LI Lingyu, ZHU Wenqing, ZHU Shanshan, et al. Mechanism of Caffeoylquinic Acids in the Treatment of Type II Diabetes Based on Network Pharmacology [J]. Science and Technology of Food Industry, 2021, 42(14): 16−24. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010111.
Citation: LI Lingyu, ZHU Wenqing, ZHU Shanshan, et al. Mechanism of Caffeoylquinic Acids in the Treatment of Type II Diabetes Based on Network Pharmacology [J]. Science and Technology of Food Industry, 2021, 42(14): 16−24. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010111.

Mechanism of Caffeoylquinic Acids in the Treatment of Type II Diabetes Based on Network Pharmacology

More Information
  • Received Date: January 17, 2021
  • Available Online: May 13, 2021
  • Objective: Analyzing the mechanism of type II diabetes treatment with caffeoylquinic acids based on network pharmacology. Methods: Through literature mining and database search, the target points of caffeoylquinic acids and disease targets related to type II diabetes were obtained. The “component-disease-target” effect network of caffeoylquinic acids was drawn, and gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis were carried out. The core target proteins and key components were used for the molecular docking verification. Results: Caffeoylquinic acids corresponded to 483 targets, 2214 type II diabetes-related targets, 211 common targets, and 37 key targets. The mechanism of action of caffeoylquinic acids in the treatment of type II diabetes mainly involved multiple pathways such as degradation of the extracellular matrix, activation of matrix metalloproteinases, collagen degradation, etc. It mainly involved AKT1, MMP3, MMP9, HIF1A, IGF1R, MAPK8 and other genes, these genes were usually reported to play a role mainly by regulating glucose metabolism and related proteins. The results of molecular docking verification between compounds and molecular targets were good, which verified the accuracy of the prediction of network construction. Conclusion: This study predicted the key targets and mechanism of action of caffeoylquinic acids to treat type II diabetes. It also provided a scientific basis for further research on the molecular mechanism of caffeoylquinic acids in the treatment of type II diabetes.
  • loading
  • [1]
    Borghouts L B. Exercise and type 2 diabetes[J]. Advances in Experimental Medicine and Biology,2020(1228):91−105.
    [2]
    Pouya S, Inga P, Paraskevi S, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition[J]. Diabetes Research and Clinical Practice,2019,157:107843. doi: 10.1016/j.diabres.2019.107843
    [3]
    Zheng Y, Ley S H, Hu F B. Global aetiology and epidemiology of type 2 diabetes mellitus and its caomplications[J]. Nature Reviews Endocrinology,2018,14(2):88−98. doi: 10.1038/nrendo.2017.151
    [4]
    Ng M L, Wadham C, Sukocheva O A. The role of sphingolipid signalling in diabetes-associated pathologies(Review)[J]. International Journal of Molecular Medicine,2017,39(2):243−252. doi: 10.3892/ijmm.2017.2855
    [5]
    刘培, 孙芮芮, 张莉丹, 等. 基于网络药理学的四君子汤治疗2型糖尿病的作用机制研究[J]. 中草药,2020,51(6):1548−1558. doi: 10.7501/j.issn.0253-2670.2020.06.023
    [6]
    Seehusen D A, Fisher C L, Rider H A, et al. Exploring patient perspectives of prediabetes and diabetes severity: A qualitative study[J]. Psychology & Health,2019,34(11):1314−1327.
    [7]
    王艳梅, 王根杰, 张树林, 等. 临床常用降糖药物的不良反应及防治策略[J]. 中国医院药学杂志,2015,35(24):2233−2236.
    [8]
    Yin B, Bi Y M, Fan G J, et al. Molecular mechanism of the effect of huanglianjiedu decoction on type 2 diabetes mellitus based on network pharmacology and molecular docking[J]. Journal of Diabetes Research,2020:5273914.
    [9]
    席利莎, 木泰华, 孙红男. 绿原酸类物质的国内外研究进展[J]. 核农学报,2014,28(2):292−301. doi: 10.11869/j.issn.100-8551.2014.02.0292
    [10]
    Karthikesan K, Pari L, Menon V P. Antihyperlipidemic effect of chlorogenic acid and tetrahydrocurcumin in rats subjected to diabetogenic agents[J]. Chem-Biol Interact,2010,188(3):643−650. doi: 10.1016/j.cbi.2010.07.026
    [11]
    Tian Y, Cao X X, Shang H, et al. Synthesis and in vitro evaluation of caffeoylquinic acid derivatives as potential hypolipidemic agents[J]. Molecules (Basel, Switzerland),2019,24(5):964. doi: 10.3390/molecules24050964
    [12]
    吴钉红. 网络药理学及其在中药领域的研究概述[J]. 广州化工,2017,45(11):216−218. doi: 10.3969/j.issn.1001-9677.2017.11.082
    [13]
    李洋, 夏厚林, 周厚琴, 等. 基于分子对接技术预测人面子叶中黄酮成分抗菌作用靶点[J]. 中国医院用药评价与分析,2016,16(10):1303−1307.
    [14]
    Yang X, Liu H, Liu J, et al. Rational selection of the 3d structure of biomacromolecules for molecular docking studies on the mechanism of endocrine disruptor action[J]. Chemical Research in Toxicology,2016,29(9):1565−1570. doi: 10.1021/acs.chemrestox.6b00245
    [15]
    赵昱, 赵军, 李湘萍, 等. 咖啡酰奎尼酸类化合物研究进展[J]. 中国中药杂志,2006(11):869−874. doi: 10.3321/j.issn:1001-5302.2006.11.001
    [16]
    朱文卿, 任汉书, 徐美霞, 等. 咖啡酰奎宁酸类化合物的生物学活性及提高其生物利用度技术研究进展[J]. 食品科学,2021,42(3):321−329. doi: 10.7506/spkx1002-6630-20200102-021
    [17]
    宫阿娟, 潘天荣, 付万进, 等. 基于网络药理学的方法研究桑叶活性成分对2型糖尿病治疗作用机制[J]. 医药论坛杂志,2020,41(2):30−37, 41.
    [18]
    Al R A, Liu B, Persaud S, et al. A novel Gymnema sylvestre extract protects pancreatic beta-cells from cytokine-induced apoptosis[J]. Phytotherapy Research,2020,34(1):161−172. doi: 10.1002/ptr.6512
    [19]
    Surget S, Khoury M P, Bourdon J C. Uncovering the role of p53 splice variants in human malignancy: A clinical perspective[J]. OncoTargets and Therapy,2014,2013(7):57−68.
    [20]
    姜勇, 韩家淮. p38MAPK信号传导通路[J]. 生命科学,1999,11(3):102−106.
    [21]
    Murat K V, Yagmur D N. Constitution of a comprehensive phytochemical profile and network pharmacology based investigation to decipher molecular mechanisms of Teucrium polium L. in the treatment of type 2 diabetes mellitus[J]. PeerJ,2020,8:e10111. doi: 10.7717/peerj.10111
    [22]
    向臣希, 欧瑜. 氧化应激在2型糖尿病发病过程中的作用[J]. 药物生物技术,2015,22(5):457−460.
    [23]
    Xia M H, Huang R L, Sun Y, et al. Identification of chemical compounds that induce HIF-1 alpha activity[J]. Toxicological Sciences,2009,112(1):153−163. doi: 10.1093/toxsci/kfp123
    [24]
    王梦, 张泽生, 刘暄, 等. D-松醇复配Mn2+对2型糖尿病大鼠的降血糖作用及其机制的研究[J]. 食品工业科技,2019,40(9):302−307, 314.
    [25]
    王馨苑, 黄夏冰, 邓鑫. 基于网络药理学和分子对接探讨黄连素治疗2型糖尿病机制研究[J]. 中国新药杂志,2020,29(24):2820−2831.
    [26]
    Lemus V M L, F S M E, Cervantes M R, et al. Expression of HIF-1 alpha, VEGF and EPO in peripheral blood from patients with two cardiac abnormalities associated with hypoxia[J]. Clinical Biochemistry,2010,43(3):234−239. doi: 10.1016/j.clinbiochem.2009.09.022
    [27]
    吕翠岩, 张胜容, 徐暾海, 等. 糖痹康对糖尿病大鼠坐骨神经HIF-1α蛋白及HIF-1α mRNA表达的影响[J]. 中华中医药杂志,2016,31(7):2560−2563.
    [28]
    Lawan A, Bennett A M. Mitogen-activated protein kinase regulation in hepatic metabolism[J]. Trends in Endocrinology & Metabolism,2017,28(12):868−878.
    [29]
    王超, 张会欣, 邢邯英, 等. 氧化苦参碱抑制p38MAPK通路减轻高脂喂养胰岛素抵抗小鼠氧化应激[J]. 中国中药杂志,2016,41(15):2872−2876.
    [30]
    葛凌, 蔡亚军, 王章达. 槲皮素对2型糖尿病大鼠胰岛素抵抗的改善作用及FGF21/MAPK信号通路的影响[J]. 中国药师,2019,22(3):418−421. doi: 10.3969/j.issn.1008-049X.2019.03.007
    [31]
    Li F, Zeng O, Luo J, et al. Effects of hydrogen sulfide on myocardial fibrosis and MAPK1/3 and MMP-8 expression in diabetic rats[J]. Journal of Southern Medical University,2015,35(4):549−552.
    [32]
    LiuX X, HuangX Z, ChenL, et al. Mechanical stretch promotes matrix metalloproteinase-2 and prolyl-4-hydroxylase α1 production in human aortic smooth muscle cells via Akt-p38 MAPK-JNK signaling[J]. The International Journal of Biochemistry & Cell Biology,2015,62:15−23.

Catalog

    Article Metrics

    Article views (296) PDF downloads (30) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return