CAI Luning, LIU Xueru, CHEN Lei, et al. Qualitative and Quantitative Analysis of Two Plant Pathogens by Three Dimensional Fluorescence Spectroscopy Combined with Second Order Correction Algorithm[J]. Science and Technology of Food Industry, 2022, 43(9): 1−12. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090083.
Citation: CAI Luning, LIU Xueru, CHEN Lei, et al. Qualitative and Quantitative Analysis of Two Plant Pathogens by Three Dimensional Fluorescence Spectroscopy Combined with Second Order Correction Algorithm[J]. Science and Technology of Food Industry, 2022, 43(9): 1−12. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090083.

Qualitative and Quantitative Analysis of Two Plant Pathogens by Three Dimensional Fluorescence Spectroscopy Combined with Second Order Correction Algorithm

More Information
  • Received Date: September 06, 2021
  • Available Online: March 01, 2022
  • Pseudomonas syringae pv. Lachrymans-8 and Fusarium graminearum-ACCC37687 were used to quickly identify the pathogenic microorganisms of plant fungal diseases and bacterial diseases. To explore the feasibility of rapid identification of plant fungal and bacterial diseases by three-dimensional fluorescence spectroscopy. By collecting the three-dimensional fluorescence spectrum data of gradient mixed bacterial solution samples, the data were analyzed by second-order correction algorithm alternating trilinear decomposition (ATLD), parallel factor analysis (PARAFAC), self weighted trilinear decomposition (SWATLD), alternating penalty trilinear decomposition (APTLD) and first-order algorithm partial least squares regression coefficient method (PLS), and the characteristic excitation and emission wavelengths were extracted. The concentration prediction model was established by multiple linear regression between the fluorescence intensity data of characteristic wavelength and the absorbance (OD600) of bacterial solution at 600 nm wavelength. The prediction performance of the model was measured by the left one out cross validation (LOOCV), so as to realize the qualitative and quantitative analysis of single component in complex bacterial solution mixed system. The fluorescence characteristic peaks of Pseudomonas syringae were excitation/emission=285 nm/340 nm, 290 nm/340 nm, 285 nm/332.4 nm, 280 nm/361.6 nm, 295 nm/361.6 nm. The fluorescence characteristic peaks of Fusarium graminearum were excitation/emission=380 nm/468 nm, 390 nm/512 nm, 340 nm/511.2 nm, 415 nm/511.2 nm. The results showed that the concentration prediction model of Pseudomonas syringae-8 (R2cv=0.92441191, RMSEP=0.005163633, R=0.961463421) was better than that of Fusarium graminearum-ACCC37687 (R2cv=0.583953931, RMSEP=0.027653679, R=0.764168784). The results of this study provide an available method for rapid identification of fungal and bacterial hazards.
  • loading
  • [1]
    杜昕波, 赵耘, 李伟杰. 菌种保藏中的细菌鉴定方法[J]. 中国兽药杂志,2009,43(3):50−52. [DU X B, ZHAO Y, LI W J. Identification of bacteria in strain preservation[J]. Chinese Journal of Veterinary Drug,2009,43(3):50−52. doi: 10.3969/j.issn.1002-1280.2009.03.015
    [2]
    王予. 交替三线性分解二阶校正方法在复杂体系中的应用研究[D]. 长沙: 湖南大学, 2013.

    WANG Y. Application of second order correction method of alternating trilinear decomposition in complex system[D]. Changsha: Hunan University, 2013.
    [3]
    王玉田, 边旭, 商凤凯, 等. 三维荧光光谱结合自加权交替三线性分解算法检测农药类混合物[J]. 光谱学与光谱分析,2018,38(12):3780−3784. [WANG Y T, BIAN X, SHANG F K, et al. Detection of pesticide mixtures by three dimensional fluorescence spectroscopy combined with self weighted alternating trilinear decomposition algorithm[J]. Spectroscopy and Spectral Analysis,2018,38(12):3780−3784.
    [4]
    孔德明, 李雨蒙, 崔耀耀, 等. 结合小波压缩和APTLD的三维荧光光谱技术在掺伪芝麻油鉴别中的应用[J]. 光学学报,2019,39(3):412−422. [KONG D M, LI Y M, CUI Y Y, et al. Application of 3D fluorescence spectroscopy combined with wavelet compression and aptld in identification of adulterated sesame oil[J]. Acta Optica Sinica,2019,39(3):412−422.
    [5]
    孙洋洋, 张立娟, 王玉田, 等. 三维荧光光谱结合二阶校正方法同时测定水中两种酚类[J]. 光谱学与光谱分析,2020,40(1):119−124. [SUN Y Y, ZHANG L J, WANG Y T, et al. Simultaneous determination of two phenols in water by three dimensional fluorescence spectrometry combined with second order calibration[J]. Spectroscopy and Spectral Analysis,2020,40(1):119−124.
    [6]
    沈海东, 白玉洪, 郑华. 三维荧光光谱分析技术和应用[J]. 海洋石油,2017,37(2):61−65. [SHEN H D, BAI Y H, ZHENG H. Three dimensional fluorescence spectroscopy and its application[J]. Offshore Oil,2017,37(2):61−65. doi: 10.3969/j.issn.1008-2336.2017.02.061
    [7]
    孔德明, 李雨蒙, 崔耀耀, 等. 海面溢油三维荧光光谱消除瑞利散射方法的研究[J]. 光谱学与光谱分析,2020,40(9):2791−2797. [KONG D M, LI Y M, CUI Y Y, et al. Study on elimination of Rayleigh scattering by three dimensional fluorescence spectrum of oil spill on the sea[J]. Spectroscopy and Spectral Analysis,2020,40(9):2791−2797.
    [8]
    杨金强, 赵南京, 殷高方, 等. 城市生活污水处理过程三维荧光光谱在线监测分析方法[J]. 光谱学与光谱分析,2020,40(7):1993−1997. [YANG J Q, ZHAO N J, YIN G F, et al. On line monitoring and analysis method of three dimensional fluorescence spectrum for municipal sewage treatment process[J]. Spectroscopy and Spectral Analysis,2020,40(7):1993−1997.
    [9]
    蔡文君, 孙瑞芃, 王浩, 等. 济南市北大沙河水体溶解性有机物的三维荧光光谱分析[J]. 环境与发展,2020,32(8):132−134. [CAI W J, SUN R P, WANG H, et al. Three dimensional fluorescence spectrum analysis of dissolved organic matter in beidasha river of Jinan City[J]. Inner Mongolia Environmental Sciences,2020,32(8):132−134.
    [10]
    樊凤杰, 轩凤来, 白洋, 等. 基于三维荧光光谱特征的中药药性模式识别研究[J]. 光谱学与光谱分析,2020,40(6):1763−1768. [FAN F J, XUAN F L, BAI Y, et al. Pattern recognition of traditional Chinese medicine properties based on three-dimensional fluorescence spectrum characteristics[J]. Spectroscopy and Spectral Analysis,2020,40(6):1763−1768.
    [11]
    BHATTA H, GOLDYS E M, LEARMONTH R P. Use of fluorescence spectroscopy to differentiate yeast and bacterial cells[J]. Appl Microbiol Biotechnol,2006,71(1):121−126. doi: 10.1007/s00253-005-0309-y
    [12]
    KANG S, EDJD J, HIGHAM S M, et al. Fluorescence fingerprints of oral bacteria[J]. J Biophotonics, 2020, 13(1): e201900190.
    [13]
    高杜娟, 张国梅, 白巨利, 等. 内源荧光法在鉴别细菌表征中的应用[J]. 中国生物化学与分子生物学报,2009,25(3):219−224. [GAO D J, ZHANG G M, BAI J L, et al. Application of endogenous fluorescence method in identification of bacteria[J]. Chinese Journal of Biochemistry and Molecular Biology,2009,25(3):219−224.
    [14]
    刘燕妮, 范惠冬, 季维春, 等. 黄瓜细菌性角斑病与霜霉病的辨识[J]. 吉林蔬菜,2018(Z2):26−27. [LIU Y N, FAN H D, JI W C, et al. Identification of bacterial angular spot and downy mildew of Cucumber[J]. Jilin Vegetable,2018(Z2):26−27.
    [15]
    GAZDIK F, PENAZOVA E, CECHOVA J, et al. Quantitative real-time PCR assay for rapid detection of Pseudomonas amygdali pv. lachrymans in cucumber leaf rinse[J]. J Plant Dis Protect, 2019(21).
    [16]
    SPANIC V, COSIC J, ZDUNIC Z, et al. Characterization of agronomical and quality traits of winter wheat (Triticum aestivum L.) for fusarium head blight pressure in different environments[J]. Agronomy,2021,11(2):213. doi: 10.3390/agronomy11020213
    [17]
    NUTTALL J G, O'LEARY G J, PANOZZO J F, et al. Models of grain quality in wheat—a review[J]. Field Crop Res,2017,202:136−145. doi: 10.1016/j.fcr.2015.12.011
    [18]
    MISHRA S, SRIVASTAVA S, DEWANGAN J, et al. Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: A survey[J]. Crit Rev Food Sci,2019,60(2):1−29.
    [19]
    CAI G, LIU S, ZHONG F, et al. Zearalenone and deoxynivalenol inhibited IL-4 receptor-mediated Th2 cell differentiation and aggravated bacterial infection in mice[J]. Toxicol Appl Pharm,2021,415(Suppl.1):115441.
    [20]
    魏亚博, 郑鄢燕, 赵晓燕, 等. 气调箱贮藏对鲜切黄瓜品质的影响及对假单胞菌的抑制作用[J]. 食品与发酵工业,2020,46(4):180−186. [WEI Y B, ZHENG Y Y, ZHAO X Y, et al. The effect of air conditioning box storage on the quality of fresh cut cucumber and the inhibition of Pseudomonas[J]. Food and Fermentation Industries,2020,46(4):180−186.
    [21]
    卢胜国. 黄瓜细菌性角斑病的识别与防治[J]. 中国瓜菜,2020,33(6):82−83. [LU S G. Identification and control of cucumber bacterial angular leaf spot[J]. China Cucurbits and Vegetables,2020,33(6):82−83. doi: 10.3969/j.issn.1673-2871.2020.06.021
    [22]
    苏爱国, 王帅帅, 段赛茹, 等. 玉米抗禾谷镰孢菌穗粒腐病种质资源鉴定[J]. 植物遗传资源学报,2021:1−9. [SU A G, WANG S S, DUAN S R, et al. Identification of germplasm resources of maize resistant to Fusarium gramineum[J]. Journal of Plant Genetic Resources,2021:1−9.
    [23]
    谢顺培, 李海洋, 张宛莹, 等. 假禾谷镰孢子囊壳的田间采集和子囊孢子后代室内杂交条件优化[J]. 植物病理学报,2021:1−12. [XIE S P, LI H Y, ZHANG W Y, et al. Field collection of sporangium shells of Fusarium pseudograminearum and optimization of indoor hybridization conditions of ascospore progenies[J]. Acta Phytopathologica Sinica,2021:1−12.
    [24]
    刘欢欢, 焦伟, 乔保明, 等. 一种利用铁离子螯合剂恢复丁香假单胞菌菌落荧光的方法[J]. 中国农业科技导报,2012,14(4):142−147. [LIU H H, JIAO W, QIAO B M, et al. A method to restore the fluorescence of Pseudomonas syringae colony with iron chelator[J]. Journal of Agricultural Science and Technology,2012,14(4):142−147. doi: 10.3969/j.issn.1008-0864.2012.04.21
    [25]
    袁洪威, 陈湖芳, 高东民, 等. 分光光度法测定黑曲霉孢子浓度的研究[J]. 中国酿造,2017,36(4):122−126. [YUAN H W, CHEN H F, GAO D M, et al. Determination of spore concentration of Aspergillus niger by spectrophotometry[J]. China Brewing,2017,36(4):122−126. doi: 10.11882/j.issn.0254-5071.2017.04.026
    [26]
    杜树新, 杜阳锋, 武晓莉. 基于Savizky-Golay多项式的三维荧光光谱的曲面平滑方法[J]. 光谱学与光谱分析,2011(2):154−157. [DU S X, DU Y F, WU X L. Surface smoothing method for 3D fluorescence spectra based on Savizky-Golay polynomials[J]. Spectroscopy and Spectral Analysis,2011(2):154−157.
    [27]
    BRO R, KIERS H. A new efficient method for determining the number of components in PARAFAC models[J]. Journal of Chemometrics, 2010, 17(5): 274-286.
    [28]
    刘雪茹, 李欣, 殷勇, 等. 黄瓜贮藏中微生物信息三维荧光判别及其数量监控模型构建[J]. 食品科学,2021,42(5):32−38. [LIU X R, LI X, YIN Y, et al. Three dimensional fluorescence identification of microbial information in cucumber storage and construction of its quantity monitoring model[J]. Food Science,2021,42(5):32−38. doi: 10.7506/spkx1002-6630-20200312-191
    [29]
    HARSHMAN R A. Foundations of the PARAFAC procedure: Model and conditions for an ''explanatory'' multi-mode factor analysis[J]. Ucla Working Papers in Phonetics, 1970.
    [30]
    BRO R, PARAFAC. Tutorial and applications[J]. Chemometrics & Intelligent Laboratory Systems,1997,38:149−171.
    [31]
    于永杰. 三维二阶校正算法及其应用研究[D]. 长沙: 湖南大学, 2009.

    YU Y J. 3D second order correction algorithm and its application[D]. Changsha: Hunan University, 2009.
    [32]
    WU H L, SHIBUKAWA M, OGUMA K. An alternating trilinear decomposition algorithm with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbons[J]. Journal of Chemometrics,1998,12(1):1−26. doi: 10.1002/(SICI)1099-128X(199801/02)12:1<1::AID-CEM492>3.0.CO;2-4
    [33]
    黄锋华, 张淑娟, 杨一, 等. 油桃外部缺陷的高光谱成像检测[J]. 农业机械学报,2015,46(11):252−259. [HUANG F H, ZHANG S J, YANG Y, et al. Hyperspectral imaging detection of nectarine external defects[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(11):252−259. doi: 10.6041/j.issn.1000-1298.2015.11.034
    [34]
    于慧春, 殷勇, 戴松松. 基于高光谱特征选择的霉变玉米黄曲霉毒素Bsub1/sub的检测方法[J]. 核农学报,2019,33(2):305−312. [YU H C, YIN Y, DAI S S. Detection of aflatoxin Bsub1/sub in moldy corn based on hyperspectral feature selection[J]. Journal of Nuclear Agricultural Sciences,2019,33(2):305−312. doi: 10.11869/j.issn.100-8551.2019.02.0305
    [35]
    WU J, MEI J, WEN S, et al. A self-adaptive genetic algorithm-artificial neural network algorithm with leave-one-out cross validation for descriptor selection in QSAR study[J]. Journal of Computational Chemistry,2010,31(10):1956−1968. doi: 10.1002/jcc.21471
    [36]
    祝鹏, 刘成林, 祝飞. 平行因子法分解成分分析在三维荧光光谱数据中的实现[J]. 光谱学与光谱分析,2015,35(6):1611−1617. [ZHU P, LIU C L, ZHU F. The realization of component analysis by parallel factor method in three-dimensional fluorescence data[J]. Spectroscopy and Spectral Analysis,2015,35(6):1611−1617. doi: 10.3964/j.issn.1000-0593(2015)06-1611-07
    [37]
    张棣, 殷勇, 于慧春, 等. 高光谱融合马氏距离的贮藏黄瓜腐败预警方法[J]. 核农学报,2020,34(12):2749−2755. [ZHANG D, YIN Y, YU H C, et al. Early warning method of stored cucumber spoilage based on hyperspectral fusion Mahalanobis distance[J]. Journal of Nuclear Agricultural Sciences,2020,34(12):2749−2755. doi: 10.11869/j.issn.100-8551.2020.12.2749

Catalog

    Article Metrics

    Article views (245) PDF downloads (35) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return