LI Feng, LI Yiqing, MAO Haili, et al. Antioxidant Activity and Pyrolysis Properties of Lignin Extracted from Camellia oleifera Shell by Deep Eutectic Solvents (DES)[J]. Science and Technology of Food Industry, 2022, 43(24): 261−267. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040112.
Citation: LI Feng, LI Yiqing, MAO Haili, et al. Antioxidant Activity and Pyrolysis Properties of Lignin Extracted from Camellia oleifera Shell by Deep Eutectic Solvents (DES)[J]. Science and Technology of Food Industry, 2022, 43(24): 261−267. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040112.

Antioxidant Activity and Pyrolysis Properties of Lignin Extracted from Camellia oleifera Shell by Deep Eutectic Solvents (DES)

More Information
  • Received Date: April 11, 2022
  • Available Online: November 08, 2022
  • In order to obtain lignin with low molecular weight and polydispersity, as well as high antioxidant activity, using Camellia oleifera shell as raw material, four lignin products were isolated from it by alkaline and deep eutectic solvents. The structural and pyrolysis properties of lignin were investigated with ultraviolet spectroscopy (UV), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC) and thermogravimetric analyzer (TGA). Furthermore, the antioxidant activity of the lignin samples was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity assay. The UV and FTIR analyses showed that the lignin from Camellia oleifera shell was mainly composed of guaiacyl and syringyl. GPC analysis revealed that AL had a relatively higher molecular weight (Mw=41858 g/mol) and broad polydispersity index (PDI=4.53), and the DES-lignin exhibited relatively low relative molecular weight (Mw<11000 g/mol) and narrow polydispersity index (PDI<2). Thermogravimetric analysis showed that the thermal stability of lignin samples was ChCl-OA>AL>ChCl-EG-P>ChCl-GA. Furthermore, the results showed that four lignin products had good antioxidant activity in vitro, and the IC50 values of DPPH free radical scavenging ability was 0.388~1.02 mg/mL. The findings of this study would provide a novel way to fractionate lignin from Camellia oleifera shell, and provide certain reference value for the development of lignin valorization.
  • loading
  • [1]
    夏美玲, 王允圃, 张淑梅, 等. 油茶壳综合利用研究进展[J]. 生物质化学工程,2021,55(6):26−38. [XIA M L, WANG Y P, ZHANNG S M, et al. Research progress on comprehensive utilization of Camellia oleifera Abel shell[J]. Biomass Chemical Engineering,2021,55(6):26−38. doi: 10.3969/j.issn.1673-5854.2021.06.004
    [2]
    陈沛均, 胡传双, 涂登云, 等. 油茶果壳综合利用进展与展望[J]. 林产工业,2021,58(5):60−64. [CHEN P J, HU C S, TU D Y, et al. Progress and prospect of comprehensive utilization of Camellia oleifera shells[J]. China Forest Products Industry,2021,58(5):60−64. doi: 10.19531/j.issn1001-5299.202105013
    [3]
    AHMAD U M, JI N, LI H, et al. Can lignin be transformed into agrochemicals? Recent advances in the agricultural applications of lignin[J]. Industrial Crops and Products,2021,170:113646. doi: 10.1016/j.indcrop.2021.113646
    [4]
    DE FRANCA SERPA J, DE SOUSA SILVA J, REIS C L B, et al. Extraction and characterization of lignins from cashew apple bagasse obtained by different treatments[J]. Biomass and Bioenergy,2020,141:105728. doi: 10.1016/j.biombioe.2020.105728
    [5]
    LIU X, LI T, WU S, et al. Structural characterization and comparison of enzymatic and deep eutectic solvents isolated lignin from various green processes: Toward lignin valorization[J]. Bioresource Technology,2020,310:123460. doi: 10.1016/j.biortech.2020.123460
    [6]
    MAGALHAES S, FILIPE A, MELRO E, et al. Lignin extraction from waste pine sawdust using a biomass derived binary solvent system[J]. Polymers,2021,13(7):1090. doi: 10.3390/polym13071090
    [7]
    崔兴凯, 赵雪冰, 刘德华. 五种甘蔗渣分离木质素热解特性及动力学[J]. 化工进展,2017,36(8):2910−2915. [CUI X K, ZHAO X B, LIU D H. Pyrolysis characteristics and kinetics of five isolated lignins from sugarcane bagasse[J]. Chemical Industry and Engineering Progress,2017,36(8):2910−2915.
    [8]
    PIN T C, NAKASU P Y S, MATTEDI S, et al. Screening of protic ionic liquids for sugarcane bagasse pretreatment[J]. Fuel,2018,235(1):1506−1514.
    [9]
    WEI X, LIU Y, LUO Y, et al. Effect of organosolv extraction on the structure and antioxidant activity of eucalyptus kraft lignin[J]. International Journal of Biological Macromolecules,2021,187:462−470. doi: 10.1016/j.ijbiomac.2021.07.082
    [10]
    FERNANDES C, MELRO E, MAGALHAES S, et al. New deep eutectic solvent assisted extraction of highly pure lignin from maritime pine sawdust (Pinus pinaster Ait.)[J]. International Journal of Biological Macromolecules,2021,177:294−305. doi: 10.1016/j.ijbiomac.2021.02.088
    [11]
    刘金科, 杨桂花, 齐乐天, 等. 胆碱类低共熔溶剂选择性分离杨木中木质素的研究[J]. 中国造纸,2020,39(4):1−9. [LIU J K, YANG G H, QI L T, et al. Selective extraction of poplar pignin with choline-based deep eutectic solvents[J]. China Pulp & Paper,2020,39(4):1−9.
    [12]
    金春德, 杨巍, 韩申杰, 等. 制造无胶纤维板过程中木质素的变化规律—以酸性蒸气蒸煮热磨制造方法为例[J]. 东北林业大学学报,2014,42(4):89−92. [JIN C D, YANG W, HAN S J, et al. Change rule of the lignin in the manufacture process of the binder less fiberboard used wood fiber by the acidic steam steaming hot-milling method[J]. Journal of Northeast Forestry University,2014,42(4):89−92. doi: 10.3969/j.issn.1000-5382.2014.04.020
    [13]
    崔兴凯, 陈可, 赵雪冰, 等. 甘蔗渣木质素的结构及其对纤维素酶解的影响[J]. 过程工程学报,2017,17(5):1002−1010. [CUI X K, CHEN K, ZHAO X B, et al. Structures of several lignins isolated from sugarcane bagasse and their effects on enzymatic hydrolysis of cellulose[J]. The Chinese Journal of Process Engineering,2017,17(5):1002−1010. doi: 10.12034/j.issn.1009-606X.216376
    [14]
    曾诚, 宋国杰, 孙海彦, 等. 甘油预处理蔗渣的木质素分离提取及结构表征[J]. 化工进展,2020,39(11):4418−4426. [ZENG C, SONG G J, SUN H Y, et al. Isolation and structural characterization of glycerol extracted sugarcane bagasse lignin[J]. Chemical Industry and Engineering Progress,2020,39(11):4418−4426. doi: 10.16085/j.issn.1000-6613.2020-0125
    [15]
    PIN T C, NASCIMENTO V M, COSTA A C, et al. Structural characterization of sugarcane lignins extracted from different protic ionic liquid pretreatments[J]. Renewable Energy,2020,161:579−592. doi: 10.1016/j.renene.2020.07.078
    [16]
    BRANDT A, CHEN L, VAN DONGEN B E, et al. Structural changes in lignins isolated using an acidic ionic liquid water mixture[J]. Green Chemistry,2015,17(11):5019−5034. doi: 10.1039/C5GC01314C
    [17]
    POPOVA Y A, SHESTAKOV S L, BELESOV A V, et al. Comprehensive analysis of the chemical structure of lignin from raspberry stalks (Rubus idaeus L.)[J]. International Journal of Biological Macromolecules,2020,164:3814−3822. doi: 10.1016/j.ijbiomac.2020.08.240
    [18]
    WANG L, LI X, JIANG J, et al. Revealing structural and functional specificity of lignin from tobacco stalk during deep eutectic solvents deconstruction aiming to targeted valorization[J]. Industrial Crops and Products,2022,180:114696. doi: 10.1016/j.indcrop.2022.114696
    [19]
    RAMAKOTI B, DHANAGOPAL H, DEEPA K, et al. Solvent fractionation of organosolv lignin to improve lignin homogeneity: Structural characterization[J]. Bioresource Technology Reports,2019,7:100293. doi: 10.1016/j.biteb.2019.100293
    [20]
    杨增玲, 梅佳琪, 曹聪, 等. 基于红外光谱的不同农作物秸秆磨木木质素差异表征[J]. 农业工程学报,2018,34(19):219−224. [YANG Z L, MEI J Q, CAO C, et al. Traits of milled wood lignin isolated from different crop straw based on FT-IR[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(19):219−224. doi: 10.11975/j.issn.1002-6819.2018.19.028
    [21]
    LIN X, SUI S, TAN S, et al. Fast pyrolysis of four lignins from different isolation processes using Py-GC/MS[J]. Energies,2015,8(6):5107−5121. doi: 10.3390/en8065107
    [22]
    王则祥, 李航, 谢文銮, 等. 木质素基本结构、热解机理及特性研究进展[J]. 新能源进展,2020,8(1):6−14. [WANG Z X, LI H, XIE W L, et al. Progress in basic structure, pyrolysis mechanism and characteristics of lignin[J]. Advances in New and Renewable Energy,2020,8(1):6−14. doi: 10.3969/j.issn.2095-560X.2020.01.002
    [23]
    UGARTONDO V, MITJANS M, VINARDELL M P. Comparative antioxidant and cytotoxic effects of lignins from different sources[J]. Bioresource Technology,2008,99(14):6683−6687. doi: 10.1016/j.biortech.2007.11.038
    [24]
    龚卫华, 冉占祥, 向卓亚, 等. 笋壳醋酸木质素的提取及抗氧化活性研究[J]. 食品与发酵工业,2016,42(11):225−229. [GONG W H, RAN Z X, XIANG Z Y, et al. Extraction and antioxidant activities of lignin from bamboo shoot shell[J]. Food and Fermentation Industries,2016,42(11):225−229. doi: 10.13995/j.cnki.11-1802/ts.201611039
    [25]
    李晗, 杨威岭, 杨宗玲, 等. 油茶壳木质素理化性质及表征[J]. 食品工业科技,2021,42(4):33−38. [LI H, YANG W L, YANG Z L, et al. Physicochemical properties and structural characterization of lignin from Camellia oleifera shell[J]. Science and Technology of Food Industry,2021,42(4):33−38. doi: 10.13386/j.issn1002-0306.2020050136
    [26]
    朱梦妮, 田维珍, 王兴, 等. 不同来源木质素抗氧化活性研究[J]. 中国造纸学报,2019,34(4):14−20. [ZHU M N, TIAN W Z, WANG X, et al. Chemical structure and antioxidant activity of different sources of lignin[J]. Transactions of China Pulp and Paper,2019,34(4):14−20. doi: 10.11981/j.issn.1000-6842.2019.04.14

Catalog

    Article Metrics

    Article views (215) PDF downloads (18) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return