ZHANG Yiping, LIU Deyang, CHI Chengdeng, et al. Progress in Key Factors and the Modulation Technology of Starch Hydrothermal Stability[J]. Science and Technology of Food Industry, 2023, 44(7): 438−447. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050104.
Citation: ZHANG Yiping, LIU Deyang, CHI Chengdeng, et al. Progress in Key Factors and the Modulation Technology of Starch Hydrothermal Stability[J]. Science and Technology of Food Industry, 2023, 44(7): 438−447. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050104.

Progress in Key Factors and the Modulation Technology of Starch Hydrothermal Stability

More Information
  • Received Date: May 10, 2022
  • Available Online: February 03, 2023
  • Starch is the main carbohydrate source in the food system, and its hydrothermal stability during food processing is closely related to its pasting properties and nutritional functionalities. By improving the hydrothermal stability of starch, the digestion rate and degree of starch in vivo can be significantly delayed, which is of great significance for the regulation of blood glucose in vivo. From the viewpoint of the intrinsic relationships between the multi-scale structures and functionalities of starch, this review summarizes the evaluation index and evaluation method of starch hydrothermal stability and systematically discusses the key structures and processing technologies affecting starch hydrothermal stability. The pathways to modulate starch hydrothermal stability are also discussed. Additionally, perspectives regarding the current of starch hydrothermal stability modulation are proposed, which may provide theoretical foundation for the development of starch-based functional foods.
  • loading
  • [1]
    WANG S, COPELAND L. Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: A review[J]. Food & Function,2013,4(11):1564−1580.
    [2]
    BONORA E, MUGGEO M. Postprandial blood glucose as a risk factor for cardiovascular disease in Type II diabetes: The epidemiological evidence[J]. Diabetologia,2001,44(12):2107−2114. doi: 10.1007/s001250100020
    [3]
    CAVALOT F, PETRELLI A, TRAVERSA M, et al. Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: Lessons from the san Luigi gonzaga diabetes study[J]. The Journal of Clinical Endocrinology & Metabolism,2006,91(3):813−819.
    [4]
    BRAND MILLER J C. Glycemic load and chronic disease[J]. Nutrion Reviews,2010(suppl_5):s49−s55.
    [5]
    CHI C, LI X, ZHANG Y, et al. Progress in tailoring starch intrinsic structures to improve its nutritional value[J]. Food Hydrocolloids,2021,31:106447.
    [6]
    TAN X, LI X, CHEN L, et al. Effect of heat-moisture treatment on multi-scale structures and physicochemical properties of breadfruit starch[J]. Carbohydrate Polymers,2017,161:286−294. doi: 10.1016/j.carbpol.2017.01.029
    [7]
    ZHANG B, CHEN L, ZHAO Y, et al. Structure and enzymatic resistivity of debranched high temperature-pressure treated high-amylose corn starch[J]. Journal of Cereal Science,2013,57(3):348−355. doi: 10.1016/j.jcs.2012.12.006
    [8]
    ZHANG H, ZHOU X, HE J, et al. Impact of amylosucrase modification on the structural and physicochemical properties of native and acid-thinned waxy corn starch[J]. Food Chemistry,2017,220:413−419. doi: 10.1016/j.foodchem.2016.10.030
    [9]
    WANG S, CHAO C, CAI J, et al. Starch-lipid and starch-lipid-protein complexes: A comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(3):1056−1079. doi: 10.1111/1541-4337.12550
    [10]
    CHI C, LI X, HUANG S, et al. Basic principles in starch multi-scale structuration to mitigate digestibility: A review[J]. Trends in Food Science & Technology,2021,109:154−168.
    [11]
    王宏伟. 湿热处理和脂肪酸复合作用调控大米淀粉消化性能及营养功能的研究[D]. 广州: 华南理工大学, 2017

    WANG Hongwei. Understanding the digestion and nutritional function of rice starch subjected to heat-moisture treatment and fatty acid complex[D]. Guangzhou: South China University of Technology, 2017.
    [12]
    ZHU F. Relationships between amylopectin internal molecular structure and physicochemical properties of starch[J]. Trends in Food Science & Technology,2018,78(1):234−242.
    [13]
    HSIEN CHIH H W, SARKO A. The double-helical molecular structure of crystalline α-amylose[J]. Carbohydrate Research,1978,61(1):27−40. doi: 10.1016/S0008-6215(00)84464-X
    [14]
    SARKO A, WU H C. The crystal structures of A-, B- and C- polymorphs of amylose and starch[J]. Starch-Stärke,1978,30(3):73−78.
    [15]
    JANE J, CHEN Y Y, LEE L F, et al. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch[J]. Cereal Chemistry,1999,76(5):629−637. doi: 10.1094/CCHEM.1999.76.5.629
    [16]
    ELIASSON A C. Starch in food: Structure, function and applications[M]. CRC press, 2004.
    [17]
    BERTOFT E. Understanding starch structure: Recent progress[J]. Agronomy,2017,7(3):56. doi: 10.3390/agronomy7030056
    [18]
    CHI C, LI X, LU P, et al. Dry heating and annealing treatment synergistically modulate starch structure and digestibility[J]. International Journal of Biolpgical Macromolecules,2019,137:554−561. doi: 10.1016/j.ijbiomac.2019.06.137
    [19]
    XU J, BLENNOW A, LI X, et al. Gelatinization dynamics of starch in dependence of its lamellar structure, crystalline polymorphs and amylose content[J]. Carbohydrate Polymers,2020,229:115481. doi: 10.1016/j.carbpol.2019.115481
    [20]
    CAI L, BAI Y, SHI Y C. Study on melting and crystallization of short-linear chains from debranched waxy starches by in situ synchrotron wide-angle X-ray diffraction[J]. Journal of Cereal Science,2012,55(3):373−379. doi: 10.1016/j.jcs.2012.01.013
    [21]
    YANG Z, GU Q, HEMAR Y. In situ study of maize starch gelatinization under ultra-high hydrostatic pressure using X-ray diffraction[J]. Carbohydrate Polymers,2013,97(1):235−238. doi: 10.1016/j.carbpol.2013.04.075
    [22]
    ZHANG B, CHEN L, XIE F, et al. Understanding the structural disorganization of starch in water-ionic liquid solutions[J]. Physical Chemistry Chemical Physics,2015,17(21):13860−13871. doi: 10.1039/C5CP01176K
    [23]
    TAO J, HUANG J, YU L, et al. A new methodology combining microscopy observation with artificial neural networks for the study of starch gelatinization[J]. Food Hydrocolloids,2018,74:151−158. doi: 10.1016/j.foodhyd.2017.07.037
    [24]
    RATNAYAKE W, JACKSON D. Chapter 5 starch gelatinization[J]. Advances in Food and Nutrition Research,2008:221−268.
    [25]
    HU X, HUANG Z, ZENG Z, et al. Improving resistance of crystallized starch by narrowing molecular weight distribution[J]. Food Hydrocolloids,2020,103:105641. doi: 10.1016/j.foodhyd.2020.105641
    [26]
    JI Z, YU L, LIU H, et al. Effect of pressure with shear stress on gelatinization of starches with different amylose/amylopectin ratios[J]. Food Hydrocolloids,2017,72:331−337. doi: 10.1016/j.foodhyd.2017.06.015
    [27]
    LIU H, YU L, XIE F, et al. Gelatinization of cornstarch with different amylose/amylopectin content[J]. Carbohydrate Polymers,2006,65(3):357−363. doi: 10.1016/j.carbpol.2006.01.026
    [28]
    YANG X, CHI C, LIU X, et al. Understanding the structural and digestion changes of starch in heat-moisture treated polished rice grains with varying amylose content[J]. International Journal of Biological Macromolecules,2019,139:785−792. doi: 10.1016/j.ijbiomac.2019.08.051
    [29]
    SHI Y, SEIB P. The structure of four waxy starches related to gelatinization and retrogradation[J]. Carbohydrate Research,1992,227(6):131−145.
    [30]
    VANDEPUTTE G, VERMEYLEN R, GEEROMS J, et al. Rice starches III. Structural aspects provide insight in amylopectin retrogradation properties and gel texture[J]. Journal of Cereal Science,2003,38(1):61−68. doi: 10.1016/S0733-5210(02)00142-X
    [31]
    ZHANG H, WANG R, CHEN Z, et al. Enzymatically modified starch with low digestibility produced from amylopectin by sequential amylosucrase and pullulanase treatments[J]. Food Hydrocolloids,2019,95:195−202. doi: 10.1016/j.foodhyd.2019.04.036
    [32]
    KIM H, CHOI S, CHOI H, et al. Amylosucrase-modified waxy potato starches recrystallized with amylose: The role of amylopectin chain length in formation of low-digestible fractions[J]. Food Chemistry,2020,318:126490. doi: 10.1016/j.foodchem.2020.126490
    [33]
    JUNG D, PARK C, KIM H, et al. Enzymatic modification of potato starch by amylosucrase according to reaction temperature: Effect of branch-chain length on structural, physicochemical, and digestive properties[J]. Food Hydrocolloids,2022,122:107086. doi: 10.1016/j.foodhyd.2021.107086
    [34]
    SHIN H, CHOI S, PARK C, et al. Preparation of starches with low glycaemic response using amylosucrase and their physicochemical properties[J]. Carbohydrate Polymers,2010,82(2):489−497. doi: 10.1016/j.carbpol.2010.05.017
    [35]
    KIM B, KIM H, MOON T, et al. Branch chain elongation by amylosucrase: Production of waxy corn starch with a slow digestion property[J]. Food Chemistry,2014,152:113−120. doi: 10.1016/j.foodchem.2013.11.145
    [36]
    WANG R, ZHANG T, HE J, et al. Tailoring digestibility of starches by chain elongation using amylosucrase from Neisseria polysaccharea via a zipper reaction mode[J]. Journal of Agricultural and Food Chemistry,2020,68(1):225−234. doi: 10.1021/acs.jafc.9b05087
    [37]
    KIM B, KIM H, YOO S. Characterization of enzymatically modified rice and barley starches with amylosucrase at scale-up production[J]. Carbohydrate Polymers,2015,125:61−68. doi: 10.1016/j.carbpol.2015.02.048
    [38]
    WANG P, LUO Z, PENG X. Encapsulation of vitamin E and soy isoflavone using spiral dextrin: Comparative structural characterization, release kinetics, and antioxidant capacity during simulated gastrointestinal tract[J]. Journal of Agricultural and Food Chemistry,2018,66(40):10598−10607. doi: 10.1021/acs.jafc.8b00644
    [39]
    CHAO C, CAI J, YU J, et al. Toward a better understanding of starch-monoglyceride-protein interactions[J]. Journal of Agricultural and Food Chemistry,2018,66(50):13253−13259. doi: 10.1021/acs.jafc.8b04742
    [40]
    CHI C, LI X, FENG T, et al. Improvement in nutritional attributes of rice starch with dodecyl gallate complexation: A molecular dynamic simulation and in vitro study[J]. Journal of Agricultural and Food Chemistry,2018,66(35):9282−9290. doi: 10.1021/acs.jafc.8b02121
    [41]
    WHITTAM M, NOEL T, RING S. Melting behaviour of A- and B-type crystalline starch[J]. International Journal of Biological Macromolecules,1990,12(6):359−362. doi: 10.1016/0141-8130(90)90043-A
    [42]
    WANG S, WANG J, WANG S, et al. Annealing improves paste viscosity and stability of starch[J]. Food Hydrocolloids,2017,62:203−211. doi: 10.1016/j.foodhyd.2016.08.006
    [43]
    WANG S, WANG J, YU J, et al. A comparative study of annealing of waxy, normal and high-amylose maize starches: The role of amylose molecules[J]. Food Chemistry,2014,164:332−338. doi: 10.1016/j.foodchem.2014.05.055
    [44]
    ZAVAREZE E, DIAS A. Impact of heat-moisture treatment and annealing in starches: A review[J]. Carbohydrate Polymers,2011,83(2):317−328. doi: 10.1016/j.carbpol.2010.08.064
    [45]
    WANG H, ZHANG B, CHEN L, et al. Understanding the structure and digestibility of heat-moisture treated starch[J]. International Journal of Biological Macromolecules,2016,88:1−8. doi: 10.1016/j.ijbiomac.2016.03.046
    [46]
    WANG H, WANG Z, LI X, et al. Multi-scale structure, pasting and digestibility of heat moisture treated red adzuki bean starch[J]. International Journal of Biological Macromolecules,2017,102:162−169. doi: 10.1016/j.ijbiomac.2017.03.144
    [47]
    WANG H, LIU Y, CHEN L, et al. Insights into the multi-scale structure and digestibility of heat-moisture treated rice starch[J]. Food Chemistry,2018,242:323−329. doi: 10.1016/j.foodchem.2017.09.014
    [48]
    WANG S, JIN F, YU J. Pea starch annealing: New insights[J]. Food and Bioprocess Technology,2012,6(12):3564−3575.
    [49]
    WANG S, GUO P, XIANG F, et al. Effect of dual modification by annealing and ultrahigh pressure on properties of starches with different polymorphs[J]. Carbohydrate Polymers,2017,174:549−557. doi: 10.1016/j.carbpol.2017.06.120
    [50]
    王宏伟, 丁江涛, 张艳艳, 等. 湿热处理对薏米淀粉聚集态结构及糊化特性的影响[J]. 食品科学,2020,41(17):7. [WANG Hongwei, DING Jiangtao, ZHANG Yanyan, et al. Effects of moisture and heat treatment on the aggregation structure and gelatinization characteristics of barley starch[J]. Food Science,2020,41(17):7.
    [51]
    WATCHARATEWINKUL Y, PUTTANLEK C, RUNGSARDTHONG V, et al. Pasting properties of a heat-moisture treated canna starch in relation to its structural characteristics[J]. Carbohydrate Polymers,2009,75(3):505−511.
    [52]
    PUKKAHUTA C, SUWANNAWAT B, SHOBSNGOB S, et al. Comparative study of pasting and thermal transition characteristics of osmotic pressure and heat-moisture treated corn starch[J]. Carbohydrate Polymers,2008,72(3):527−536.
    [53]
    SUI Z, YAO T, ZHAO Y, et al. Effects of heat-moisture treatment reaction conditions on the physicochemical and structural properties of maize starch: moisture and length of heating[J]. Food Chemistry,2015,173:1125−1132. doi: 10.1016/j.foodchem.2014.11.021
    [54]
    PINTO V, VANIER N, KLEIN B, et al. Physicochemical, crystallinity, pasting and thermal properties of heat-moisture-treated pinhão starch[J]. Starch-Stärke,2012,64(11):855−863.
    [55]
    CHATPAPAMON C, WANDEE Y, UTTAPAP D, et al. Pasting properties of cassava starch modified by heat-moisture treatment under acidic and alkaline pH environments[J]. Carbohydrate Polymers,2019,215:338−347. doi: 10.1016/j.carbpol.2019.03.089
    [56]
    HE H, ZHENG B, WANG H, et al. Insights into the multi-scale structure and in vitro digestibility changes of rice starch-oleic acid/linoleic acid complex induced by heat-moisture treatment[J]. Food Research International,2020,137:109612. doi: 10.1016/j.foodres.2020.109612
    [57]
    WANG S, LI C, COPELAND L, et al. Starch retrogradation: a comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety,2015,14(5):568−585. doi: 10.1111/1541-4337.12143
    [58]
    ZHOU H, WANG L, LIU G, et al. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase waxy in synthesizing resistant starch in rice[J]. Proceedings of the National Academy of Sciences,2016,113(45):12844−12849. doi: 10.1073/pnas.1615104113
    [59]
    MIAO M, JIANG B, ZHANG T. Effect of pullulanase debranching and recrystallization on structure and digestibility of waxy maize starch[J]. Carbohydrate Polymers,2009,76(2):214−221. doi: 10.1016/j.carbpol.2008.10.007
    [60]
    CAI L, SHI Y C. Self-assembly of short linear chains to A- and B-type starch spherulites and their enzymatic digestibility[J]. Journal of Agricultural and Food Chemistry,2013,61(45):10787−10797. doi: 10.1021/jf402570e
    [61]
    LIU X, WANG Y, YU L, et al. Thermal degradation and stability of starch under different processing conditions[J]. Starch-Stärke,2013,65(1-2):48−60.
    [62]
    RUDNIK E, MATUSCHEK G, MILANOV N, et al. Thermal stability and degradation of starch derivatives[J]. Journal of Thermal Analysis and Calorimetry,2006,85(2):267−270. doi: 10.1007/s10973-005-7274-7
    [63]
    TAN L, KONG L. Starch-guest inclusion complexes: Formation, structure, and enzymatic digestion[J]. Critical Reviews in Food Science and Nutrition,2019,60(5):1−11.
    [64]
    CAI J, CHAO C, NIU B, et al. Effects of debranching on the formation of maize starch-lauric acid-beta-lactoglobulin complexes[J]. Journal of Agricultural and Food Chemistry,2021,69(32):9086−9093. doi: 10.1021/acs.jafc.0c07230
    [65]
    WANG S, ZHENG M, YU J, et al. Insights into the formation and structures of starch-protein-lipid complexes[J]. Journal of Agricultural and Food Chemistry,2017,65(9):1960−1966. doi: 10.1021/acs.jafc.6b05772
    [66]
    ZHOU X, WANG R, ZHANG Y, et al. Effects of amylose chain length and heat treatment on amylose-glycerol monocaprate complex formation[J]. Carbohydrate Polymers,2013,95(1):227−232. doi: 10.1016/j.carbpol.2013.02.051
    [67]
    ZHENG M, CHAO C, YU J, et al. Effects of chain length and degree of unsaturation of fatty acids on structure and in vitro digestibility of starch-protein-fatty acid complexes[J]. Journal of Agricultural and Food Chemistry,2018,66(8):1872−1880. doi: 10.1021/acs.jafc.7b04779
    [68]
    NIU B, CHAO C, CAI J, et al. Effects of cooling rate and complexing temperature on the formation of starch-lauric acid-beta-lactoglobulin complexes[J]. Carbohydrate Polymers,2021,253:117301. doi: 10.1016/j.carbpol.2020.117301
    [69]
    NIU B, CHAO C, CAI J, et al. Effect of pH on formation of starch complexes with lauric acid and β-lactoglobulin[J]. LWT-Food Science and Technology,2020,132:109915. doi: 10.1016/j.lwt.2020.109915
    [70]
    NIU B, CHAO C, CAI J, et al. The effect of NaCl on the formation of starch-lipid complexes[J]. Food Chemistry,2019,299:125133. doi: 10.1016/j.foodchem.2019.125133

Catalog

    Article Metrics

    Article views (253) PDF downloads (27) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return