Citation: | ZHANG Tingxin, LI Fuqiang, ZHANG Nan, et al. Advances in Preparation, Biological Effect and Structure-activity Relationship of Hypoglycemic Peptides[J]. Science and Technology of Food Industry, 2022, 43(8): 433−442. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040219. |
[1] |
MONNIER L, COLETTE C, SCHLIENGER J L, et al. Glucocentric risk factors for macrovascular complications in diabetes: Glucose ‘legacy’ and ‘variability’-what we see, know and try to comprehend[J]. Diabetes and Metabolism,2019,45(5):401−408. doi: 10.1016/j.diabet.2019.01.007
|
[2] |
CHO N H, SHAW J E, KARURANGA S, et al. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Research and Clinical Practice,2018,138:271−281. doi: 10.1016/j.diabres.2018.02.023
|
[3] |
金斐, 朱丽云, 高永生, 等. 植物源活性成分降血糖作用及其机理研究进展[J]. 食品科学,2021:1−14. [JIN Fei, ZHU Liyun, GAO Yongsheng, et al. Research progress on the hypoglycemic effect and mechanism of plant-derived[J]. Food Science,2021:1−14. doi: 10.7506/spkx1002-6630-20191214-156
|
[4] |
TIAN Y, WANG W, YUAN C, et al. Nutritional and digestive properties of protein isolates extracted from the muscle of the common carp using pH-Shift processing[J]. Journal of Food Processing and Preservation,2017,41(1):e12847. doi: 10.1111/jfpp.12847
|
[5] |
CHEN J, LIU G, PANTALONE V, et al. Physicochemical properties of proteins extracted from four new Tennessee soybean lines[J]. Journal of Agriculture and Food Research,2020,2:100022. doi: 10.1016/j.jafr.2020.100022
|
[6] |
HATANAKA T, INOUE Y, ARIMA J, et al. Production of dipeptidyl peptidase IV inhibitory peptides from defatted rice bran[J]. Food Chemistry,2012,134(2):797−802. doi: 10.1016/j.foodchem.2012.02.183
|
[7] |
LI M, XIA S, ZHANG Y, et al. Optimization of ACE inhibitory peptides from black soybean by microwave assisted enzymatic method and study on its stability[J]. LWT - Food Science and Technology,2018,98:358−365. doi: 10.1016/j.lwt.2018.08.045
|
[8] |
WEN C, ZHANG J, ZHANG H, et al. Effects of divergent ultrasound pretreatment on the structure of watermelon seed protein and the antioxidant activity of its hydrolysates[J]. Food Chemistry,2019,299:125165. doi: 10.1016/j.foodchem.2019.125165
|
[9] |
RIVERO-PINO F, ESPEJO-CARPIO F J, PÉREZ-GÁLVEZ R, et al. Effect of ultrasound pretreatment and sequential hydrolysis on the production of Tenebrio molitor antidiabetic peptides[J]. Food and Bioproducts Processing,2020,123:217−224. doi: 10.1016/j.fbp.2020.07.003
|
[10] |
ADMASSU H, GASMALLA M A A, YANG R, et al. Evaluation of the in vitro α-amylase enzyme inhibition potential of commercial dried laver (Porphyra Species) seaweed protein hydrolysate[J]. Turkish Journal of Fisheries and Aquatic Sciences,2018,18(4):547−556.
|
[11] |
REN Y, WU H, LAI F, et al. Isolation and identification of a novel anticoagulant peptide from enzymatic hydrolysates of scorpion (Buthus martensii Karsch) protein[J]. Food Research International,2014,64:931−938. doi: 10.1016/j.foodres.2014.08.031
|
[12] |
REN Y, LIANG K, JIN Y, et al. Identification and characterization of two novel α-glucosidase inhibitory oligopeptides from hemp (Cannabis sativa L.) seed protein[J]. Journal of Functional Foods,2016,26:439−450. doi: 10.1016/j.jff.2016.07.024
|
[13] |
BOOTS J. Protein hydrolysate enriched in peptides inhibiting DPP-IV and their use: US, 20130096074[P]. 2013-04-18.
|
[14] |
LI-CHAN E C Y, HUNAG S L, JAO C L, et al. Peptides derived from Atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors[J]. Journal of Agricultural and Food Chemistry,2012,60(4):973−978. doi: 10.1021/jf204720q
|
[15] |
YUAN X Q, GU X, TANG J. Purification and characterisation of a hypoglycemic peptide from Momordica charantia L. Var. Abbreviata Ser[J]. Food Chemistry,2008,111:415−420. doi: 10.1016/j.foodchem.2008.04.006
|
[16] |
HE R, GIRGIH A T, ROZOY E, et al. Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes[J]. Food Chemistry,2016,197:1008−1014. doi: 10.1016/j.foodchem.2015.11.081
|
[17] |
DE SOUZA ROCHA T, HERNANDEZ L M R, CHANG Y K, et al. Impact of germination and enzymatic hydrolysis of cowpea bean (Vigna unguiculata) on the generation of peptides capable of inhibiting dipeptidyl peptidase IV[J]. Food Research International,2014,64:799−809. doi: 10.1016/j.foodres.2014.08.016
|
[18] |
PIA Z, JENNIFER C, ANITA K, et al. Metabolic role of dipeptidyl peptidase 4 (DPP4) in primary human (pre)adipocytes[J]. Scientific Reports,2016,6:23074. doi: 10.1038/srep23074
|
[19] |
AMAYA-FARFAN J, MOURA C S, MORATO P N, et al. Chapter 17- Dietary whey protein and type 2 diabetes: Molecular aspects[M]. London: Molecular Nutrition and Diabetes, 2016: 211−221.
|
[20] |
NAUCK M A, MEIER J J. Incretin hormones: Their role in health and disease[J]. Diabetes, Obesity and Metabolism,2018,20:5−21. doi: 10.1111/dom.13129
|
[21] |
ANDERSEN E S, CF DEACON, HOLST J J, et al. Do we know the true mechanism of action of the DPP-4 inhibitors?[J]. Diabetes, ObesityandMetabolism,2018,20(1):34−41.
|
[22] |
MUNE M M A, MINKA S R, HENLE T. Investigation on antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activity of Bambara bean protein hydrolysates[J]. Food Chemistry,2018,250:162−169. doi: 10.1016/j.foodchem.2018.01.001
|
[23] |
NONGONIERMA A B, CADAMURO C, LE GOUIC A, et al. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation[J]. Food Chemistry,2019,279:70−79. doi: 10.1016/j.foodchem.2018.11.142
|
[24] |
DEACON, CAROLYN F. A review of dipeptidyl peptidase-4 inhibitors. Hot topics from randomized controlled trials[J]. Diabetes, Obesity and Metabolism,2018,20:34−46.
|
[25] |
ZHANG Y, WANG N, WANG W, et al. Molecular mechanisms of novel peptides from silkworm pupae that inhibit α-glucosidase[J]. Peptides,2016,76:45−50. doi: 10.1016/j.peptides.2015.12.004
|
[26] |
KANG M G, YI S H, LEE J S. Production and characterization of a new α-glucosidase inhibitory peptide from Aspergillus oryzae N159-1[J]. Mycobiology,2013,41(3):149−154. doi: 10.5941/MYCO.2013.41.3.149
|
[27] |
SOMTIMUANG C, OLATUNJI O J, OVATLARNPORN C. Evaluation of in vitro a-amylase and a-glucosidase inhibitory potentials of 14 medicinal plants constituted in Thai folk antidiabetic formularies[J]. Chemistry & Biodiversity,2018,15(4):e1800025.
|
[28] |
YU Z, YIN Y, ZHAO W, et al. Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase[J]. Food Chemistry,2012,135(3):2078−2085. doi: 10.1016/j.foodchem.2012.06.088
|
[29] |
SIOW H, GAN C. Extraction, identification, and structure - activity relationship of antioxidative and α -amylase inhibitory peptides from cumin seeds (Cuminum cyminum)[J]. Journal of Functional Foods,2016,22:1−12. doi: 10.1016/j.jff.2016.01.011
|
[30] |
吴彤. 核桃降血糖活性肽的分离纯化、结构鉴定及降血糖作用机理研究[D]. 长春: 吉林农业大学, 2020.
WU Tong. Purification, identification and hypoglycemic mechanism of hypoglycemic peptides from walnut protein hydrolysate[D]. Changchun: Jilin Agricultural University, 2020.
|
[31] |
MOJICA L, GONZALEZ De Mejia E, GRANADOS-SILVESTRE M Á, et al. Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches[J]. Journal of Functional Foods,2017,31:274−286. doi: 10.1016/j.jff.2017.02.006
|
[32] |
OSEGUERA TOLEDO M E, GONZALEZ DE MEJIA E, SIVAGURU M, et al. Common bean (Phaseolus vulgaris L.) protein-derived peptides increased insulin secretion, inhibited lipid accumulation, increased glucose uptake and reduced the phosphatase and tensin homologue activation in vitro[J]. Journal of Functional Foods,2016,27:160−177. doi: 10.1016/j.jff.2016.09.001
|
[33] |
NGOH Y Y, TYE G J, GAN C Y. The investigation of α-amylase inhibitory activity of selected pinto bean peptides via preclinical study using AR42J cell[J]. Journal of Functional Foods,2017,35:641−647. doi: 10.1016/j.jff.2017.06.037
|
[34] |
IME L, ECY Li-Chan. Inhibition of dipeptidyl peptidase (DPP)-IV and a-glucosidase activities by pepsin-treated whey proteins[J]. Journal of Agricultural and Food Chemistry,2013,61(31):7500−7506. doi: 10.1021/jf401000s
|
[35] |
TULIPANO G, SIBILIA V, CAROLI A M, et al. Whey proteins as source of dipeptidyl dipeptidase IV (dipeptidyl peptidase-4) inhibitors[J]. Peptides,2011,32(4):835−838. doi: 10.1016/j.peptides.2011.01.002
|
[36] |
VILCACUNDO R, MARTÍNEZ-VILLALUENGA C, HERNÁNDEZ-LEDESMA B. Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion[J]. Journal of Functional Foods,2017,35:531−539. doi: 10.1016/j.jff.2017.06.024
|
[37] |
YANG H J, KWON D Y, KIM M J, et al. Meju, unsalted soybeans fermented with Bacillus subtilis and Aspergilus oryzae, potentiates insulinotropic actions and improves hepatic insulin sensitivity in diabetic rats[J]. Nutrition and Metabolism,2012,9:1−12. doi: 10.1186/1743-7075-9-1
|
[38] |
MOJICA L, LUNA-VITAL D A, GONZALEZ de MEJIA E. Black bean peptides inhibit glucose uptake in Caco-2 adenocarcinoma cells by blocking the expression and translocation pathway of glucose transporters[J]. Toxicology Reports,2018,5:552−560. doi: 10.1016/j.toxrep.2018.04.007
|
[39] |
UENISHI H, KABUKI T, SETO Y, et al. Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats[J]. International Dairy Journal,2012,22(1):24−30. doi: 10.1016/j.idairyj.2011.08.002
|
[40] |
WANG T Y, HSIEH C H, HUNG C C, et al. Fish skin gelatin hydrolysates as dipeptidyl peptidase IV inhibitors and glucagon-like peptide-1 stimulators improve glycaemic control in diabetic rats: A comparison between warm- and cold-water fish[J]. Journal of Functional Foods,2015,19:330−340. doi: 10.1016/j.jff.2015.09.037
|
[41] |
PERLMAN R L. Mouse models of human disease: An evolutionary perspective[J]. Evolution, Medicine, and Public Health,2016(1):170−176.
|
[42] |
JIANG H, FENG J, DU Z, et al. Oral administration of soybean peptide Vglycin normalizes fasting glucose and restores impaired pancreatic function in Type 2 diabetic Wistar rats[J]. Journal of Nutritional Biochemistry,2014,25(9):954−963. doi: 10.1016/j.jnutbio.2014.04.010
|
[43] |
HERNÁNDEZ-SAAVEDRA D, MENDOZA-SÁNCHEZ M, HERNÁNDEZ-MONTIEL H L, et al. Cooked common beans (Phaseolus vulgaris) protect against β-cell damage in streptozotocin-induced diabetic rats[J]. Plant Foods for Human Nutrition,2013,68(2):207−212. doi: 10.1007/s11130-013-0353-1
|
[44] |
AZUSHIMA K, GURLEY S B, COFFMAN T M. Modelling diabetic nephropathy in mice[J]. Nature Reviews Nephrology,2017,14(1):48−56.
|
[45] |
GHASEMI A, KHALIFI S, JEDI S. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes[J]. Acta Physiologica Hungarica,2014,101(4):408−420. doi: 10.1556/APhysiol.101.2014.4.2
|
[46] |
裴天仙, 郭景玥, 王春雨, 等. 6种2型糖尿病动物模型中生化和病理改变的比较[J]. 药物评价研究, 2020, 43(9) : 1740−1746.
PEI Tianxian, GUO Jingyue, WANG Chunyu, et al. Comparison of biochemical and pathological changes in six type 2 diabetic animal models[J]. 2020, 43(9): 1740−1746.
|
[47] |
唐艺丹, 王鲜忠, 张姣姣. Ⅱ型糖尿病动物模型构建的研究进展[J]. 中国实验动物学报,2020,28(6):870−876. [TANG Y D, WANG X Z, ZHANG J J. Research progress in the construction of type II diabetes animal models[J]. Acta Lab Anim Sci Sin,2020,28(6):870−876. doi: 10.3969/j.issn.1005-4847.2020.06.020
|
[48] |
刘洪霞, 舒丹阳, 刘鹏展, 等. 沙棘蛋白的特性及其对 db /db 糖尿病小鼠的降血糖作用[J]. 食品工业科技,2020,41(7):309−313. [LIU Hongxia, SHU Danyang, LIU Zhan Pengzhan, et al. Characteristics of seabuckthorn seed protein and its hypoglycemic effect on db /db diabetic mice[J]. Science and Technology of Food Industry,2020,41(7):309−313.
|
[49] |
WANG J, DU K, FANG L, et al. Evaluation of the antidiabetic activity of hydrolyzed peptides derived from juglans mandshurica maxim. fruits in insulin-resistant HepG2 cells and type 2 diabetic mice[J]. Journal of Food Biochemistry,2018,42(3):1−9.
|
[50] |
BEN Slama-ben Salem R, KTARI N, BKHAIRIA I, et al. In vitro and in vivo anti-diabetic and anti-hyperlipidemic effects of protein hydrolysates from Octopus vulgaris in alloxanic rats[J]. Food Research International,2018,106:952−963. doi: 10.1016/j.foodres.2018.01.068
|
[51] |
KTARI N, MNAFGUI K, NASRI R, et al. Hypoglycemic and hypolipidemic effects of protein hydrolysates from zebra blenny (Salaria basilisca) in alloxan-induced diabetic rats[J]. Food and Function,2013,4(11):1691−1699. doi: 10.1039/c3fo60264h
|
[52] |
SENER A, MALAISSE W J. L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase[J]. Nature,1980,288(5787):187−189. doi: 10.1038/288187a0
|
[53] |
LOUIS S. Stimulus-secretion coupling of arginine- induced insulin release[J]. Biochemical Pharmacology,1990,39(3):537−547. doi: 10.1016/0006-2952(90)90061-O
|
[54] |
SCHWANSTECHER C, MEYER M, SCHWANSTECHER M, et al. Interaction of N-benzoyl-D-phenylalanine and related compounds with the sulphonylurea receptor of β-cells[J]. British Journal of Pharmacology,1998,123(6):1023−1030. doi: 10.1038/sj.bjp.0701686
|
[55] |
KILARI B P, MUDGIL P, AZIMULLAH S, et al. Effect of camel milk protein hydrolysates against hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin (STZ)-induced diabetic rats[J]. Journal of Dairy Science,2021,104(2):1304−1317. doi: 10.3168/jds.2020-19412
|
[56] |
KTARI N, NASRI R, MNAFGUI K, et al. Antioxidative and ACE inhibitory activities of protein hydrolysates from zebra blenny (Salaria basilisca) in alloxan-induced diabetic rats[J]. Process Biochemistry,2014,49(5):890−897. doi: 10.1016/j.procbio.2014.01.032
|
[57] |
BEN KHALED H, GHLISSI Z, CHTOUROU Y, et al. Effect of protein hydrolysates from sardinelle (Sardinella aurita) on the oxidative status and blood lipid profile of cholesterol-fed rats[J]. Food Research International,2012,45(1):60−68. doi: 10.1016/j.foodres.2011.10.003
|
[58] |
HUANG S L, HUNG C C, JAO C L, et al. Porcine skin gelatin hydrolysate as a dipeptidyl peptidase IV inhibitor improves glycemic control in streptozotocin-induced diabetic rats[J]. Journal of Functional Foods,2014,11:235−242. doi: 10.1016/j.jff.2014.09.010
|
[59] |
JUNG E Y, LEE H S, LEE H J, et al. Feeding silk protein hydrolysates to C57BL/KsJ-db/db mice improves blood glucose and lipid profiles[J]. Nutrition Research,2010,30(11):783−790. doi: 10.1016/j.nutres.2010.10.006
|
[60] |
朱西平. 沙棘籽蛋白对2型糖尿病模型小鼠体内降血糖与炎症因子的干预作用[D]. 合肥: 合肥工业大学, 2016.
ZHU Xiping. Effects of seabuckthorn protein on the hypoglycemic and inflammatory factors in type 2 diabetic mice[D]. Hefei: Hefei University of Technology, 2016.
|
[61] |
CAPRIOTTI A L, CAVALIERE C, FOGLIA P, et al. Development of an analytical strategy for the identification of potential bioactive peptides generated by in vitro tryptic digestion of fish muscle proteins[J]. Analytical and Bioanalytical Chemistry,2015,407(3):845−854. doi: 10.1007/s00216-014-8094-z
|
[62] |
VALENCIA-MEJÍA E, BATISTA K A, JOSE J, et al. Antihyperglycemic and hypoglycemic activity of naturally occurring peptides and protein hydrolysates from easy-to-cook and hard-to-cook beans (Phaseolus vulgaris L.)[J]. Food Research International,2019,121:238−246. doi: 10.1016/j.foodres.2019.03.043
|
[63] |
KIELA P R, GHISHAN F K. Physiology of intestinal absorption and secretion[J]. Best Practice and Research:Clinical Gastroenterology,2016,30(2):145−159. doi: 10.1016/j.bpg.2016.02.007
|
[64] |
LACROIX I M E, CHEN X M, KITTS D D, et al. Investigation into the bioavailability of milk protein-derived peptides with dipeptidyl-peptidase IV inhibitory activity using Caco-2 cell monolayers[J]. Food and Function,2017,8(2):701−709. doi: 10.1039/C6FO01411A
|
[65] |
DING L, WANG L, ZHANG T, et al. Hydrolysis and transepithelial transport of two corn gluten derived bioactive peptides in human Caco-2 cell monolayers[J]. Food Research International,2018,106:475−480. doi: 10.1016/j.foodres.2017.12.080
|
[66] |
YAN T R, HO S C, HOU C L. Catalytic properties of X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis subsp. cremoris nTR[J]. Bioscience, Biotechnology, and Biochemistry,1992,56(5):704−707. doi: 10.1271/bbb.56.704
|
[67] |
RAHFELD J, SCHIERBORN M, HARTRODT B, et al. Are diprotin A (Ile-Pro-Ile) and diprotin B (Val-Pro-Leu) inhibitors or substrates of dipeptidyl peptidase IV?[J]. Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular,1991,1076(2):314−316. doi: 10.1016/0167-4838(91)90284-7
|
[68] |
HIKIDA A, ITO K, MOTOYAMA T, et al. Systematic analysis of a dipeptide library for inhibitor development using human dipeptidyl peptidase IV produced by a Saccharomyces cerevisiae expression system[J]. Biochemical and Biophysical Research Communications,2013,430(4):1217−1222. doi: 10.1016/j.bbrc.2012.12.073
|
[69] |
WEICHEN BO, LANG CHEN A, DONGYA Q, et al. Application of quantitative structure-activity relationship to food-derived peptides: Methods, situations, challenges and prospects[J]. Trends in Food Science & Technology,2021,114:176−188.
|
[70] |
WANG K, YANG X X, LOU W Y, et al. Discovery of dipeptidyl peptidase 4 inhibitory peptides from Largemouth bass (Micropterus salmoides) by a comprehensive approach[J]. Bioorganic Chemistry,2020,105:104432. doi: 10.1016/j.bioorg.2020.104432
|
[71] |
LAN V T T, ITO K, OHNO M, et al. Analyzing a dipeptide library to identify human dipeptidyl peptidase IV inhibitor[J]. Food Chemistry,2015,175:66−73. doi: 10.1016/j.foodchem.2014.11.131
|
[72] |
YU Z, YIN Y, ZHAO W, et al. Novel peptides derived from egg white protein inhibiting alpha-glucosidase[J]. Food Chemistry,2011,129(4):1376−1382. doi: 10.1016/j.foodchem.2011.05.067
|
[73] |
NGOH Y, SOON T, GAN C. Enzyme and microbial technology screening and identification of five peptides from pinto bean with inhibitory activities against α-amylase using phage display technique[J]. Enzyme and Microbial Technology,2016,89:76−84. doi: 10.1016/j.enzmictec.2016.04.001
|