ZHANG Tingxin, LI Fuqiang, ZHANG Nan, et al. Advances in Preparation, Biological Effect and Structure-activity Relationship of Hypoglycemic Peptides[J]. Science and Technology of Food Industry, 2022, 43(8): 433−442. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040219.
Citation: ZHANG Tingxin, LI Fuqiang, ZHANG Nan, et al. Advances in Preparation, Biological Effect and Structure-activity Relationship of Hypoglycemic Peptides[J]. Science and Technology of Food Industry, 2022, 43(8): 433−442. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040219.

Advances in Preparation, Biological Effect and Structure-activity Relationship of Hypoglycemic Peptides

More Information
  • Received Date: April 25, 2021
  • Available Online: January 18, 2022
  • Diabetes is a serious global health problem, and its incidence rate has been increasing in recent years. Many drugs have been proven effective in the treatment of diabetes mellitus, but most of them have toxic side effects. Therefore, the development of safe and effective hypoglycemic drugs have drawn increasingly more attention around the world. Hypoglycemic peptides has the hypoglycemic effect and has little side effects, and has the research value in the field of functional food and drugs, and has a broad application prospect. In this paper, the preparation, biological effect and structure-activity relationship of hypoglycemic peptides in recent years are reviewed, and the research prospect of hypoglycemic peptides is looked forward, in order to provide reference for the development and utilization of hypoglycemic peptides and the further processing of related products.
  • loading
  • [1]
    MONNIER L, COLETTE C, SCHLIENGER J L, et al. Glucocentric risk factors for macrovascular complications in diabetes: Glucose ‘legacy’ and ‘variability’-what we see, know and try to comprehend[J]. Diabetes and Metabolism,2019,45(5):401−408. doi: 10.1016/j.diabet.2019.01.007
    [2]
    CHO N H, SHAW J E, KARURANGA S, et al. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Research and Clinical Practice,2018,138:271−281. doi: 10.1016/j.diabres.2018.02.023
    [3]
    金斐, 朱丽云, 高永生, 等. 植物源活性成分降血糖作用及其机理研究进展[J]. 食品科学,2021:1−14. [JIN Fei, ZHU Liyun, GAO Yongsheng, et al. Research progress on the hypoglycemic effect and mechanism of plant-derived[J]. Food Science,2021:1−14. doi: 10.7506/spkx1002-6630-20191214-156
    [4]
    TIAN Y, WANG W, YUAN C, et al. Nutritional and digestive properties of protein isolates extracted from the muscle of the common carp using pH-Shift processing[J]. Journal of Food Processing and Preservation,2017,41(1):e12847. doi: 10.1111/jfpp.12847
    [5]
    CHEN J, LIU G, PANTALONE V, et al. Physicochemical properties of proteins extracted from four new Tennessee soybean lines[J]. Journal of Agriculture and Food Research,2020,2:100022. doi: 10.1016/j.jafr.2020.100022
    [6]
    HATANAKA T, INOUE Y, ARIMA J, et al. Production of dipeptidyl peptidase IV inhibitory peptides from defatted rice bran[J]. Food Chemistry,2012,134(2):797−802. doi: 10.1016/j.foodchem.2012.02.183
    [7]
    LI M, XIA S, ZHANG Y, et al. Optimization of ACE inhibitory peptides from black soybean by microwave assisted enzymatic method and study on its stability[J]. LWT - Food Science and Technology,2018,98:358−365. doi: 10.1016/j.lwt.2018.08.045
    [8]
    WEN C, ZHANG J, ZHANG H, et al. Effects of divergent ultrasound pretreatment on the structure of watermelon seed protein and the antioxidant activity of its hydrolysates[J]. Food Chemistry,2019,299:125165. doi: 10.1016/j.foodchem.2019.125165
    [9]
    RIVERO-PINO F, ESPEJO-CARPIO F J, PÉREZ-GÁLVEZ R, et al. Effect of ultrasound pretreatment and sequential hydrolysis on the production of Tenebrio molitor antidiabetic peptides[J]. Food and Bioproducts Processing,2020,123:217−224. doi: 10.1016/j.fbp.2020.07.003
    [10]
    ADMASSU H, GASMALLA M A A, YANG R, et al. Evaluation of the in vitro α-amylase enzyme inhibition potential of commercial dried laver (Porphyra Species) seaweed protein hydrolysate[J]. Turkish Journal of Fisheries and Aquatic Sciences,2018,18(4):547−556.
    [11]
    REN Y, WU H, LAI F, et al. Isolation and identification of a novel anticoagulant peptide from enzymatic hydrolysates of scorpion (Buthus martensii Karsch) protein[J]. Food Research International,2014,64:931−938. doi: 10.1016/j.foodres.2014.08.031
    [12]
    REN Y, LIANG K, JIN Y, et al. Identification and characterization of two novel α-glucosidase inhibitory oligopeptides from hemp (Cannabis sativa L.) seed protein[J]. Journal of Functional Foods,2016,26:439−450. doi: 10.1016/j.jff.2016.07.024
    [13]
    BOOTS J. Protein hydrolysate enriched in peptides inhibiting DPP-IV and their use: US, 20130096074[P]. 2013-04-18.
    [14]
    LI-CHAN E C Y, HUNAG S L, JAO C L, et al. Peptides derived from Atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors[J]. Journal of Agricultural and Food Chemistry,2012,60(4):973−978. doi: 10.1021/jf204720q
    [15]
    YUAN X Q, GU X, TANG J. Purification and characterisation of a hypoglycemic peptide from Momordica charantia L. Var. Abbreviata Ser[J]. Food Chemistry,2008,111:415−420. doi: 10.1016/j.foodchem.2008.04.006
    [16]
    HE R, GIRGIH A T, ROZOY E, et al. Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes[J]. Food Chemistry,2016,197:1008−1014. doi: 10.1016/j.foodchem.2015.11.081
    [17]
    DE SOUZA ROCHA T, HERNANDEZ L M R, CHANG Y K, et al. Impact of germination and enzymatic hydrolysis of cowpea bean (Vigna unguiculata) on the generation of peptides capable of inhibiting dipeptidyl peptidase IV[J]. Food Research International,2014,64:799−809. doi: 10.1016/j.foodres.2014.08.016
    [18]
    PIA Z, JENNIFER C, ANITA K, et al. Metabolic role of dipeptidyl peptidase 4 (DPP4) in primary human (pre)adipocytes[J]. Scientific Reports,2016,6:23074. doi: 10.1038/srep23074
    [19]
    AMAYA-FARFAN J, MOURA C S, MORATO P N, et al. Chapter 17- Dietary whey protein and type 2 diabetes: Molecular aspects[M]. London: Molecular Nutrition and Diabetes, 2016: 211−221.
    [20]
    NAUCK M A, MEIER J J. Incretin hormones: Their role in health and disease[J]. Diabetes, Obesity and Metabolism,2018,20:5−21. doi: 10.1111/dom.13129
    [21]
    ANDERSEN E S, CF DEACON, HOLST J J, et al. Do we know the true mechanism of action of the DPP-4 inhibitors?[J]. Diabetes, ObesityandMetabolism,2018,20(1):34−41.
    [22]
    MUNE M M A, MINKA S R, HENLE T. Investigation on antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activity of Bambara bean protein hydrolysates[J]. Food Chemistry,2018,250:162−169. doi: 10.1016/j.foodchem.2018.01.001
    [23]
    NONGONIERMA A B, CADAMURO C, LE GOUIC A, et al. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation[J]. Food Chemistry,2019,279:70−79. doi: 10.1016/j.foodchem.2018.11.142
    [24]
    DEACON, CAROLYN F. A review of dipeptidyl peptidase-4 inhibitors. Hot topics from randomized controlled trials[J]. Diabetes, Obesity and Metabolism,2018,20:34−46.
    [25]
    ZHANG Y, WANG N, WANG W, et al. Molecular mechanisms of novel peptides from silkworm pupae that inhibit α-glucosidase[J]. Peptides,2016,76:45−50. doi: 10.1016/j.peptides.2015.12.004
    [26]
    KANG M G, YI S H, LEE J S. Production and characterization of a new α-glucosidase inhibitory peptide from Aspergillus oryzae N159-1[J]. Mycobiology,2013,41(3):149−154. doi: 10.5941/MYCO.2013.41.3.149
    [27]
    SOMTIMUANG C, OLATUNJI O J, OVATLARNPORN C. Evaluation of in vitro a-amylase and a-glucosidase inhibitory potentials of 14 medicinal plants constituted in Thai folk antidiabetic formularies[J]. Chemistry & Biodiversity,2018,15(4):e1800025.
    [28]
    YU Z, YIN Y, ZHAO W, et al. Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase[J]. Food Chemistry,2012,135(3):2078−2085. doi: 10.1016/j.foodchem.2012.06.088
    [29]
    SIOW H, GAN C. Extraction, identification, and structure - activity relationship of antioxidative and α -amylase inhibitory peptides from cumin seeds (Cuminum cyminum)[J]. Journal of Functional Foods,2016,22:1−12. doi: 10.1016/j.jff.2016.01.011
    [30]
    吴彤. 核桃降血糖活性肽的分离纯化、结构鉴定及降血糖作用机理研究[D]. 长春: 吉林农业大学, 2020.

    WU Tong. Purification, identification and hypoglycemic mechanism of hypoglycemic peptides from walnut protein hydrolysate[D]. Changchun: Jilin Agricultural University, 2020.
    [31]
    MOJICA L, GONZALEZ De Mejia E, GRANADOS-SILVESTRE M Á, et al. Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches[J]. Journal of Functional Foods,2017,31:274−286. doi: 10.1016/j.jff.2017.02.006
    [32]
    OSEGUERA TOLEDO M E, GONZALEZ DE MEJIA E, SIVAGURU M, et al. Common bean (Phaseolus vulgaris L.) protein-derived peptides increased insulin secretion, inhibited lipid accumulation, increased glucose uptake and reduced the phosphatase and tensin homologue activation in vitro[J]. Journal of Functional Foods,2016,27:160−177. doi: 10.1016/j.jff.2016.09.001
    [33]
    NGOH Y Y, TYE G J, GAN C Y. The investigation of α-amylase inhibitory activity of selected pinto bean peptides via preclinical study using AR42J cell[J]. Journal of Functional Foods,2017,35:641−647. doi: 10.1016/j.jff.2017.06.037
    [34]
    IME L, ECY Li-Chan. Inhibition of dipeptidyl peptidase (DPP)-IV and a-glucosidase activities by pepsin-treated whey proteins[J]. Journal of Agricultural and Food Chemistry,2013,61(31):7500−7506. doi: 10.1021/jf401000s
    [35]
    TULIPANO G, SIBILIA V, CAROLI A M, et al. Whey proteins as source of dipeptidyl dipeptidase IV (dipeptidyl peptidase-4) inhibitors[J]. Peptides,2011,32(4):835−838. doi: 10.1016/j.peptides.2011.01.002
    [36]
    VILCACUNDO R, MARTÍNEZ-VILLALUENGA C, HERNÁNDEZ-LEDESMA B. Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion[J]. Journal of Functional Foods,2017,35:531−539. doi: 10.1016/j.jff.2017.06.024
    [37]
    YANG H J, KWON D Y, KIM M J, et al. Meju, unsalted soybeans fermented with Bacillus subtilis and Aspergilus oryzae, potentiates insulinotropic actions and improves hepatic insulin sensitivity in diabetic rats[J]. Nutrition and Metabolism,2012,9:1−12. doi: 10.1186/1743-7075-9-1
    [38]
    MOJICA L, LUNA-VITAL D A, GONZALEZ de MEJIA E. Black bean peptides inhibit glucose uptake in Caco-2 adenocarcinoma cells by blocking the expression and translocation pathway of glucose transporters[J]. Toxicology Reports,2018,5:552−560. doi: 10.1016/j.toxrep.2018.04.007
    [39]
    UENISHI H, KABUKI T, SETO Y, et al. Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats[J]. International Dairy Journal,2012,22(1):24−30. doi: 10.1016/j.idairyj.2011.08.002
    [40]
    WANG T Y, HSIEH C H, HUNG C C, et al. Fish skin gelatin hydrolysates as dipeptidyl peptidase IV inhibitors and glucagon-like peptide-1 stimulators improve glycaemic control in diabetic rats: A comparison between warm- and cold-water fish[J]. Journal of Functional Foods,2015,19:330−340. doi: 10.1016/j.jff.2015.09.037
    [41]
    PERLMAN R L. Mouse models of human disease: An evolutionary perspective[J]. Evolution, Medicine, and Public Health,2016(1):170−176.
    [42]
    JIANG H, FENG J, DU Z, et al. Oral administration of soybean peptide Vglycin normalizes fasting glucose and restores impaired pancreatic function in Type 2 diabetic Wistar rats[J]. Journal of Nutritional Biochemistry,2014,25(9):954−963. doi: 10.1016/j.jnutbio.2014.04.010
    [43]
    HERNÁNDEZ-SAAVEDRA D, MENDOZA-SÁNCHEZ M, HERNÁNDEZ-MONTIEL H L, et al. Cooked common beans (Phaseolus vulgaris) protect against β-cell damage in streptozotocin-induced diabetic rats[J]. Plant Foods for Human Nutrition,2013,68(2):207−212. doi: 10.1007/s11130-013-0353-1
    [44]
    AZUSHIMA K, GURLEY S B, COFFMAN T M. Modelling diabetic nephropathy in mice[J]. Nature Reviews Nephrology,2017,14(1):48−56.
    [45]
    GHASEMI A, KHALIFI S, JEDI S. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes[J]. Acta Physiologica Hungarica,2014,101(4):408−420. doi: 10.1556/APhysiol.101.2014.4.2
    [46]
    裴天仙, 郭景玥, 王春雨, 等. 6种2型糖尿病动物模型中生化和病理改变的比较[J]. 药物评价研究, 2020, 43(9) : 1740−1746.

    PEI Tianxian, GUO Jingyue, WANG Chunyu, et al. Comparison of biochemical and pathological changes in six type 2 diabetic animal models[J]. 2020, 43(9): 1740−1746.
    [47]
    唐艺丹, 王鲜忠, 张姣姣. Ⅱ型糖尿病动物模型构建的研究进展[J]. 中国实验动物学报,2020,28(6):870−876. [TANG Y D, WANG X Z, ZHANG J J. Research progress in the construction of type II diabetes animal models[J]. Acta Lab Anim Sci Sin,2020,28(6):870−876. doi: 10.3969/j.issn.1005-4847.2020.06.020
    [48]
    刘洪霞, 舒丹阳, 刘鹏展, 等. 沙棘蛋白的特性及其对 db /db 糖尿病小鼠的降血糖作用[J]. 食品工业科技,2020,41(7):309−313. [LIU Hongxia, SHU Danyang, LIU Zhan Pengzhan, et al. Characteristics of seabuckthorn seed protein and its hypoglycemic effect on db /db diabetic mice[J]. Science and Technology of Food Industry,2020,41(7):309−313.
    [49]
    WANG J, DU K, FANG L, et al. Evaluation of the antidiabetic activity of hydrolyzed peptides derived from juglans mandshurica maxim. fruits in insulin-resistant HepG2 cells and type 2 diabetic mice[J]. Journal of Food Biochemistry,2018,42(3):1−9.
    [50]
    BEN Slama-ben Salem R, KTARI N, BKHAIRIA I, et al. In vitro and in vivo anti-diabetic and anti-hyperlipidemic effects of protein hydrolysates from Octopus vulgaris in alloxanic rats[J]. Food Research International,2018,106:952−963. doi: 10.1016/j.foodres.2018.01.068
    [51]
    KTARI N, MNAFGUI K, NASRI R, et al. Hypoglycemic and hypolipidemic effects of protein hydrolysates from zebra blenny (Salaria basilisca) in alloxan-induced diabetic rats[J]. Food and Function,2013,4(11):1691−1699. doi: 10.1039/c3fo60264h
    [52]
    SENER A, MALAISSE W J. L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase[J]. Nature,1980,288(5787):187−189. doi: 10.1038/288187a0
    [53]
    LOUIS S. Stimulus-secretion coupling of arginine- induced insulin release[J]. Biochemical Pharmacology,1990,39(3):537−547. doi: 10.1016/0006-2952(90)90061-O
    [54]
    SCHWANSTECHER C, MEYER M, SCHWANSTECHER M, et al. Interaction of N-benzoyl-D-phenylalanine and related compounds with the sulphonylurea receptor of β-cells[J]. British Journal of Pharmacology,1998,123(6):1023−1030. doi: 10.1038/sj.bjp.0701686
    [55]
    KILARI B P, MUDGIL P, AZIMULLAH S, et al. Effect of camel milk protein hydrolysates against hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin (STZ)-induced diabetic rats[J]. Journal of Dairy Science,2021,104(2):1304−1317. doi: 10.3168/jds.2020-19412
    [56]
    KTARI N, NASRI R, MNAFGUI K, et al. Antioxidative and ACE inhibitory activities of protein hydrolysates from zebra blenny (Salaria basilisca) in alloxan-induced diabetic rats[J]. Process Biochemistry,2014,49(5):890−897. doi: 10.1016/j.procbio.2014.01.032
    [57]
    BEN KHALED H, GHLISSI Z, CHTOUROU Y, et al. Effect of protein hydrolysates from sardinelle (Sardinella aurita) on the oxidative status and blood lipid profile of cholesterol-fed rats[J]. Food Research International,2012,45(1):60−68. doi: 10.1016/j.foodres.2011.10.003
    [58]
    HUANG S L, HUNG C C, JAO C L, et al. Porcine skin gelatin hydrolysate as a dipeptidyl peptidase IV inhibitor improves glycemic control in streptozotocin-induced diabetic rats[J]. Journal of Functional Foods,2014,11:235−242. doi: 10.1016/j.jff.2014.09.010
    [59]
    JUNG E Y, LEE H S, LEE H J, et al. Feeding silk protein hydrolysates to C57BL/KsJ-db/db mice improves blood glucose and lipid profiles[J]. Nutrition Research,2010,30(11):783−790. doi: 10.1016/j.nutres.2010.10.006
    [60]
    朱西平. 沙棘籽蛋白对2型糖尿病模型小鼠体内降血糖与炎症因子的干预作用[D]. 合肥: 合肥工业大学, 2016.

    ZHU Xiping. Effects of seabuckthorn protein on the hypoglycemic and inflammatory factors in type 2 diabetic mice[D]. Hefei: Hefei University of Technology, 2016.
    [61]
    CAPRIOTTI A L, CAVALIERE C, FOGLIA P, et al. Development of an analytical strategy for the identification of potential bioactive peptides generated by in vitro tryptic digestion of fish muscle proteins[J]. Analytical and Bioanalytical Chemistry,2015,407(3):845−854. doi: 10.1007/s00216-014-8094-z
    [62]
    VALENCIA-MEJÍA E, BATISTA K A, JOSE J, et al. Antihyperglycemic and hypoglycemic activity of naturally occurring peptides and protein hydrolysates from easy-to-cook and hard-to-cook beans (Phaseolus vulgaris L.)[J]. Food Research International,2019,121:238−246. doi: 10.1016/j.foodres.2019.03.043
    [63]
    KIELA P R, GHISHAN F K. Physiology of intestinal absorption and secretion[J]. Best Practice and Research:Clinical Gastroenterology,2016,30(2):145−159. doi: 10.1016/j.bpg.2016.02.007
    [64]
    LACROIX I M E, CHEN X M, KITTS D D, et al. Investigation into the bioavailability of milk protein-derived peptides with dipeptidyl-peptidase IV inhibitory activity using Caco-2 cell monolayers[J]. Food and Function,2017,8(2):701−709. doi: 10.1039/C6FO01411A
    [65]
    DING L, WANG L, ZHANG T, et al. Hydrolysis and transepithelial transport of two corn gluten derived bioactive peptides in human Caco-2 cell monolayers[J]. Food Research International,2018,106:475−480. doi: 10.1016/j.foodres.2017.12.080
    [66]
    YAN T R, HO S C, HOU C L. Catalytic properties of X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis subsp. cremoris nTR[J]. Bioscience, Biotechnology, and Biochemistry,1992,56(5):704−707. doi: 10.1271/bbb.56.704
    [67]
    RAHFELD J, SCHIERBORN M, HARTRODT B, et al. Are diprotin A (Ile-Pro-Ile) and diprotin B (Val-Pro-Leu) inhibitors or substrates of dipeptidyl peptidase IV?[J]. Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular,1991,1076(2):314−316. doi: 10.1016/0167-4838(91)90284-7
    [68]
    HIKIDA A, ITO K, MOTOYAMA T, et al. Systematic analysis of a dipeptide library for inhibitor development using human dipeptidyl peptidase IV produced by a Saccharomyces cerevisiae expression system[J]. Biochemical and Biophysical Research Communications,2013,430(4):1217−1222. doi: 10.1016/j.bbrc.2012.12.073
    [69]
    WEICHEN BO, LANG CHEN A, DONGYA Q, et al. Application of quantitative structure-activity relationship to food-derived peptides: Methods, situations, challenges and prospects[J]. Trends in Food Science & Technology,2021,114:176−188.
    [70]
    WANG K, YANG X X, LOU W Y, et al. Discovery of dipeptidyl peptidase 4 inhibitory peptides from Largemouth bass (Micropterus salmoides) by a comprehensive approach[J]. Bioorganic Chemistry,2020,105:104432. doi: 10.1016/j.bioorg.2020.104432
    [71]
    LAN V T T, ITO K, OHNO M, et al. Analyzing a dipeptide library to identify human dipeptidyl peptidase IV inhibitor[J]. Food Chemistry,2015,175:66−73. doi: 10.1016/j.foodchem.2014.11.131
    [72]
    YU Z, YIN Y, ZHAO W, et al. Novel peptides derived from egg white protein inhibiting alpha-glucosidase[J]. Food Chemistry,2011,129(4):1376−1382. doi: 10.1016/j.foodchem.2011.05.067
    [73]
    NGOH Y, SOON T, GAN C. Enzyme and microbial technology screening and identification of five peptides from pinto bean with inhibitory activities against α-amylase using phage display technique[J]. Enzyme and Microbial Technology,2016,89:76−84. doi: 10.1016/j.enzmictec.2016.04.001

Catalog

    Article Metrics

    Article views (520) PDF downloads (80) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return