Citation: | WU Jianping, LI Wenlan, QU Zhongyuan, et al. Action Mechanism of Inonotus obliquus in the Treatment of Diabetes and the Material Basis of Pharmacodynamics Based on Network Pharmacology[J]. Science and Technology of Food Industry, 2021, 42(22): 18−29. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040268. |
[1] |
王贺, 王镁. 基于调节肠道菌群探讨清热类方治疗糖尿病的研究进展[J]. 中国实验方剂学杂志,2021,27(3):238−244. [WANG H, WANG M. Advances in research on the treatment of diabetes based on regulating intestinal flora[J]. Chinese Journal of Experience,2021,27(3):238−244.
|
[2] |
COVINGTON M B. Traditional Chinese medicine in the treatment of diabetes[J]. Diabetes Spectrum,2001,14(3):154−159. doi: 10.2337/diaspect.14.3.154
|
[3] |
杜文婧, 王琦. 桦褐孔菌资源分布及药理活性研究进展[J]. 菌物研究,2013,11(1):49−56. [DU W Q, WANG Q. Advances in research and pharmacological activity of birch[J]. Fungicide Study,2013,11(1):49−56.
|
[4] |
张文彭. 桦褐孔菌的中医性味功效探析[J]. 国际中医中药杂志,2019,41(6):655−659. [ZHANG W P. Analysis of Chinese medicine effects of birch brownfish[J]. International Journal of Traditional Chinese Medicine,2019,41(6):655−659. doi: 10.3760/cma.j.issn.1673-4246.2019.06.025
|
[5] |
王蔚, 周忠光, 刘旭, 等. 桦褐孔菌医学相关研究进展[J]. 中国医学装备,2017,14(10):140−145. [WANG W, ZHOU Z G, LIU X, et al. Advances in research on medical relationship between birch[J]. Chinese Medicine Equipment,2017,14(10):140−145. doi: 10.3969/J.ISSN.1672-8270.2017.10.041
|
[6] |
张苗, 李建宽, 葛睿, 等. 桦褐孔菌总多糖抗糖尿病作用的研究[J]. 山西医科大学学报,2020,51(4):327−331. [ZHANG M, LI J K, GE R, et al. Study on the effect of total polysaccharide against diabetes[J]. Journal of Shanxi Medical University,2020,51(4):327−331.
|
[7] |
刘向辉. 桦褐孔菌对实验性Ⅱ型糖尿病治疗作用的研究[D]. 西安: 西北大学, 2014.
LIU X H. Study on the therapeutic effect of birch brown on experimental type II diabetes[D]. Xi’an: Northwest University, 2014.
|
[8] |
王秋爽. 桦褐孔菌对不同造模方法建立的2型糖尿病大鼠降血糖作用初探[D]. 延吉: 延边大学, 2017.
WANG Q S. Preliminary study on blood glucose role in 2 diabetic rats established by birish brownfish on different modeling methods[D]. Yanji: Yanbian University, 2017.
|
[9] |
刘嘉辉, 吕东勇, 周厚明, 等. 基于网络药理学和分子对接研究龙葵治疗肝癌的分子机制[J]. 中国中药杂志,2020,45(1):163. [LIU J H, LV D Y, ZHOU H M, et al. Molecular mechanism for the treatment of liver cancer based on network pharmacology and molecular docking[J]. Chinese Journal of Chinese Medicine,2020,45(1):163.
|
[10] |
张彦琼, 李梢. 网络药理学与中医药现代研究的若干进展[J]. 中国药理学与毒理学杂志,2015,29(6):883. [ZHANG Y Q, LI Q. Several progress in online pharmacology and modern Chinese medicine[J]. Chinese Journal of Pharmacology and Toxicology,2015,29(6):883. doi: 10.3867/j.issn.1000-3002.2015.06.002
|
[11] |
童黄锦, 石芸, 吉敬, 等. 白鲜皮挥发油中潜在活性成分的网络药理学研究[J]. 中国中药杂志,2020,45(5):1135−1141. [TONG H J, SHI Y, JI J, et al. Network pharmacology study of potential active components in bai napu volatile oil[J]. Chinese Journal of Chinese Medicine,2020,45(5):1135−1141.
|
[12] |
吴青华, 李冰涛, 朱水兰, 等. 蒙古族药芯芭治疗2型糖尿病的网络药理学研究[J]. 中国中药杂志,2020,45(8):1764−1771. [WU Q H, LI B T, ZHU S L, et al. Network pharmacology study on treatment of type 2 diabetes in mongolian phase[J]. Chinese Journal of Chinese Medicine,2020,45(8):1764−1771.
|
[13] |
段灿灿, 王清纯, 赵泽粉, 等. 基于网络药理学分析金钗石斛治疗神经系统疾病的药效物质基础及作用机制[J]. 食品工业科技, 2021, 42(13): 1−10.
DUAN C C, WANG Q C, ZHAO Z F, et al. Based on china pharmacology analysis of armodynamic substances and mechanisms of dendrobium of nervous systems[J]. Food Industrial Technology, 2021, 42(13): 1−10.
|
[14] |
HUANG S J, MU F, LI F, et al. Systematic elucidation of the potential mechanism of erzhi pill against drug-induced liver injury via network pharmacology approach[J]. Evidence-Based Complementary and Alternative Medicine, 2020, 2020: 1−15.
|
[15] |
CORREA T, FELTES B C, SCHINZEL A, et al. Network-based analysis using chromosomal microdeletion syndromes as a model[J]. American Journal of Medical Genetics Part C Seminars in Medical Genetics, 2021(1): 1−12.
|
[16] |
聂承冬, 阎新佳, 温静, 等. 基于分子对接和网络药理学的连翘抗肿瘤的作用机制分析[J]. 中国中药杂志,2020,45(18):4455−4465. [NIE C D, YAN X J, WEN J, et al. Mechanism analysis of fiscal antitumor based on molecular die and network pharmacology[J]. Chinese Journal of Chinese Medicine,2020,45(18):4455−4465.
|
[17] |
AMBERGER J S, HAMOSH A. Searching online mendelian inheritance in man(omim): A knowledgebase of human genes and genetic phenotypes[J]. Curr Protoc Bioinformatics,2017,58(1):1.
|
[18] |
SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks[J]. Genome Research,2003,13(11):2498−2504. doi: 10.1101/gr.1239303
|
[19] |
TAN J, QIN X, LIU B, et al. Integrative findings indicate anti-tumor biotargets and molecular mechanisms of calycosin against osteosarcoma[J]. Biomedicine & Pharmacotherapy,2020,126:110096.
|
[20] |
SZKLARCZYK D, MORRIS J H, COOK H, et al. The stiring database in 2017: Quality-controlled protein-protein association networks, made broadly accessible[J]. Nucleic Acids Research,2017:362−368.
|
[21] |
HUANG D W, SHERMAN B T, TAN Q, et al. David bioinformatics resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists[J]. Nucleic Acids Research,2007,35(Suppl 2):W169−W175. doi: 10.1093/nar/gkm415
|
[22] |
SARGIS D, OLSON A J. Small-molecule library screening by docking with PyRx[J]. Mol Biol,2015,1263:243.
|
[23] |
TROTT O, OLSON A J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading[J]. J Comput Chem,2010,31(2):455.
|
[24] |
SALENTIN S. PLIP: Fully automated protein-ligand interaction profiler[J]. Nucl Acids Res,2015,43(W1):W443−W447. doi: 10.1093/nar/gkv315
|
[25] |
文成当智, 张云森, 仁真旺甲, 等. 基于“味性化味-网络靶点-分子对接”的藏药五味麝香丸治疗“真布”病的作用机制研究[J]. 中国药房,2020,31(2):164. [WENCHENG D Z, ZHANG Y S, RENZHEN W J, et al. Study on the action mechanism of Wuwei musxiang pill, a tibetan medicine based on "flavor modification, network target and molecular docking" in the treatment of "Zhenbu" disease[J]. Chinese Pharmacy,2020,31(2):164. doi: 10.6039/j.issn.1001-0408.2020.02.08
|
[26] |
汪莲霞, 陆震鸣, 耿燕, 等. UPLC法测定桦褐孔菌菌丝体中甾类化合物的质量分数[J]. 食品与生物技术学报,2015,34(2):170−174. [WANG L X, LU Z M, GENG Y, et al. UPLC method was used to determine the mass fraction of steroid compounds in the mycelium of Pseudomonas obfuscata[J]. Journal of Food and Biotechnology,2015,34(2):170−174.
|
[27] |
ZHENG G H, PU H S. The study of treterpenes and their glycosides on antidiabetic activity[J]. West China Journal of Pharmaceutical Sciences,2011,26(3):294−297.
|
[28] |
诸夔妞, 吴正凤, 蒋翠花, 等. 三萜类化合物降血糖活性及其作用机制研究进展[J]. 中国药科大学学报,2015,46(6):764−770. [ZHU K N, WU Z F, JIANG C H, et al. Research progress on hypoglycemic activity and mechanism of triterpenes[J]. Journal of China Pharmaceutical University,2015,46(6):764−770. doi: 10.11665/j.issn.1000-5048.20150622
|
[29] |
KOUYAMA R, SUGANAMI T, NISHIDA J, et al. Attenuation of diet-induced weight gain and adiposity through increased energy expenditure in mice lacking angiotensin II type 1a receptor[J]. Endocrinology,2005,146(8):3481−3489. doi: 10.1210/en.2005-0003
|
[30] |
LUO H J, WANG J Z, ZHOU Y, et al. Docking study on trametenolic acid B as a α-glucosidase inhibitor[J]. Medicinal Chemistry Research,2012,21(9):2141−2144. doi: 10.1007/s00044-011-9741-y
|
[31] |
童翠萍. α-葡萄糖苷酶抑制活性导向的桦褐孔菌降糖作用物质基础研究[D]. 杭州: 浙江工业大学, 2015.
TONG C P. Basic study on hypoglycemic substances directed by α-glucosidase inhibitory activity of Pseudomonas obfuscata[D]. Hangzhou: Zhejiang University of Technology, 2015.
|
[32] |
KAVIARASAN S, MUNIANDY S, QVIST R, et al. F2-isoprostanes as novel biomarkers for type 2 diabetes: A review[J]. Journal of Clinical Biochemistry and Nutrition,2009,45(1):1−8. doi: 10.3164/jcbn.08-266
|
[33] |
唐荣德, 罗治华, 蒋三员, 等. 高脂血症血脂和血糖及凝血因子变化的实验研究[J]. 中国医师杂志,2004(2):217−218. [TANG R D, LUO Z H, JIANG S Y, et al. Experimental study on changes of blood lipids, blood glucose and coagulation factors in hyperlipidemia[J]. Chinese Journal of Physicians,2004(2):217−218. doi: 10.3760/cma.j.issn.1008-1372.2004.02.030
|
[34] |
KIM S H, KIM D J, SEO I A, et al. Significance of [beta] 2-adrenergic receptor gene polymorphism in obesity and type 2 diabetes mellitus in Korean subjects[J]. Metabolism-clinical and Experimental,2002,51(7):833−837. doi: 10.1053/meta.2002.33347
|
[35] |
黄盼盼, 陈程, 徐向群. 桦褐孔菌三萜对α-葡萄糖苷酶和α-淀粉酶的抑制活性及其有效成分鉴定[J]. 浙江理工大学学报(自然科学版),2020,43(5):678−686. [HUANG P P, CHEN C, XU X Q. Inhibition of α-glucosidase and α-amylase by triterpenoids from Prella obfuscata and identification of their active constituents[J]. Journal of Zhejiang Sci-tech University(Natural Science),2020,43(5):678−686.
|
[36] |
TUTTLE R L, GILL N S, PUGH W, et al. Regulation of pancreatic β-cell growth and survival by the serine/threonine protein kinase Akt1/PKB-α[J]. Nature Medicine,2001,7(10):1133−1137. doi: 10.1038/nm1001-1133
|
[37] |
MOLLER D E. Potential role of TNF-α in the pathogenesis of insulin resistance and type 2 diabetes[J]. Trends in Endocrinology & Metabolism,2000,11(6):212−217.
|
[38] |
IL'YASOVA D, SPASOJEVIC I, BASE K, et al. Urinary F2-isoprostanes as a biomarker of reduced risk of type 2 diabetes[J]. Diabetes Care,2012,35(1):173−174. doi: 10.2337/dc11-1502
|
[39] |
CAMERON M J, ARREAZA G A, GRATTAN M, et al. Differential expression of CC chemokines and the CCR5 receptor in the pancreas is associated with progression to type I diabetes[J]. The Journal of Immunology,2000,165(2):1102−1110. doi: 10.4049/jimmunol.165.2.1102
|
[40] |
YU A, SNOWHITE I, VENDRAME F, et al. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms supports the use of low-dose IL-2 therapy in type 1 diabetes[J]. Diabetes,2015,64(6):2172−2183. doi: 10.2337/db14-1322
|
[41] |
刘庆山, 张梓倩, 方亮, 等. 高通量技术与网络药理学在中药活性成分筛选中的应用[J]. 中国中药杂志,2012(2):134. [LIU Q S, ZHANG Z Q, FANG L, et al. Application of high throughput technology and network pharmacology in screening of active ingredients in traditional Chinese medicine[J]. Chinese Journal of Traditional Chinese Medicine,2012(2):134.
|
[42] |
部丽丽. 制备HPLC法分离纯化桦褐孔菌醇的研究[D]. 上海: 上海师范大学, 2018.
BU L L. Study on preparation and purification of betulinol by HPLC[D]. Shanghai: Shanghai Normal University, 2018.
|