. In this study, the effects of various enzymes (endogenous hydrolases, endoinulinase, endoglucanase, xylanase, polygalacturonase and tannase) on fructooligosaccharide production from JAT were systematically studied and enzymatic process were further optimized. The optimal process was: first loading tannase (0.08 U/g) at 50 °C and pH 5 for 4 h, and then loading endoglucanase (0.1 U/g), xylanase (0.08 U/g), polygalacturonase (0.07 U/g) and endoinulinase (12 U/g) for 8 h. The FOS syrup was obtained by concentrated reaction solution for tow folds. The FOS and total polyphenols in FOS syrup reached 53.72 g/L and 3.11 g/L. The DPPH free radical scavenging rate, hydroxyl radical scavenging rate and total antioxidant capacity of FOS syrup were 82.23%, 30.47% and 2.78 μmol/mL, respectively. Replacing glucose in MRS medium with prepared fructooligosaccharide syrup as sole carbon source, the growth rates of Lactobacillus plantarum, Streptococcus thermophilus and Lactobacillus paracasei increased by 33.33%, 60.47% and 148.15%, respectively, compared with the unenzymatically hydrolyzed Jerusalem artichoke puree as the sole carbon source of MRS medium. The main results of this study provide a theoretical basis for the enzymatic production of prebiotic food from Jerusalem artichoke.
  • loading
  • [1]
    SMEKALOVA T N, LEBEDEVA N V, NOVIKOVA L Y. Morphological analysis of Jerusalem artichoke (Helianthus tuberosus L. ) accessions of different origin from VIR collection[J]. Proceedings of the Latvian Academy of Sciences,2019,73(6):502−512.
    [2]
    VOLK G M, RICHARDS K. Preservation methods for Jerusalem artichoke cultivars[J]. Hortscience,2006,41(1):80−83. doi: 10.21273/HORTSCI.41.1.80
    [3]
    TEFERRA T F. Possible actions of inulin as prebiotic polysaccharide: A review[J]. Food Frontiers,2021,2(4):407−416. doi: 10.1002/fft2.92
    [4]
    XU Y, ZHENG Z, XU Q, et al. Efficient conversion of inulin to inulooligosaccharides through endoinulinase from Aspergillus niger[J]. Journal of Agricultural and Food Chemistry,2016,64(12):2612−2618. doi: 10.1021/acs.jafc.5b05908
    [5]
    KRIUKOVA Y, JAKUBIAKAUGUSTYN A, ILYINSKA N, et al. Chain length distribution of inulin from dahlia tubers as influenced by the extraction method[J]. International Journal of Food Properties,2018(23):1−11.
    [6]
    KHAN M S, AHMAD D, KHAN M A. Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance[J]. Electronic Journal of Biotechnology,2015,18(4):257−266. doi: 10.1016/j.ejbt.2015.04.002
    [7]
    KUMAR C G, SRIPADA S, POORNACHANDRA Y. Role of materials science in food bioengineering[M]. United States: Alexandru Mihai Grumezescuy and Alina Maria Holban, 2018: 451-503.
    [8]
    SINGH R S, SINGH R P, KENNEDY J F. Recent insights in enzymatic synthesis of fructooligosaccharides from inulin[J]. International Journal of Biological Macromolecules,2016,85:565−572. doi: 10.1016/j.ijbiomac.2016.01.026
    [9]
    全国食品工业标准化技术委员会. 低聚糖质量要求第2部分: 低聚果糖: GB/T23528.2-2021[S]. 北京: 中国标准出版社, 2021.
    [10]
    FLORES-MALTOS D A, MUSSATTO S I, CONTRERAS-ESQUIVEL J C, et al. Biotechnological production and application of fructooligosaccharides[J]. Critical Reviews in Biotechnology,2016,36(2):259−267. doi: 10.3109/07388551.2014.953443
    [11]
    BEDZO O K K, VAN R E, GÖRGENS J F. Investigating the effect of different inulin-rich substrate preparations from Jerusalem artichoke (Helianthus tuberosus L.) tubers on efficient inulooligosaccharides production[J]. Preparative Biochemistry and Biotechnology,2020,51(5):440−449.
    [12]
    MUHAMMAD A R, FARHAN S, WASEEM K, et al. Functional and nutraceutical properties of fructo-oligosaccharides derivatives: A review[J]. International Journal of Food Properties,2021,24(1):1588−1602. doi: 10.1080/10942912.2021.1986520
    [13]
    殷忠义, 侍立峰, 张晓鹏, 等. 低聚果糖治疗功能性便秘的临床疗效分析[J]. 中西医结合心血管病电子杂志,2020,8(11):178. [YIN Zhongyi, SHI Lifeng, ZHANG Xiaopeng, et al. Clinical analysis of fructose-oligosaccharides in the treatment of functional constipation[J]. Electronic Journal of Integrated Traditional and Western Medicine and Cardiovascular Diseases,2020,8(11):178.
    [14]
    李海枝, 田巧基, 韩晓峰, 等. 益生元促钙吸收作用的研究进展[J]. 食品科技,2020,45(9):51−56. [LI Haizhi, TIAN Qiaoji, HAN Xiaofeng, et al. Research progress of prebiotics in promoting calcium absorption[J]. Food Science and Technology,2020,45(9):51−56. doi: 10.13684/j.cnki.spkj.2020.09.008
    [15]
    DELZENNE N M, OLIVARES M, NEYRINCK A M, et al. Nutritional interest of dietary fiber and prebiotics in obesity: Lessons from the MyNewGut consortium[J]. Clinical Nutrition,2020,39(2):414−424. doi: 10.1016/j.clnu.2019.03.002
    [16]
    YU R Q, YIN Y X, CAO M K, et al. Fructo-oligosaccharides lower serum lipid levels and suppress high-fat/high-sugar diet-induced inflammation by elevating serum and gut levels of short-chain fatty acids[J]. Journal of International Medical Research,2020,48(4):030006051989671.
    [17]
    陈兴都, 翟丹云, 陈庆安, 等. 基于菊芋低聚果糖的酶解工艺研究[J]. 食品研究与开发,2017,38(11):109−114. [CHEN Xingdu, ZHAI Danyun, CHEN Qingan, et al. Study on enzymatic hydrolysis processing of fructo-oligosaccharide from Jerusalem artichoke[J]. Food Research and Development,2017,38(11):109−114. doi: 10.3969/j.issn.1005-6521.2017.11.024
    [18]
    佟新新. 黑曲霉纤维素酶系的作用特征及其在蔗渣水解中的应用[D]. 天津: 天津科技大学, 2017

    TONG Xinxin. Characteristics of cellulase system of Aspergillus niger and its application in hydrolysis of bagasse[D]. Tianjin: Tianjin University of Science and Technology, 2017.
    [19]
    袁巧云, 张建梅, 唐钰, 等. 响应面法优化新疆风味调和茶总糖的提取工艺[J]. 淮阴师范学院学报(自然科学版),2020,19(3):218−222,232. [YUAN Qiaoyun, ZHANG Jianmei, TANG Yu, et al. Optimization of extraction technique of the total sugar from Xinjiang hearbal tea by response surface methodology[J]. Journal of Huaiyin Teachers College(Natural Science Edition),2020,19(3):218−222,232. doi: 10.16119/j.cnki.issn1671-6876.2020.03.006
    [20]
    高文军, 李卫红, 王喜明, 等. 3, 5-二硝基水杨酸法测定蔓菁中还原糖和总糖含量[J]. 中国药业,2020,29(9):113−116. [GAO Wenjun, LI Weihong, WANG Ximing, et al. Determination of reducing sugar and total sugar in turnip by 3, 5-dinitrosalicylic acid colorimetry[J]. China Pharmaceuticals,2020,29(9):113−116. doi: 10.3969/j.issn.1006-4931.2020.09.034
    [21]
    刘彬. 菊芋菊糖的制备及其降解生产低聚果糖[D]. 无锡: 江南大学, 2016

    LIU Bin. Research on the production of inulin from Jerusalem artichoke and its degradation to fructooligosaccharide[D]. Wuxi: Jiangnan University, 2016.
    [22]
    DONG T, SHI J, JIANG C, et al. A short-term carbon dioxide treatment inhibits the browning of fresh-cut burdock[J]. Postharvest Biology and Technology,2015,110:96−102. doi: 10.1016/j.postharvbio.2015.07.014
    [23]
    SLUITER A, HAMES B, RUIZ R, et al. Determination of structural carbohydrates and lignin in biomass: NREL/TP-510-42618[R]. Golden: U. S. Department of Energy Office of Energy Efficiency and Renewable Energy, 2008.
    [24]
    全国果品标准化技术委员会. NY/T2016-2011水果及其制品中果胶含量的测定分光光度法[S]. 郑州: 中华人民共和国农业部, 2011

    National Technical Committee for Fruit Standardization. NY/T2016-2011 Determination of pectin content in fruits and their products by spectrophotometry[S]. Zhengzhou: Ministry of Agriculture of the People's Republic of China, 2011.
    [25]
    RAGURAMAN V, ABRAHAM L S, et al. Sulfated polysaccharide from Sargassum tenerrimum attenuates oxidative stress induced reactive oxygen species production in in vitro and in zebrafish model[J]. Carbohydrate Polymers,2018,203:441−449.
    [26]
    CHUNG S K, OSAWA T, KAWAKISHI S. Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra)[J]. Bioscience, Biotechnology, and Biochemistry,1997,61(1):118−123. doi: 10.1271/bbb.61.118
    [27]
    AMINJAFARI A, MIROLIAEI M, ANGELOVA V T, et al. Antioxidant activity and protective role on protein glycation of synthetic aminocoumarins[J]. Electronic Journal and Biotechnology,2016,24:43−48. doi: 10.1016/j.ejbt.2016.08.004
    [28]
    陈韫慧, 方思璇, 陈佳琪, 等. 不同益生元对植物乳杆菌生长的影响[J]. 食品与发酵工业,2020,46(21):28−33. [CHEN Yunhui, FANG Sixuan, CHEN Jiaqi, et al. Effects of different prebiotics on the growth of Lactobacillus plantarum[J]. Food and Fermentation Industries,2020,46(21):28−33. doi: 10.13995/j.cnki.11-1802/ts.024440
    [29]
    LUMINITA C, MONICA C, ENUTA I, et al. Valorification of Jerusalem artichoke tubers (Helianthus tuberosus) for achieving of functional ingredient with high nutritional value[J]. “Agriculture for Life, Life for Agriculture” Conference Proceedings,2018,1(1):276−283. doi: 10.2478/alife-2018-0041
    [30]
    ADRAR N S, MADANI K, ADRAR S. Impact of the inhibition of proteins activities and the chemical aspect of polyphenols-proteins interactions[J]. Pharma Nutrition,2019,7:100142. doi: 10.1016/j.phanu.2019.100142
    [31]
    SAGU S T, NSO E J, KARMAKAR S, et al. Optimisation of low temperature extraction of banana juice using commercial pectinase[J]. Food Chemistry,2014(151):182−190.
    [32]
    POLOZELI M L T M, RIZZATTI A C S, MONTI R, et al. Xylanases from fungi: Properties and industrial applications[J]. Applied Microbiology and Biotechnology,2005,67(5):577−591. doi: 10.1007/s00253-005-1904-7
    [33]
    KUHAD R. C, GUPTA R, SINGH A. Microbial cellulases and their industrial applications[J]. Enzyme Research,2011:1−10.
    [34]
    王志伟. 聚半乳糖醛酸酶的酶学性质及产物分析[D]. 青岛: 中国海洋大学, 2007

    WANG Zhiwei. Enzymological characteristics of polygalacturonase and its products analysis[D]. Qingdao: Ocean University of China, 2007.
    [35]
    石润润. 内切葡聚糖酶的酶库构建和酶学特性研究[D]. 上海: 华东理工大学, 2013

    SHI Runrun. Construction of endoglucanases library and characterization of enzymatic properties[D]. Shanghai: East China University of Science and Technology, 2013.
    [36]
    李鑫, 周瑾, 赖晨欢, 等. 菊芋渣选择性吸附天然菊粉酶催化制备短链低聚果糖[J]. 生物质化学工程,2017,51(6):33−37. [LI Xin, ZHOU Jin, LAI Chenhuan, et al. Selective adsorption of native inulinase by Jerusalem Artichoke residue and preparation of short-chain fructooligosaccharides[J]. Biomass Chemical Engineering,2017,51(6):33−37. doi: 10.3969/j.issn.1673-5854.2017.06.006
    [37]
    CHANDINI S K, RAO L J, GOWTHAMAN M K, et al. Enzymatic treatment to improve the quality of black tea extracts[J]. Food Chemistry,2011,127(3):1039−1045. doi: 10.1016/j.foodchem.2011.01.078
    [38]
    BAIK J H, SHIN K, PARK Y, et al. Biotransformation of catechin and extraction of active polysaccharide from green tea leaves via simultaneous treatment with tannase and pectinase[J]. Journal of the Science of Food and Agriculture,2014,95(11):2337−2344.

Catalog

    Article Metrics

    Article views (236) PDF downloads (21) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return