Citation: | WU Junhao, WANG Jing, KHO Sethykun, et al. Research on Anti-aging Function and Mechanism of Pond Turtle Protein-derived Peptides on Drosophila melanogaster[J]. Science and Technology of Food Industry, 2022, 43(17): 394−401. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110057. |
[1] |
周佳雯, 靳建亮. 衰老机制及其干预研究进展[J]. 医学研究生学报,2021,34(5):524−529. [ZHOU J W, JIN J L. Research progress on aging mechanism and its intervention[J]. Journal of Medical Postgraduates,2021,34(5):524−529. doi: 10.16571/j.cnki.1008-8199.2021.05.016
ZHOU J W, JIN J L. Research progress on aging mechanism and its intervention[J]. Journal of Medical Postgraduates, 2021, 34(5): 524-529. doi: 10.16571/j.cnki.1008-8199.2021.05.016
|
[2] |
DATO S, CROCCO P, MIGLIORE N R, et al. Omics in a digital world: The role of bioinformatics in providing new insights into human aging[J]. Frontiers in Genetics,2021,12:689824. doi: 10.3389/fgene.2021.689824
|
[3] |
卢春雪, 杨绍杰, 陶荟竹, 等. 衰老机制研究进展[J]. 中国老年学杂志,2018,38(1):248−250. [LU C X, YANG S J, TAO H Z, et al. Research progress on aging mechanism[J]. Chinese Journal of Gerontology,2018,38(1):248−250. doi: 10.3969/j.issn.1005-9202.2018.01.101
LU C X, YANG S J, TAO H Z, et al. Research progress on aging mechanism[J]. Chinese Journal of Gerontology, 2018, 38(1): 248-250. doi: 10.3969/j.issn.1005-9202.2018.01.101
|
[4] |
NANDI A, YAN L J, JANA C K, et al. Role of catalase in oxidative stress-and age-associated degenerative diseases[J]. Oxidative Medicine and Cellular Longevity,2019,2019:9613090.
|
[5] |
CARUSO G, GODOS J, CASTELLANO S, et al. The therapeutic potential of carnosine/anserine supplementation against cognitive decline: A systematic review with meta-analysis[J]. Biomedicines,2021,9(3):253. doi: 10.3390/biomedicines9030253
|
[6] |
SHEN C Y, JIANG J G, YANG L, et al. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: Pharmacological mechanisms and implications for drug discovery[J]. British Journal of Pharmacology,2017,174(11):1395−1425. doi: 10.1111/bph.13631
|
[7] |
POMATTO L C, DAVIES K J. Adaptive homeostasis and the free radical theory of ageing[J]. Free Radical Biology and Medicine,2018,124:420−430. doi: 10.1016/j.freeradbiomed.2018.06.016
|
[8] |
AGUILAR-TOALA J E, LICEAGA A M. Cellular antioxidant effect of bioactive peptides and molecular mechanisms underlying: Beyond chemical properties[J]. International Journal of Food Science and Technology,2020,56(5):2193−2204.
|
[9] |
TADESSE S A, EMIRE S A. Production and processing of antioxidant bioactive peptides: A driving force for the functional food market[J]. Heliyon,2020,6(8):e04765. doi: 10.1016/j.heliyon.2020.e04765
|
[10] |
ZENG W C, SUN Q, ZHANG W H, et al. Antioxidant activity in vivo and biological safety evaluation of a novel antioxidant peptide from bovine hair hydrolysates[J]. Process Biochemistry,2017,56:193−198. doi: 10.1016/j.procbio.2017.02.022
|
[11] |
CHEN S Y, YANG Q, CHEN X, et al. Bioactive peptides derived from crimson snapper and in vivo anti-aging effects on fat diet-induced high fat Drosophila melanogaster[J]. Food & Function,2020,11(1):524−533.
|
[12] |
DING Y L, KO S C, MOON S H, et al. Protective effects of novel antioxidant peptide purified from alcalase hydrolysate of velvet antler against oxidative stress in chang liver cells in vitro and in a zebrafish model in vivo[J]. International Journal of Molecular Sciences,2019,20(20):5187. doi: 10.3390/ijms20205187
|
[13] |
TONOLO F, FOLDA A, CESARO L, et al. Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway[J]. Journal of Functional Foods,2020,64:103696. doi: 10.1016/j.jff.2019.103696
|
[14] |
石扬, 张永进, 赖年悦, 等. 中华草龟肉抗肿瘤活性肽的分离纯化及鉴定研究[J]. 现代食品科技,2018,34(5):24−31. [SHI Y, ZHANG Y J, LAI N Y, et al. Isolation, purification and identification of anti-tumor bioactive peptides from Chinemys reevesii[J]. Modern Food Science and Technology,2018,34(5):24−31.
SHI Y, ZHANG Y J, LAI N Y, et al. Isolation, purification and identification of anti-tumor bioactive peptides from Chinemys reevesii[J]. Modern Food Science and Technology, 2018, 34(5): 24-31.
|
[15] |
杨昭, 曾琳琦, 凌叶婷, 等. 蛋白酶种类对龟肉酶解液品质的影响[J]. 食品工业,2021,42(3):188−191. [YANG Z, ZENG L Q, LING Y T, et al. Effect of protease species on the quality of enzymatic hydrolysate of turtle meat[J]. The Food Industry,2021,42(3):188−191.
YANG Z, ZENG L Q, LING Y T, et al. Effect of protease species on the quality of enzymatic hydrolysate of turtle meat[J]. The Food Industry, 2021, 42(3): 188-191.
|
[16] |
段丽娟, 范慧君, 邢婕, 等. 龟龄集延缓果蝇衰老的作用研究[J]. 山西医科大学学报,2021,52(3):317−321. [DUAN L J, FAN H J, XING J, et al. Study on anti-aging effects of Guilingji in Drosophila melanogaster[J]. Journal of Shanxi Medical University,2021,52(3):317−321.
DUAN L J, FAN H J, XING J, et al. Study on anti-aging effects of Guilingji in Drosophila melanogaster[J]. Journal of Shanxi Medical University, 2021, 52(3): 317-321.
|
[17] |
闫明亮, 周玉枝, 李明花, 等. 基于1H-NMR代谢组学的黄芩醇提物延长果蝇寿命研究[J]. 中草药,2016,47(10):1714−1722. [YAN M L, ZHOU Y Z, LI M H, et al. Metabonomic study of alcohol extract from Scutellariae Radix in prolonginglifespan of Drosophila melanogaster based on 1H-NMR[J]. Chinese Traditional and Herbal Drugs,2016,47(10):1714−1722. doi: 10.7501/j.issn.0253-2670.2016.10.015
YAN M L, ZHOU Y Z, LI M H, et al. Metabonomic study of alcohol extract from Scutellariae Radix in prolonginglifespan of Drosophila melanogaster based on 1H-NMR[J]. Chinese Traditional and Herbal Drugs, 2016, 47(10): 1714-1722. doi: 10.7501/j.issn.0253-2670.2016.10.015
|
[18] |
张永进, 石扬, 赖年悦, 等. 中华草龟抗肿瘤生物活性肽提取工艺的初步研究[J]. 肉类工业,2017,7:28−33. [ZHANG Y J, SHI Y, LAI N Y, et al. Preliminary study on extraction technology of antitumor bioactive peptides of Chinemys reevesii[J]. Meat Industry,2017,7:28−33. doi: 10.3969/j.issn.1008-5467.2017.04.008
ZHANG Y J, SHI Y, LAI N Y, et al. Preliminary study on extraction technology of antitumor bioactive peptides of Chinemys reevesii. [J]. Meat Industry, 2017, 7: 28-33. doi: 10.3969/j.issn.1008-5467.2017.04.008
|
[19] |
史晋源, 钟浩, 王倩倩, 等. 甲鱼肽对果蝇寿命及其抗氧化活性的影响[J]. 食品工业科技,2021,42(11):321−327. [SHI J Y, ZHONG H, WANG Q Q, et al. Effect of soft-shelled turtle peptide on the lifespan and antioxidant activities of Drosophila melanogaster[J]. Science and Technology of Food Industry,2021,42(11):321−327.
SHI J Y, ZHONG H, WANG Q Q, et al. Effect of soft-shelled turtle peptide on the lifespan and antioxidant activities of Drosophila melanogaster[J]. Science and Technology of Food Industry, 2021, 42(11): 321-327.
|
[20] |
王耀辉, 任海虹, 王景雪, 等. 白灵菇多糖对果蝇寿命及抗氧化活性的影响[J]. 食品工业科技,2018,39(5):313−318. [WANG Y H, REN H H, WANG J X, et al. Effect of polysaccharides of Pleurotus nebrodensis on the life-span and antioxidant activities of Drosophila melanogaster[J]. Science and Technology of Food Industry,2018,39(5):313−318.
WANG Y H, REN H H, WANG J X, et al. Effect of polysaccharides of Pleurotus nebrodensis on the life-span and antioxidant activities of Drosophila melanogaster[J]. Science and Technology of Food Industry, 2018, 39(5): 313-318.
|
[21] |
XIN X X, CHEN Y, CHEN D, et al. Supplementation with major royal-jelly proteins increases lifespan, feeding, and fecundity in Drosophila[J]. Journal of Agricultural and Food Chemistry,2016,64(29):5803−5812. doi: 10.1021/acs.jafc.6b00514
|
[22] |
张明, 何超, 邵颖, 等. 蛹虫草多糖对果蝇寿命及抗氧化活性的影响[J]. 食品科技,2016,41(11):179−183. [ZHANG M, HE C, SHAO Y, et al. Effect of polysaccharides from fruiting body of Cordyceps militaries on lifespan and antioxidant activity in Drosophila melanogaster[J]. Food Science and Technology,2016,41(11):179−183.
ZHANG M, HE C, SHAO Y, et al. Effect of polysaccharides from fruiting body of Cordyceps militaries on lifespan and antioxidant activity in Drosophila melanogaster[J]. Food Science and Technology, 2016, 41(11): 179-183.
|
[23] |
张晓寒, 赵江, 韩英, 等. 根皮素延缓雌性果蝇的衰老作用[J]. 现代食品科技,2020,36(3):9−16, 166. [ZHANG X H, ZHAO J, HAN Y, et al. Anti-aging effects of phloretin on female Drosophila melanogaster[J]. Modern Food Science and Technology,2020,36(3):9−16, 166.
ZHANG X H, ZHAO J, HAN Y, et al. Anti-aging effects of phloretin on female Drosophila melanogaster[J]. Modern Food Science and Technology, 2020, 36(3): 9-16, 166.
|
[24] |
余楠楠, 陈琛. 生物活性肽功能及制备技术研究进展[J]. 中国酿造,2018,37(9):17−21. [YU N N, CHEN C. Research progress of bioactive peptide function and preparation technology[J]. China Brewing,2018,37(9):17−21. doi: 10.11882/j.issn.0254-5071.2018.09.004
YU N N, CHEN C. Research progress of bioactive peptide function and preparation technology[J]. China Brewing, 2018, 37(9): 17-21. doi: 10.11882/j.issn.0254-5071.2018.09.004
|
[25] |
HU X M, WANG Y M, ZHAO Y Q, et al. Antioxidant peptides from the protein hydrolysate of monkfish (Lophius litulon) muscle: Purification, identification, and cytoprotective function on HepG2 cells damage by H2O2[J]. Marine Drugs,2020,18(3):153. doi: 10.3390/md18030153
|
[26] |
申彩红. 海参肽的酶法制备及其抗氧化、抗疲劳活性研究[D]. 厦门: 华侨大学, 2015
SHEN C H. Study on the enzymatic preparation of sea cucumber peptide and its antioxidant and anti-fatigue activities[D]. Xiamen: Huaqiao University, 2015.
|
[27] |
赵翊君. 鲈鱼鱼肉抗氧化肽的分离鉴定及其对HepG2细胞氧化损伤的保护作用研究[D]. 广州: 华南理工大学, 2018
ZHAO Y J. Separation and characterization of antioxidant peptides from bass muscle and their protective effects against oxidative damage in HepG2 cells[D]. Guangzhou: South China University of Technology, 2018.
|
[28] |
杜瑞平, 张兴夫, 高民, 等. 甘氨酸的免疫调节作用及其分子机制[J]. 动物营养学报,2015,27(3):663−670. [DU R P, ZHANG X F, GAO M, et al. Immunomodulatory effect and molecular mechanism of glycine[J]. Chinese Journal of Animal Nutrition,2015,27(3):663−670. doi: 10.3969/j.issn.1006-267x.2015.03.001
DU R P, ZHANG X F, GAO M, et al. Immunomodulatory effect and molecular mechanism of glycine[J]. Chinese Journal of Animal Nutrition, 2015, 27(3): 663-670. doi: 10.3969/j.issn.1006-267x.2015.03.001
|
[29] |
GARCIA E J, CAIN M E. Isolation housing elevates amphetamine seeking independent of nucleus accumbens glutamate receptor adaptations[J]. European Journal of Neuroscience,2021,54(7):6382−6396. doi: 10.1111/ejn.15441
|
[30] |
CHEN C L, HSU S C, ANN D K. Arginine signaling and cancer metabolism[J]. Cancers,2021,13(14):3541. doi: 10.3390/cancers13143541
|
[31] |
SADEGHI M, TENBERG V, MUNZBERG S, et al. Phase equilibria of l-valine/l-leucine solid solutions[J]. Journal of Molecular Liquids,2021,340:117315. doi: 10.1016/j.molliq.2021.117315
|
[32] |
秦永燕, 王妤婕, 李颖, 等. 黄芪多糖对果蝇寿命和抗氧化作用的影响[J]. 食品工业科技,2020,41(2):288−291. [QIN Y Y, WANG Y J, LI Y, et al. Effects of astragalus polysaccharide on life span and antioxidation of Drosophila melanogaster[J]. Science and Technology of Food Industry,2020,41(2):288−291.
QIN Y Y, WANG Y J, LI Y, et al. Effects of astragalus polysaccharide on life span and antioxidation of Drosophila melanogaster[J]. Science and Technology of Food Industry, 2020, 41(2): 288-291.
|
[33] |
ZHANG J J, LIU X, PAN J H, et al. Anti-aging effect of brown black wolfberry on Drosophila melanogaster and d-galactose-induced aging mice[J]. Journal of Functional Foods,2020,65:103724. doi: 10.1016/j.jff.2019.103724
|
[34] |
张婉迎, 赵文学, 尹翌秋, 等. 人参水提物对果蝇抗衰老的作用机制[J]. 吉林农业大学学报,2018,40(5):557−562. [ZHANG W Y, ZHAO W X, YIN Y Q, et al. Mechanism of anti-aging activity of water extract of ginseng in Drosophila melanogaster[J]. Journal of Jilin Agricultural University,2018,40(5):557−562.
ZHANG W Y, ZHAO W X, YIN Y Q, et al. Mechanism of anti-aging activity of water extract of ginseng in Drosophila melanogaster[J]. Journal of Jilin Agricultural University, 2018, 40(5): 557-562.
|
[35] |
WONG D, HU X Q, TAO N P, et al. Effect and mechanism of pyridoxamine on the lipid peroxidation and stability of polyunsaturated fatty acids in beef patties[J]. Journal of the Science of Food and Agriculture,2016,96(10):3418−3423. doi: 10.1002/jsfa.7522
|
[36] |
张静静, 刘暄, 赵琦, 等. 褐变黑枸杞对紫外照射损伤果蝇寿命及抗氧化能力的影响[J]. 中国食品添加剂,2020,31(1):53−58. [ZHANG J J, LIU X, ZHAO Q, et al. Brown black wolfberry on the life-span of UV damaged Drosophila melanogaster and its anti-oxidation activities[J]. China Food Additives,2020,31(1):53−58.
ZHANG J J, LIU X, ZHAO Q, et al. Brown black wolfberry on the life-span of UV damaged Drosophila melanogaster and its anti-oxidation activities[J]. China Food Additives, 2020, 31(1): 53-58.
|
[37] |
DORAN M L, KNEE J M, WANG N, et al. Metabolomic analysis of oxidative stress: Superoxide dismutase mutation and paraquat induced stress in Drosophila melanogaster[J]. Free Radical Biology and Medicine,2017,113:323−334. doi: 10.1016/j.freeradbiomed.2017.10.011
|
[38] |
PANDEY A, KHATOON R, SAINI S, et al. Efficacy of methuselah gene mutation toward tolerance of dichlorvos exposure in Drosophila melanogaster[J]. Free Radical Biology and Medicine,2015,83:54−65. doi: 10.1016/j.freeradbiomed.2015.02.025
|
[39] |
TANG R, CHEN X Y, DANG T T, et al. Lycium barbarum polysaccharides extend the mean lifespan of Drosophila melanogaster[J]. Food & Function,2019,10(7):4231−4241.
|