XIAO Minmin, XING Xinyue, LIU Wenguang, et al. Screening of an Alcohol Tolerant and High-yield L-lactic Acid Strain and Optimization of Culture Medium[J]. Science and Technology of Food Industry, 2023, 44(8): 135−143. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040147.
Citation: XIAO Minmin, XING Xinyue, LIU Wenguang, et al. Screening of an Alcohol Tolerant and High-yield L-lactic Acid Strain and Optimization of Culture Medium[J]. Science and Technology of Food Industry, 2023, 44(8): 135−143. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040147.

Screening of an Alcohol Tolerant and High-yield L-lactic Acid Strain and Optimization of Culture Medium

More Information
  • Received Date: April 13, 2022
  • Available Online: February 20, 2023
  • In order to increase the yield of L-lactic acid and reduce the production cost of L-lactic acid, a strain of Lactobacillus rhamnosus AK-0779 with alcohol tolerance and high yield of L-lactic acid was screened and domesticated. Corn distiller's grains were used as the nitrogen source for the fermentation medium of strain AK-0779 instead of part of yeast powder. On the basis of single factor experiments, three factors and three levels response surface optimization experiments were carried out on the addition of glucose, yeast powder and corn distiller's grains. The results showed that the optimal fermentation medium was glucose 9.80%, corn distiller's grains 0.98%, yeast powder 1.72%, L-lactic acid yield 78.91 g/L and sugar acid conversion rate 80.52%. There was no significant difference in the yield of L-lactic acid compared with yeast powder, which was 82.36 g/L, indicating that corn distiller's grains could effectively replace part of yeast powder as the nitrogen source of fermentation medium and reduce the production cost of L-lactic acid.
  • loading
  • [1]
    孙华. 以玉米为原料发酵生产L-乳酸工艺条件优化[J]. 中国新技术新产品,2019(22):51−52. [SUN Hua. Optimization of fermentation conditions for L-lactic acid production from maize[J]. New Technology and New Products in China,2019(22):51−52. doi: 10.3969/j.issn.1673-9957.2019.22.030
    [2]
    WANG Y, CHEN C, CAI D, et al. The optimization of L-lactic acid production from sweet sorghum juice by mixed fermentation of Bacillus coagulans and Lactobacillus rhamnosus under unsterile conditions[J]. Bioresource Technology,2016,218:1098−1105. doi: 10.1016/j.biortech.2016.07.069
    [3]
    KARIN H, BRBEL H H. Factors affecting the fermentative lactic acid production from renewable resources 1[J]. Enzyme and Microbial Technology,2000,26(2-4):87−107. doi: 10.1016/S0141-0229(99)00155-6
    [4]
    吴晖, 李明阳, 刘冬梅, 等. 鼠李糖乳杆菌发酵生产L-乳酸培养基的优化[J]. 食品工业科技,2008(4):81−84. [WU Hui, LI Mingyang, LIU Dongmei, et al. Optimization of L-lactic acid fermentation medium by Lactobacillus rhamnosus[J]. Science and Technology of Food Industry,2008(4):81−84. doi: 10.13386/j.issn1002-0306.2008.04.011
    [5]
    张为巍, 李元媛, 周铭锋, 等. 产L-乳酸的鼠李糖乳杆菌发酵培养基的优化[J]. 广州化工,2012,40(7):79−82. [ZHANG Weiwei, LI Yuanyuan, ZHOU Mingfeng, et al. Optimization of fermentation medium for L-lactic acid producing Lactobacillus rhamnosus[J]. Guangzhou Chemical Industry Co., Ltd.,2012,40(7):79−82. doi: 10.3969/j.issn.1001-9677.2012.07.028
    [6]
    李海洋, 韩军岐, 徐长亮. 鼠李糖乳杆菌乳酸发酵特性及碳氮源研究[J]. 乳业科学与技术,2012,35(2):17−20. [LI Haiyang, HAN Junqi, XU Changliang. Study on lactic acid fermentation characteristics and carbon and nitrogen sources of Lactobacillus rhamnosus[J]. Dairy Science and Technology,2012,35(2):17−20. doi: 10.3969/j.issn.1671-5187.2012.02.005
    [7]
    胡嘉欢, 张谷涵, 付永前, 等. 米根霉一步发酵法高效积累L-乳酸的策略[J]. 过程工程学报,2017,17(2):375−381. [HU Jiahuan, ZHANG Guhan, FU Yongqian, et al. The strategy of efficient accumulation of L-lactic acid by Rhizopus oryzae in one-step fermentation[J]. Journal of Process Engineering,2017,17(2):375−381. doi: 10.12034/j.issn.1009-606X.216303
    [8]
    BERNARDO M P, COELHO L F, SASS D C, et al. L-(+)-lactic acid production by Lactobacillus rhamnosus B103 from dairy industry waste[J]. Brazilian Journal of Microbiology,2016,47(3):640−646. doi: 10.1016/j.bjm.2015.12.001
    [9]
    ZHENG Jin, GAO Ming, WANG Qunhui, et al. Enhancement of l-lactic acid production via synergism in open co-fermentation of sophora flavescens residues and food waste[J]. Bioresource Technology,2017,225:159−164. doi: 10.1016/j.biortech.2016.11.055
    [10]
    赵鹏, 黄霞. 利用可再生资源及有机废物发酵生产乳酸的研究进展[J]. 食品与发酵工业,2001(4):60−65. [ZHAO Peng, HUANG Xia. Research progress in production of lactic acid by fermentation from renewable resources and organic wastes[J]. Food and Fermentation Industries,2001(4):60−65. doi: 10.3321/j.issn:0253-990X.2001.04.013
    [11]
    王勇. 以廉价生物质生产L-乳酸新方法研究[D]. 北京: 北京化工大学, 2017

    WANG Yong. Study on a new method of producing L-lactic acid from cheap biomass [D]. Beijing: Beijing University of Chemical Technology, 2017.
    [12]
    于雷, 雷霆, 裴晓林, 等. L-乳酸发酵培养基中氮源的优化[J]. 食品科技,2007(6):49−53. [YU Lei, LEI Ting, PEI Xiaolin, et al. Optimization of nitrogen source in L-lactic acid fermentation medium[J]. Food Technology,2007(6):49−53. doi: 10.3969/j.issn.1005-9989.2007.06.014
    [13]
    NGUYEN C M, KIM J S, HWANG H J, et al. Production of l-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli.[J]. Bioresource Technology,2012,110:1302−1305.
    [14]
    王玉华, 陈萍, 朴春红, 等. 基因组改组鼠李糖乳杆菌生产L-乳酸发酵培养基的优化[J]. 食品科学,2009,30(21):316−319. [WANG Yuhua, CHEN Ping, PIAO Chunhong, et al. Optimization of L-lactic acid fermentation medium produced by genome shuffled Lactobacillus rhamnosus[J]. Food Science,2009,30(21):316−319.
    [15]
    梁建光. 综合评价玉米酒糟及其可溶物[J]. 中国奶牛,2007(S1):64−66. [LIANG Jianguang. Comprehensive evaluation of corn distiller's grains and their soluble substances[J]. Chinese Dairy Cows,2007(S1):64−66.
    [16]
    SUPARNA S, NARAYAN B S, HEMEN S, et al. Utilization of distillers dried grains with solubles as a cheaper substrate for sophorolipid production by Rhodotorula babjevae YS3[J]. Journal of Environmental Chemical Engineering,2021,9(4):105494. doi: 10.1016/j.jece.2021.105494
    [17]
    石孔泉. 基于玉米浓醪酒糟基质的L-乳酸菌株的选育与发酵研究[D]. 无锡: 江南大学, 2006

    SHI Kongquan. Breeding and fermentation of L-lactic acid strains based on the substrate of corn high ferment [D]. Wuxi: Jiangnan University, 2006.
    [18]
    李凯年, 逯德山. 在猪饲料中利用干玉米酒糟残液研究进展[J]. 猪业科学,2009,26(4):62−65. [LI Kainian, LU Deshan. Research progress on utilization of dry corn distiller's grains residue in pig feed[J]. Pig Science,2009,26(4):62−65. doi: 10.3969/j.issn.1673-5358.2009.04.022
    [19]
    杨一芃. 玉米酒糟的营养价值及猪饲料配比方法[J]. 山西农业科学,2010,38(4):95−96. [YANG Yipeng. Nutritional value of corn distiller's grains and proportioning method of pig feed[J]. Shanxi Agricultural Science,2010,38(4):95−96. doi: 10.3969/j.issn.1002-2481.2010.04.33
    [20]
    吴天祥, 杨海龙, 石贵阳, 等. 玉米酒糟乳酸菌发酵饲料培养基优化研究[J]. 饲料研究,2003(12):6−8. [WU Tianxiang, YANG Hailong, SHI Guiyang, et al. Study on optimization of feed medium for lactic acid bacteria fermentation of corn distiller's grains[J]. Feed Research,2003(12):6−8. doi: 10.3969/j.issn.1002-2813.2003.12.003
    [21]
    JAE-CHEOL J, ZHIKAI Z, E U P, et al. Effects of feeding corn distillers dried grains with solubles diets without or with supplemental enzymes on growth performance of pigs: A meta-analysis[J]. Translational Animal Science,2021,5(2):1−15.
    [22]
    杨嘉伟. 玉米酒糟浸出脱脂研究[D]. 无锡: 江南大学, 2013

    YANG Jiawei. Study on degreasing of corn distiller's grains [D]. Wuxi: Jiangnan University. 2013.
    [23]
    张拴力, 扈士海, 崔云, 等. 玉米酒糟为主要氮源的Nisin生产菌株的诱变选育[J]. 河北大学学报(自然科学版),2016,36(4):417−423. [ZHANG Shuanli, HU Shihai, CUI Yun, et al. Mutation breeding of nisin producing strain with corn distiller's grains as the main nitrogen source[J]. Journal of Hebei University (Natural Science Edition),2016,36(4):417−423. doi: 10.3969/j.issn.1000-1565.2016.04.014
    [24]
    OTARI N, ARSLAN A, CARVALHO B, et al. Integrated Multi-Omics analysis of mechanisms underlying yeast ethanol tolerance[J]. Journal of Proteome Research,2021,20(8):3840−3852. doi: 10.1021/acs.jproteome.1c00139
    [25]
    LI R, MIAO Y, YUAN S, et al. Integrated transcriptomic and proteomic analysis of the ethanol stress response in Saccharomyces cerevisiae Sc131[J]. Journal of Proteomics,2019,203:103377. doi: 10.1016/j.jprot.2019.103377
    [26]
    赵戎蓉, 贺娟. 耐60℃高温乳酸菌的驯化及鉴定[J]. 中国微生态学杂志,2011,23(4):4. [ZHAO Rongrong, HE Juan. Domestication and identification of 60 ℃ high temperature resistant lactic acid bacteria[J]. Chinese Journal of Microbiology,2011,23(4):4.
    [27]
    赵凯, 许鹏举, 谷广烨. 3,5-二硝基水杨酸比色法测定还原糖含量的研究[J]. 食品科学,2008,29(8):3. [ZHAO Kai, XU Pengju, GU Guangye. Study on the determination of reducing sugar content by 3,5-Dinitrosalicylic acid colorimetry[J]. Food Science,2008,29(8):3.
    [28]
    刘毓锋, 曾嘉锐, 黄文琪, 等. 外源碳源对葡萄酵素微生物生长代谢及生物活性的调节作用[J]. 食品工业科技,2020,41(8):104−110,116. [LIU Yufeng, ZENG Jiarui, HUANG Wenqi, et al. Regulation of exogenous carbon source on growth metabolism and biological activity of grape ferment microorganisms[J]. Science and Technology of Food Industry,2020,41(8):104−110,116.
    [29]
    汤凤霞, 乔长晟, 蔡慧农, 等. L-乳酸米根霉发酵条件优化研究[J]. 集美大学学报(自然科学版),2007,12(2):118−123. [TANG Fengxia, QIAO Changsheng, CAI Huinong, et al. Optimization of fermentation conditions of Rhizopus oryzae L-lactic acid[J]. Journal of Jimei University (Natural Science Edition),2007,12(2):118−123. doi: 10.3969/j.issn.1007-7405.2007.02.005
    [30]
    周剑. L-乳酸生产菌株的诱变选育及发酵条件初步优化[D]. 南京: 南京工业大学, 2005

    ZHOU Jian. Mutation breeding of L-lactic acid producing strain and preliminary optimization of fermentation conditions [D]. Nanjing: Nanjing University of Technology, 2005.
    [31]
    雷霆. 高产L-乳酸菌种的选育及培养基的优化[D]. 长春: 吉林大学, 2006

    LEI Ting. Breeding of high-yield L-lactic acid bacteria and optimization of culture medium [D]. Changchun: Jilin University. 2006.
    [32]
    郭瑞, 李亚楠, 李怡阳, 等. 不同食品级氮源对发酵肉用乳酸菌生长的影响[J]. 肉类工业,2022(7):22−27. [GUO Rui, LI Yanan, LI Yiyang, et al. Effects of different food-grade nitrogen sources on the growth of lactic acid bacteria for meat fermentation[J]. Meat Industry,2022(7):22−27. doi: 10.3969/j.issn.1008-5467.2022.07.004
    [33]
    LI H, LIN J, LIN J, et al. Effects of nitrogen sources and vitamins on production of L-lactic acid with high efficiency using Lactobacillus rhamnosus[J]. Food and Fermentation Industries,2007,33(2):22−26.
    [34]
    ZHAO N, YUAN X L, CHEN J, et al. Effect of different carbon and nitrogen sources on mycelia growth of Antrodia cinnamomea[J]. Journal of West China Forestry Science, 2016.
    [35]
    JUTURU V, JIN C W. Microbial production of lactic acid: The latest development[J]. Critical Reviews in Biotechnology,2015,36(6):967−977.
    [36]
    LONG X, YAN Q, CAI L, et al. Box-Behnken design-based optimization for deproteinization of crude polysaccharides in Lycium barbarum berry residue using the Sevag method[J]. Heliyon,2020,6(5):e3888.
    [37]
    时菲菲, 陈毓, 周晨, 等. 响应面法优化党参多糖提取工艺及抗氧化活性研究[J]. 畜牧与兽医,2021,53(1):54−60. [SHI Feifei, CHEN Yu, ZHOU Chen, et al. Optimization of extraction process and antioxidant activity of Codonopsis pilosula polysaccharides by response surface methodology[J]. Animal Husbandry and Veterinary Medicine,2021,53(1):54−60.
    [38]
    李慧芬, 马成, 张克顺. 植物乳杆菌发酵豆粕产L-乳酸的最佳条件优化[J]. 饲料工业,2015,36(5):32−36. [LI Huifen, MA Cheng, ZHANG Keshun. Optimization of optimal conditions for L-lactic acid production from soybean meal by Lactobacillus plantarum[J]. Feed Industry,2015,36(5):32−36.
    [39]
    孙丽慧, 王云晓, 吕诗文, 等. 1株高产L-乳酸菌株的分离鉴定及其发酵培养基优化[J]. 食品科学,2018,39(6):135−140. [SUN Lihui, WANG Yunxiao, LÜ Shiwen, et al. Isolation and identification of a high-yield L-lactic acid strain and optimization of its fermentation medium[J]. Food Science,2018,39(6):135−140. doi: 10.7506/spkx1002-6630-201806022
    [40]
    KWON, LEE, KEUN C Y, et al. Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate[J]. Enzyme & Microbial Technology,2000,26(2):209−215.
    [41]
    NANCIB A, NANCIB N, MEZIANE-CHERIF D, et al. Joint effect of nitrogen sources and B vitamin supplementation of date juice on lactic acid production by Lactobacillus casei subsp. rhamnosus[J]. Bioresource Technology,2005,96(1):63−67. doi: 10.1016/j.biortech.2003.09.018

Catalog

    Article Metrics

    Article views (143) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return