LI Miao, HU Wenze, YUE Guoxin, et al. Review on Degradation Technology of Polymeric Proanthocyanidin[J]. Science and Technology of Food Industry, 2022, 43(7): 417−423. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030383.
Citation: LI Miao, HU Wenze, YUE Guoxin, et al. Review on Degradation Technology of Polymeric Proanthocyanidin[J]. Science and Technology of Food Industry, 2022, 43(7): 417−423. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030383.

Review on Degradation Technology of Polymeric Proanthocyanidin

More Information
  • Received Date: March 30, 2021
  • Available Online: January 29, 2022
  • Proanthocyanidins are a kind of flavane-3-alcohols which exist widely in nature. Because most of the proanthocyanidins obtained from nature are high polymer proanthocyanidins with benzene ring or long carbon chain, their physiological activity is weak. Through degradation, the physiological activity and application range of proanthocyanidins can be enhanced. Therefore, the degradation technology of high polymer proanthocyanidins has became a research hotspot at home and abroad. In this paper, the literature reports on the degradation technology of proanthocyanidin polymers at home and abroad are sorted out in detail, and the chemical, biological and physical degradation technologies are reviewed in detail. Among them, the chemical degradation technology mainly breaks the link bond between C4-C8 in proanthocyanidin polymer to obtain low molecular weight fragments through acid, alkali, nucleophile and hydrogenation degradation, and biodegradation technology uses microorganisms and biological enzymes to open the benzene ring of proanthocyanidin polymer to oligomer. Physical degradation technology reduces high polymer proanthocyanidins to oligomeric proanthocyanidins by using physical techniques such as ultrasonic, pulsed strong light, ultra-high pressure, microfluidic and electron beam irradiation. In this paper, the degradation effects, degradation processes, degradation mechanisms, advantages and disadvantages of various degradation technologies of proanthocyanidins are summarized, and the degradation technology of proanthocyanidins is prospected.
  • loading
  • [1]
    张慧文, 张玉, 马超美. 原花青素的研究进展[J]. 食品科学,2015,36(5):296−304. [ZHANG Huiwen, ZHANG Yu, MA Chaomei. Progress in procyani dins research[J]. Food Science,2015,36(5):296−304.
    [2]
    陈梦雨, 黄小丹, 王钊, 等. 植物原花青素的研究进展及其应用现状[J]. 中国食物与营养,2018,24(3):54−58. [CHEN Mengyu, HUANG Xiaodan, WANG Zhao, et al. Research progress and application of plant proanthocyanidin[J]. Chinese Food and Nutrition,2018,24(3):54−58.
    [3]
    姜贵全, 张卓睿, 张诗朦, 等. 落叶松树皮多聚原花青素的树脂催化降解及抗氧化活性[J]. 北京林业大学学报,2018,40(9):118−126. [JIANG Guiquan, ZHANG Zhuorui, ZHANG Shimeng, et al. Degradation of polymeric proanthocyanidin from larch bark catalyzed by resin and antioxidant activity[J]. Journal of Beijing Forestry University,2018,40(9):118−126.
    [4]
    BAGCHI D, SWAROOP A, PREUSS H, et al. Free radical scavenging, antioxidant and cancer chemoprevention by grape seed proanthocyanidin: An overview[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,2014,768:69−73. doi: 10.1016/j.mrfmmm.2014.04.004
    [5]
    DE SÁ M, JUSTINO V, SPRANGER M, et al. Extraction yields and anti-oxidant activity of proanthocyanidins from different parts of grape pomace: Effect of mechanical treatments[J]. Phytochemical Analysis, 25, 134–140.
    [6]
    SPRANGER I, SUN B S, MATEUS A, et al. Chemical characterization and antioxidant activities of oligomeric and polymeric procyanidin fractions from grape seeds[J]. Food Chemistry,2008,108:519−532. doi: 10.1016/j.foodchem.2007.11.004
    [7]
    董鹏, 刘俊英, 安晓东, 等. 高聚原花青素的降解方法[P]. 中国专利 CN102432580A, 2012-05-02.

    DONG Peng, LIU Junying, AN Xiaodong, et al. Degradation methods of polymer proanthocyanidins[P]. Chinese Patent, CN102432580A, 2012-05-02.
    [8]
    魏冠红. 高聚体原花青素的水解工艺研究[D]. 杭州: 浙江大学, 2006.

    WEI Guanhong. Hydrolysis process of procyanidolic polymers[D]. Hangzhou: Zhejiang University, 2006.
    [9]
    王新伟. 山葡萄种质资源原花青素动态含量变化及提取、降解研究[D]. 北京: 中国农业科学院, 2011.

    WANG Xinwei. Studys of the extraction and degradation in procyanidine, and thedynamic contents in germplasm resources on Vitis amurensis Rupr[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011.
    [10]
    张惠. 莲房高聚体原花青素催化降解工艺研究[D]. 郑州: 郑州大学, 2018.

    ZHANG Hui. Study on the catalytic degradation process of high polymer procyanidins form Lotus seed pot[D]. Zhengzhou : Zhengzhou University, 2018.
    [11]
    秦永剑, 张加研. 云南松多聚原花青素的化学降解工艺研究[C]. 中国林学会, 第九届中国林业青年学术年会论文, 2010: 223−224.

    QIN Yongjian, ZHANG Jiayan. Study on chemical degradation technology of polyprocyanidins from Pinus yunnanensis[C]. China Forestry Society, The 9th Annual Conference of Chinese Forestry Youth, 2010: 223−224.
    [12]
    赵平, 张月萍, 任鹏. 原花青素高聚体水解[J]. 中国食品添加剂,2012(5):124−128. [ZHAO Ping, ZHANG Yueping, Ren Peng. Hydrolysis of proanthocyanidins polymer[J]. Chinese Food Additive,2012(5):124−128.
    [13]
    LUO L, CUI Y, CHENG J, et al. An approach for degradation of grape seed and skin proanthocyanidin polymers into oligomers by sulphurous acid[J]. Food Chemistry,2018,256(aug.1):203−211.
    [14]
    陈才法, 郭璨, 李长峰, 等. 一种用亚硫酸化学降度高聚原花青素的方法[P]. 中国专利CN105837548A, 2016-08-10.

    CHEN Caifa, GUO Can, LI Changfeng, et al. A method of chemical reduction of high polymer proanthocyanidins with sulfurous acid[P]. Chinese Patent, CN105837548A, 2016-08-10.
    [15]
    周浩, 涂芬, 付欣, 等. 板栗壳原花青素稳定性、结构分析及体外消化[J]. 中国调味品,2019,44(8):175−179, 184. [ZHOU Hao, TU Fen, FU Xin, et al. Stability, structural analysis and digestion in vitro of proanthocyanidins from chestnut shell[J]. Chinese Condiment,2019,44(8):175−179, 184.
    [16]
    张乃珣, 郭庆启, 王振宇. 不同金属离子和还原剂对落叶松松塔原花青素热稳定性影响的研究[J]. 安徽农业科学,2014,42(22):7463−7466. [ZHANG Naixun, GUO Qingqi, WANG Zhenyu. Effects of different metal lons and food reductant on thermal stability of procyanidins from Larix gmelinii pinecone[J]. Northeast Forestry University,2014,42(22):7463−7466.
    [17]
    曹清丽, 吕玉姣, 林强. 葡萄籽中原花青素降解工艺研究[J]. 化学世界,2014,55(8):475−508. [CAO Qingli, LV Yujiao, LIN Qiang. Degradation process of grape seed procyanidins[J]. Chemical World,2014,55(8):475−508.
    [18]
    陈卫航, 张惠, 张婕. SO42-/TiO2固体酸降解莲房中高聚体原花青素研究[J]. 郑州大学学报工学版,2019,40(3):42−47. [CHEN Weihang, Zhang Hui, ZHANG Jie. Study on degradation of high polymer proanthocyanidins in lotus chamber by SO42-/ TiO2 solid acid[J]. Journal of Zhengzhou University (Engineering Science),2019,40(3):42−47.
    [19]
    徐旺, 姚旭, 王元初, 等. 花生红衣中高聚原花青素的水解[J]. 生物加工过程,2021,19(3):6. [XU Wang, YAO Xu, WANG Yuanchu, et al. Hydrolysis of high polymeric procyanidins in peanut red clothing[J]. Chinese Journal of Bioprocess Engineering,2021,19(3):6.
    [20]
    BRITTNY L, WHITE L R. Release of bound procyanidins from cranberry pomace by alkaline hydrolysis[J]. Joumal of Agricultural and Food Chemistry,2010,58:7572−7579. doi: 10.1021/jf100700p
    [21]
    纪秀凤, 吕长鑫, 芦宇, 等. 响应面优化碱降解红树莓籽高聚原花青素及对降血糖酶活性抑制作用[J]. 食品工业科技,2019,40(4):159−165. [JI Xiufeng, LV Changxin, LU Yu, et al. Response surface optimization of alkaline degradation process of high polymeric proanthocyanidins from red raspberry seed and inhibitory activities on hypoglycemic enzymes[J]. Science and Technology of Food Industry,2019,40(4):159−165.
    [22]
    苏惠娟. 葡萄籽原花青素的降解工艺研究[D]. 北京: 北京化工大学2016.

    SU Huijuan. Study on degradation technology of grape seed proanthocyanidins[D]. Beijing: Beijing University of Chemical Technology, 2016.
    [23]
    李惠静, 王丹阳, 吴彦超, 等. 一种用氢氧化锂化学降解高聚原花青素的方法[P]. 中国专利, CN108409702A, 2018-08-17.

    LI Huijing, WANG Danyang, WU Yanchao, et al. A method of chemical degradation of polymeric procyanidins with lithium hydroxide[P]. Chinese Patent, CN108409702A, 2018-08-17.
    [24]
    王丹阳. 葡萄籽原花青素的分离纯化、降解及结构鉴定[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    WANG Danyang. Isolation, purification, degradation and structure identification of proanthocyanidins from grape seeds[D]. Harbin: Harbin Institute of Technology, 2019.
    [25]
    姜贵全. 落叶松树皮原花青素的分级纯化及催化降解研究[D]. 哈尔滨: 东北林业大学, 2013.

    JIANG Guiquan. Study on the fractionation, purification and clalysed dgradation of poanthocyanidins from larch bark[D]. Harbin: Northeast Forestry University, 2013.
    [26]
    施雅, 雍克岚, 汪凌波, 等. 金荞麦高聚原花青素的氢化降解反应[J]. 食品研究与开发,2010,31(3):138−141. [SHI Ya, YONG Kelan, WANG Lingbo, et al. Research on the hydrogenation degradation technique of polymeric procyanidins from Fagopyrum cymosum[J]. Food Research and Development,2010,31(3):138−141.
    [27]
    李长运, 吕敬慈, 魏莎莎, 等. 肉桂高聚原花青素的氢化降解工艺研究[J]. 天然产物研究与开发,2009(4):116−119. [LI Changyun, LV Jingci, WEI Shasha, et al. Research on the hydrogenation technique of polymeric procyanidins from cinnamon[J]. Research and Development of Natural Products,2009(4):116−119.
    [28]
    LI Zheng, ZENG Jijiao, TONG Zhaohui, et al. Hydrogenolytic depolymerization of procyanidin polymers from hi-tannin sorghum bran[J]. Food Chemistry,2015,188:337−342. doi: 10.1016/j.foodchem.2015.05.021
    [29]
    朱红霏. 钯基催化剂解聚落叶松原花青素的研究[D]. 哈尔滨: 东北林业大学, 2020.

    ZHU Hongfei. Study on depolymerization of larch proanthocyanidins by palladium-based catalyst[D]. Harbin: Northeast Forestry University, 2020.
    [30]
    FRIGON J C, CIMPOIA R, GUIOT S R. Sequential anaerobicaerobic biotreahnent of bark Ieacbate[J]. Wat Sci Tecli,2005,48(6):203−209.
    [31]
    MATTHEWS S, MILA I, SCALBERT A, et al. Method for estimation of proanthocyanidins based on their acid depolymerization in the presence of nucleophiles[J]. Aric Food Chem,1997,45:1195−1201.
    [32]
    齐雅静. 不同结构原花青素的制备及对食品中丙烯酰胺生成的影响[D]. 无锡: 江南大学, 2019.

    QI Yajing. Preparation of proanthocyanidins with different structures and their effects on the formation of acrylamide in food[D]. Wuxi: Jiangnan University, 2019.
    [33]
    蒋依然. 高粱麸皮原花青素的制备、结构表征及其抗肝癌细胞活性研究[D]. 无锡: 江南大学, 2020.

    JIANG Yiran. Preparation, structural characterization and anti-hepatoma activity of proanthocyanidins from sorghum wheat bran[D]. Wuxi: Jiangnan University, 2020.
    [34]
    LAI Y F, PORTER L J. Synthesis and conformation of procyanidin diastereoisomners[J]. Joumal of the Chemical Society Perkin Transactions,1983,41(7):1535−1543.
    [35]
    KBHLER N, WRAY V, WINTERHALTER P. New approach for the synthesis and isolation of dimeric procyanidins[J]. Joumal of Agricultural & Food Chemistry,2008,56(13):5374.
    [36]
    ESATBEYOGLU T, WINTERHALTER P. Preparation of dimeric procyanidins B1, B2, B5, and B7 from a polymeric procyanidin fraction of black chokebery (Aronia melanocarpa)[J]. J Agric Food Chem,2010,58(8):5147−5153. doi: 10.1021/jf904354n
    [37]
    ESATBEYOGLU T, WRAY V, WINTERHALTER P. Dimeric procyandins: Screening for Bl to B8 and semisynthetic prepuration of B3, B4, B6, And B8 from a polymenie proeyanidin faction of white willow bark (Salix alba)[J]. Jourmal of Agricultural & Food Chemistry,2010,58(13):7820−7830.
    [38]
    LIU H, TAO Z, GAO J M, et al. Depolymerization of cranberry procyanidins using (+)-catechin, (-)-epicatechin, and (-)-epigallocatechin gallate as chain breakers[J]. Food Chemistry,2013,141(1):488−494. doi: 10.1016/j.foodchem.2013.03.003
    [39]
    QI Yajing, ZHANG Hui, JOSEPH M Awika, et al. Depolymerization of sorghum procyanidin polymers into oligomers using HCl and epicatechin: Reaction kinetics and optimization[J]. Journal of Cereal Science,2016,70:170−176. doi: 10.1016/j.jcs.2016.06.002
    [40]
    文魁山. 葡萄籽原花青素高聚体的解聚方法与条件优化的研究[D]. 杭州: 浙江大学, 2018.

    WEN Kuishan. Study on depolymerization method and condition optimization of grape seed proanthocyanidin polymer[D]. Hangzhou: Zhejiang University, 2018.
    [41]
    徐泽. 新型原花青素低聚体的制备及其生物活性研究[D]. 武汉: 华中农业大学, 2015.

    XU Ze. Preparation and bioactivity of novel proanthocyanidin oligomers[D]. Wuhan: Huazhong Agricultural University, 2015.
    [42]
    樊金玲, 丁霄霖, 陶冠军. 液相色谱-电喷雾质谱联用研究原花青素B3苄硫醇降解产物及反应条件[J]. 分析化学,2006(2):251−254. [FANG Jinling, DING Xiaolin, TAO Guanjun. Study on degradation products and reaction conditions of procyanidin B3 benzyl mercaptan by liquid chromatography-electrospray mass spectrometry[J]. Analytical Chemistry,2006(2):251−254.
    [43]
    余茹鉴. 毛杜仲藤中原花青素类成分及其抗肿瘤活性初步研究[D]. 广州: 暨南大学, 2016.

    YU Rujian. Proanthocyanidins from the plant Urceola huaitingii and their preliminary anticancer effects in combination with chemotherapeutics[D]. Guangzhou: Jinan University, 2016.
    [44]
    SUO Hao, TIAN Ruochen, LI Jing, et al. Compositional characterization study on high-molecular-mass polymeric polyphenols in red wines by chemical degradation[J]. Food Research International,2019:123.
    [45]
    TORES J L, LOZANO C, JULIA L, et al. Cysteinyl-flavan-3-ol conjugates fromgrape procyanidins. Antioxidant and antiproliferative properties[J]. Bioorganic and Medicinal Chemistry,2002,10(5):2497−2509.
    [46]
    CAILI F, WEI C, YI L. Sustainability from agricultural waste: Chiral ligands from oligomeric proanthocyanidins via acid-mediated depolymerization[J]. Tetrahedron Letters,2010,51:6322−6324. doi: 10.1016/j.tetlet.2010.09.123
    [47]
    FUJI H, NAKAGAWA T, NISHIOKA H, et al. Preparation, characterization, and antioxidative effects of oligomeric proanthocyanidin-L-cysteine complexes[J]. Jourmal of Agriculture and Food Chemistry,2007,55(3):1525−1531.
    [48]
    MENG H C, MA C M. Flavan-3-ol-cysteine and acetylcysteine conjugates from edible reagents and the stems of Cynomorium songaricum as potent antioxidants[J]. Food Chemistry,2013,141(3):2691−2696. doi: 10.1016/j.foodchem.2013.05.007
    [49]
    王运来. 沙棘籽原花色素不同降解方法对比研究[D]. 哈尔滨: 黑龙江大学, 2011.

    WANG Yunlai. Comparative study on different degradation methods of proanthocyanidins from Hippophae rhamnoides seeds[D]. Harbin: Heilongjiang University, 2011.
    [50]
    FRIGON J C, CIMPOIA R, GUIOT S R. Sequential anaerobic/aerobic biotreatment of bark leacbate[J]. Wat Sci Tecb,2003,48(6):203−209. doi: 10.2166/wst.2003.0398
    [51]
    KBALIL E, FAOUZI E, LATIFA J, et al. Biodegradation of polypbenols with immobilized Candida tropicalis under metabolic induction[J]. FEMS Micr left,2003,223:215−219. doi: 10.1016/S0378-1097(03)00380-X
    [52]
    王恒永. 真菌降解沙棘原花色素的初步研究[D]. 哈尔滨: 黑龙江大学, 2010.

    WANG Yongheng. Preliminary study on degradation of proanthocyanidins from Hippophae rhamnoides[D]. Harbin: Heilongjiang University, 2010.
    [53]
    DEVENISH S R A, GERRARD J A. The quaternary structure of Escherichia coli N-acetylneuraminate lyase is essential for functional expression[J]. Biochemical & Biophysical Research Communications,2009,388(1):107−111.
    [54]
    邓兆雯. 荔枝皮高聚原花青素生物转化的研究[D]. 广州: 华南理工大学, 2020.

    DENG Zhaowen. Study on biotransformation of high polymer proanthocyanidins in litchi pericarp[D]. Guangzhou: South China University of Technology, 2020.
    [55]
    苏惠娟, 刘丹, 闫望, 等. 基因筛选克隆表达原花青素降解酶及其酶解条件优化的初步研究[J]. 北京化工大学学报(自然科学版),2020,47(4):60−67. [SU Huijuan, LIU Dan, YAN Wang, et al. Cloning and expression of proanthocyanidin degrading enzymes based on gene screening and the optimization of their enzymatic catalysis conditions[J]. Journal of Beijing University of Chemical Technology ( Natural Science),2020,47(4):60−67.
    [56]
    夏强, 黄丹菲, 余强, 等. 超声解聚对大粒车前子多糖流变性质、溶液构象及活性的影响[J]. 食品工业科技,2016,37(17):80−85. [XIA Qiang, HUANG Danfei, YU Qiang, et al. Effects of ultrasonic depolymerization on the rheological property, solution conformation and activities of polysaccharides isolated from the seeds of Plantago asiatica L

    J]. Science and Technology of Food Industry,2016,37(17):80−85.
    [57]
    吴迪. 树莓籽原花青素的降解及抗氧化研究[D]. 沈阳: 沈阳农业大学, 2014.

    WU Di. Study on degradation and antioxidation of proanthocyanidins in raspberry seeds[D]. Shenyang: Shenyang Agricultural University, 2014.
    [58]
    曾新安, 赵丹, 孙大文, 等. 脉冲电场强化降解制备低聚原花青素的方法[P]. 中国专利, CN102924422A, 2013-02-13.

    ZENG Xinan, ZHAO Dan, SUN Dawen, et al. Preparation of oligomeric proanthocyanidins by pulsed electric field enhanced degradation[P]. Chinese Patent, CN102924422A, 2013-02-13.
    [59]
    纵伟, 张丽华, 刘梦培, 等. 高压脉冲电场协同超高压微射流制备低聚原花青素的方法[P]. 中国专利, CN108586416B, 2020-05-26.

    ZONG Wei, ZHANG Lihua, LIU Mengpei, et al. Preparation of oligomeric proanthocyanidins by high voltage pulsed electric field combined with ultra-high pressure microjet[P]. Chinese Patent, CN108586416B, 2020-05-26.
    [60]
    纵伟, 刘梦培, 王小媛, 等 一种利用超高压微射流制备低聚原花青素的方法[P]. 中国专利, CN106892890B, 2019-03-05.

    ZONG Wei, LIU Mengpei, WANG Xiaoyuan, et al. A method of preparing oligomeric proanthocyanidins by ultra-high pressure microjet[P]. Chinese Patent, CN106892890B, 2019-03-05.
    [61]
    纵伟, 张丽华, 刘梦培, 等. 高压脉冲电场协同超高压微射流制备低聚原花青素的方法[P]. 中国专利, CN108586416A, 2018-09-28.

    ZONG Wei, ZHANG Lihua, LIU Mengpei, et al. Preparation of oligomeric proanthocyanidins by high voltage pulsed electric field combined with ultra-high pressure microjet[P]. Chinese Patent, CN108586416A, 2018-09-28.
    [62]
    纵伟, 刘梦培, 王小媛, 等. 一种利用超高压微射流制备低聚原花青素的方法[P]. 中国专利, CN106892890A, 2017-06-27.

    ZONG Wei, LIU Mengpei, WANG Xiaoyuan, et al. A method of preparing oligomeric proanthocyanidins by ultra-high pressure microjet[P]. Chinese Patent, CN106892890A, 2017-06-27.
    [63]
    汪宇炜, 林柳月, 胡诗婷, 等. 电子束辐照对高聚原花青素聚合度的影响[J]. 生物化工,2020,6(5):9−12. [WANG Yuwei, LIN Liuyue, HU Shiting, et al. Effect of electron beam irradiation on degree of polymerization of high aggregation proanthocyanidins[J]. Biochemical Engineering,2020,6(5):9−12.

Catalog

    Article Metrics

    Article views (496) PDF downloads (58) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return