Citation: | LIU Chao, LI Kun, BAI Xiaoxuan, et al. Analysis of Gene Clusters for Sanxiapeptin Biosynthesis by Transcriptomic Sequencing [J]. Science and Technology of Food Industry, 2021, 42(13): 156−162. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110192. |
[1] |
Vogt E, Künzler M. Discovery of novel fungal RiPP biosynthetic pathways and their application for the development of peptide therapeutics[J]. Applied Microbiology Biotechnology,2019,103(14):5567−5581.
|
[2] |
Süssmuth R, Müller J, Von Döhren H, et al. Fungal cyclooligomer depsipeptides: From classical biochemistry to combinatorial biosynthesis[J]. Natural Product Reports,2011,28(1):99−124. doi: 10.1039/C001463J
|
[3] |
Abulfathi A A, Chirehwa M, Rosenkranz B, et al. Evaluation of the effectiveness of dose individualization to achieve therapeutic vancomycin concentrations[J]. Journal Clinical Pharmacology,2018,58(9):1134−1139. doi: 10.1002/jcph.1254
|
[4] |
Yang X, Feng P, Yin Y, et al. Cyclosporine biosynthesis in Tolypocladium inflatum benefits fungal adaptation to the environment[J]. Molecular Biology and Physiology,2018,9(5):e01211−e01218.
|
[5] |
Zhao P, Xue Y, Li X, et al. Fungi-derived lipopeptide antibiotics developed since 2000[J]. Peptides,2019(113):52−65.
|
[6] |
Ramm S, Krawczyk B, Süssmuth R D, et al. A Self-sacrificing N-methyltransferase is the precursor of the fungal natural product omphalotin[J]. Angewandte Chemie (International ed. in English),2017,56(33):9994−9997.
|
[7] |
Nuti R, Goud N S, Saraswati A P, et al. Antimicrobial peptides: A promising therapeutic strategy in tackling antimicrobial resistance[J]. Current Medicinal Chemistry,2017,24:4303−4314.
|
[8] |
Reimer J M, Aloise M N, Harrison P M, et al. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase[J]. Nature,2016,529:239−242. doi: 10.1038/nature16503
|
[9] |
张晨曦. 两种核糖体肽类天然产物的生物合成机制研究[D]. 上海: 上海师范大学, 2017.
|
[10] |
Luo S, Dong S H. Recent advances in the discovery and biosynthetic study of eukaryotic RiPP natural products[J]. Molecules,2019,24(8):1541. doi: 10.3390/molecules24081541
|
[11] |
Ortega M A, van der Donk W A. New insights into the biosynthetic logic of ribosomally synthesized and post-translationally modified peptide natural products[J]. Cell Chemical Biology,2016,23(1):31−44. doi: 10.1016/j.chembiol.2015.11.012
|
[12] |
Ding W, Liu W Q, Jia Y, et al. Biosynthetic investigation of phomopsins reveals a widespread pathway for ribosomal natural products in ascomycetes[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(13):3521−3526. doi: 10.1073/pnas.1522907113
|
[13] |
Hudson G A, Mitchell D A. RiPP antibiotics: Biosynthesis and engineering potential[J]. Current Opinion in Microbiology,2018,45:61−69. doi: 10.1016/j.mib.2018.02.010
|
[14] |
Singh M, Chaudhary S, Sareen D. Non-ribosomal peptide synthetases: Identifying the cryptic gene clusters and decoding the natural product[J]. Journal of Biosciences,2017,42(1):175−187.
|
[15] |
韩梦瑶, 陈晶晶, 朱平, 等. 非核糖体肽合成酶研究进展[J]. 药学学报,2018,53(7):1080−1089.
|
[16] |
潘园园, 刘钢. 中国丝状真菌次级代谢分子调控研究进展[J]. 遗传,2018,40(10):874−887.
|
[17] |
Niu X, Thaochan N, Hu Q. Diversity of linear non-ribosomal peptide in biocontrol fungi[J]. Journal of Fungi,2020,6(2):61. doi: 10.3390/jof6020061
|
[18] |
Boddy C N. Bioinformatics tools for genome mining of polyketide and non-ribosomal peptides[J]. J Ind Microbiol Biotechnol,2014,41:443−450. doi: 10.1007/s10295-013-1368-1
|
[19] |
Steiniger C, Hoffmann S, Süssmuth R D, et al. Harnessing fungal nonribosomal cyclodepsipeptide synthetases for mechanistic insights and tailored engineering[J]. Chemical Science,2017,8(11):7834−7843. doi: 10.1039/C7SC03093B
|
[20] |
Prieto C, García-Estrada C, Martín J F, et al. NRPSsp: Non-ribosomal peptide synthase substrate predictor[J]. Bioinformatics,2012,28(3):426−427.
|
[21] |
Röttig M, Blin K, Kohlbacher O, et al. NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity[J]. Nucleic Acids Research,2011,39:362−367.
|
[22] |
Rodríguez-García A, Sola-Landa A, Barreiro C. RNA-Seq-Based comparative transcriptomics: RNA preparation and bioinformatics[J]. Methods in Molecular Biology,2017,1645:59−72.
|
[23] |
Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis[J]. Wiley Interdisciplinary Reviews-RNA,2017,8(1):10.
|
[24] |
雷秀云. 基于RNA-Seq技术的竹红菌甲素和20-羟基蜕皮甾酮的生物合成研究[D]. 苏州: 苏州大学, 2017.
|
[25] |
刘凤娟. 基于转录组学和代谢组学分析的山黧豆β-ODAP生物合成机制分析[D]. 咸阳: 西北农林科技大学, 2019.
|
[26] |
刘伟, 王俊燚, 李萌, 等. 基于转录组测序的银杏类黄酮生物合成关键基因表达分析[J]. 中草药,2018,49(23):5633−5639. doi: 10.7501/j.issn.0253-2670.2018.23.024
|
[27] |
杨宇纯, 肖梅, 薛艳红, 等. 草酸青霉中新型线性五肽的发现及对柑橘采后致腐菌拮抗活性研究[J]. 微生物学通报,2020,47 (2):481−489.
|
[28] |
杨宇纯. 草酸青霉(Penicillium oxalicum)的线性五肽抑制柑橘采后致腐菌活性研究[D]. 宜昌: 三峡大学, 2020.
|
[29] |
贾泽, 江云, 王智玮, 等. 炭样小单孢菌 JXNU-1 抗生素合成的转录组学分析[J]. 基因组学与应用生物学,2018,37(9):3817−3828.
|
[30] |
魏春梅, 栾威, 代娅, 等. 比较转录组研究钛离子对紫花苜蓿基因表达的影响[J]. 应用与环境生物学,2019,25 (1):117−127.
|
[31] |
贺润丽, 王晓英, 韩毅丽, 等. 利用转录组分析款冬萜类化合物生物合成关键酶基因及表达特征[J]. 中草药,2020,51(20):5302−5310. doi: 10.7501/j.issn.0253-2670.2020.20.024
|
[32] |
刘超, 宋瑾怡, 熊泽, 等. 草酸青霉线性五肽生物合成的比较转录组分析[J]. 食品与生物技术学报, 2021, 40(5): 37−44. doi:10.3969/j.issn. 1673-1689.2021.05.005.
|