WANG Huan, WANG Liying, LIU Junze, et al. Effects of Sclerotium and Solid Fermentation Products of Inonotus obliquus on Inflammation and Oxidative Stress in Diabetic Rats[J]. Science and Technology of Food Industry, 2021, 42(20): 328−333. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090128.
Citation: WANG Huan, WANG Liying, LIU Junze, et al. Effects of Sclerotium and Solid Fermentation Products of Inonotus obliquus on Inflammation and Oxidative Stress in Diabetic Rats[J]. Science and Technology of Food Industry, 2021, 42(20): 328−333. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090128.

Effects of Sclerotium and Solid Fermentation Products of Inonotus obliquus on Inflammation and Oxidative Stress in Diabetic Rats

More Information
  • Received Date: September 13, 2020
  • Available Online: August 17, 2021
  • Objective: To evaluate the effects of sclerotium and solid fermentation products of Inonotus obliquus on inflammation and oxidative stress in diabetic rats. Methods: The type 2 diabetic rat model were induced by high-glucose-fat diet together with STZ in this study, body weight, oral glucose tolerance test was performed, serum IL-6, IL-1β, TNF-α, SOD and MDA levels were measured using the enzyme-linked immunosorbent assay (ELISA). Results: Compared with the model group, body weight was significantly improved by I. obliquus group (IO 3.08 g/kg, IO 6.16 g/kg), the water extract of I. obliquus group (WIO 0.4 g/kg), the water extract of solid fermentation products of I. obliquus group (WSFIO 0.8 g/kg). Glucose tolerance were significantly improved by solid fermentation products of I. obliquus group (SFIO 1.3 g/kg, SFIO 2.6 g/kg). The IL-1β level were significantly reduced by WIO (0.4, 0.8 g/kg) and WSFIO (0.4 g/kg). The TNF-α level were significantly reduced by IO (3.08, 6.16 g/kg), WIO (0.4 g/kg), SFIO (1.3, 2.6 g/kg) and WSFIO (0.8 g/kg). The level of SOD and MDA were significantly advanced and decreased respectively by all the medicated group. Conclusion: Solid fermentation products of I. obliquus showed antioxidative and anti-inflammatory effects in diabetic rats. The direct administration of I. obliquus powder, solid fermentation products or water extract of both two had different effects on various indicators. In general, it was feasible to replace solid fermentation products with feral I. obliquus to ameliorate inflammation and oxidative stress in type 2 diabetes.
  • loading
  • [1]
    Duru KC, Kovaleva E G, Danilova I G, et al. The pharmacological potential and possible molecular mechanisms of action of Inonotus obliquus from preclinical studies[J]. Phytotherapy Research,2019,33(8):1966−1980. doi: 10.1002/ptr.6384
    [2]
    Choi S Y, Hur S J, An C H, et al. Anti-inflammatory effects of Inonotus obliquus in colitis induced by dextran sodium sulfate[J]. Journal of Biomedicine & Biotechnology,2010:943516−943515. doi: 10.1155/2010/943516
    [3]
    Zhao F Q, Mai Q Q, Ma J H, et al. Triterpenoids from Inonotus obliquus and their antitumor activities[J]. Fitoterapia,2015,101:34−40. doi: 10.1016/j.fitote.2014.12.005
    [4]
    Blagodatski A, Yatsunskaya M, Mikhailova V, et al. Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy[J]. Oncotarget,2018,9:29259−29274. doi: 10.18632/oncotarget.25660
    [5]
    张树庭, Solomon P Wasser. 药用菌及其产品在农业和生物医学领域中的应用现状与未来研究趋势(下)[J]. 食药用菌,2019,27(3):149−155. [Zhang S T, Solomon P Wasser. Application status and future research trend of medicinal fungi and their products in agriculture and biomedical field[J]. Edible and Medicinal Mushrooms,2019,27(3):149−155.
    [6]
    牛君, 王傲, 史钏, 等. 中国食用菌降血糖研究进展[J]. 中国食用菌,2020,39(1):1−7, 15. [Niu J, Wang A, Shi C, et al. Advance research on hypoglycemic effect of edible fungi in China[J]. Edible Fungi of China,2020,39(1):1−7, 15.
    [7]
    杜文婧, 王琦. 桦褐孔菌资源分布及药理活性研究进展[J]. 菌物研究,2013,11(1):49−56. [Du W J, Wang Q. A review of the distribution and pharmacological activity of Inonotus obliquus[J]. Journal of Fungal Research,2013,11(1):49−56.
    [8]
    Kim Y O, Park H W, Kim J H, et al. Anti-cancer effect and structural characterization of endopolysaccharide from cultivated mycelia of Inonotus obliquus[J]. Life Sciences,2006,79:72−80. doi: 10.1016/j.lfs.2005.12.047
    [9]
    Saar M. Fungi in Khanty folk medicine[J]. Journal of Ethnopharmacology,1991,31(2):175−179. doi: 10.1016/0378-8741(91)90003-V
    [10]
    马丹丹, 汪雯翰, 薛蓓, 等. 桦褐孔菌降糖活性成分及治疗糖尿病机制研究进展[J]. 南京师大学报(自然科学版),2019,42(4):111−117. [Ma D D, Wang W H, Xue B, et al. Hypoglycemic active components and treatment of Inonotus obliquus advances in research on mechanism of diabetes[J]. Journal of Nanjing Normal University (Natural Science Edition),2019,42(4):111−117.
    [11]
    Zhang N, Chen H, Ma L, et al. Physical modifications of polysaccharide from Inonotus obliquus and the antioxidant properties[J]. Int. J. Biol. Macromol,2013,54:209−215. doi: 10.1016/j.ijbiomac.2012.12.030
    [12]
    Wang C, Chen Z Q, Pan Y X, et al. Anti-diabetic effects of Inonotus obliquus polysaccharides-chromium (III) complex in type 2 diabetic mice and its sub-acute toxicity evaluation in normal mice[J]. Food and Chemical Toxicology,2017:498−509.
    [13]
    Sun J E, Ao Z H, Lu Z M, et al. Antihyperglycemicn and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice[J]. Journal of Ethnopharmacology,2008,118:7−13. doi: 10.1016/j.jep.2008.02.030
    [14]
    Lemieszek M K, Langner E, Kaczor J, et al. Anticancer effects of fraction isolated from fruiting bodies of Chaga medicinal mushroom, Inonotus obliquus (Pers. : Fr.) Pilát (Aphyllophoromycetideae): in vitro studies[J]. International Journal of Medicinal Mushrooms,2011,162(2):131−143.
    [15]
    Glamočlija J, Ćirić A, Nikolić M, et al. Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal “mushroom”[J]. Journal of Ethnopharmacology,2015,162:323−332. doi: 10.1016/j.jep.2014.12.069
    [16]
    Kim H G, Yoon D H, Kim C H, et al. Ethanol extract of Inonotus obliquus inhibits lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells[J]. Journal of Medicinal Food,2007,10:80−89. doi: 10.1089/jmf.2006.156
    [17]
    Shashkina M Y, Shashkin P N, Sergeev A V. Chemical and medicobiological properties of chaga (review)[J]. Pharmaceut Chem J,2006,40:560−568. doi: 10.1007/s11094-006-0194-4
    [18]
    Konrad AS, Bartosz S, Tadeusz P, et al. Inonotus obliquus-from folk medicine to clinical use[J]. Journal of Traditional and Complementary Medicine,2021,11(4):293−302. doi: 10.1016/j.jtcme.2020.08.003
    [19]
    Zhang C J, Guo J Y, Cheng H, et al. Spatial structure and anti-fatigue of polysaccharide from Inonotus obliquus[J]. Int J Biol Macromol,2020,151:855e860.
    [20]
    Liu Z, Yu D, Li L, et al. Three-phase partitioning for the extraction and purification of polysaccharides from the immunomodulatory medicinal mushroom Inonotus obliquus[J]. Molecules,2019,24(3):1e14.
    [21]
    Nguyet T M N, Lomunova M, Le BV, et al. The mast cell stabilizing activity of Chaga mushroom critical for its therapeutic effect on food allergy is derived from inotodiol[J]. Int Immunopharm,2017,2018(54):286e295.
    [22]
    史晓虎. 通过抑制微炎症, 干预糖尿病肾病的分子机制初探[D]. 北京: 北京协和医学院, 2014.

    Shi X H. New treatment strategy on diabetic kidney disease by targeting to inflammation[D]. Beijing: Chinese Academy of Medical Sciences & Peking Union Medical College, 2014.
    [23]
    常化静, 何羡霞, 苏楠, 等. IKK/NF-κB信号通路与2型糖尿病及中药抗炎治疗[J]. 中华中医药学刊,2014,32(8):1952−1955. [Chang H J, He X X, Su N, et al. IKK/NF-κB signal pathway and type 2 diabetes and anti-inflammatory treatment of traditional Chinese medicine[J]. Chinese Archives of Traditional Chinese Medicine,2014,32(8):1952−1955.
    [24]
    戚琛晔. 2型糖尿病大鼠氧化应激与骨骼肌细胞GLUT4表达及转位的相关性研究[D]. 河南: 河南科技大学, 2014.

    Qi C Y. Correlation study between oxidative stress with GLUT4 expression and translocation in type 2 diabetic rat skeletal muscle cells[D]. Henan: Henan University of Science and Technology, 2014.
    [25]
    刘迪. 人参皂苷协同抑制HEK-293细胞氧化应激损伤及机制研究[D]. 长春: 吉林大学, 2016.

    Liu D. Study on synergistic effects and mechanisms of ginsenoside against oxidative stress in human embryonic kidney 293 cells[D]. Changchun: Jilin University, 2016.
    [26]
    Wang J, Wang C, Li S, et al. Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocininduced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway[J]. Biomedicine & Pharmacotherapy,2017,95:1669−1677.
    [27]
    童楠. 益肾颗粒调控足细胞自噬改善糖尿病贤病的作用机制研究[D]. 北京: 中国中医科学院, 2018.

    Dong N. Effect and mechanism of regulating autophagy in podocyte to improve diabetic kidney disease with Yishen decoction[D]. Beijing: China Academy of Chinese Medical Science, 2018.
    [28]
    王欢, 王淑敏, 陈长宝, 等. 黄绿卷毛菇水提物对糖尿病大鼠机体抗氧化及抗炎作用初探[J]. 菌物学报,2019,38(9):1519−1526. [Wang H, Wang S M, Chen C B, et al. Assessment of antioxidant and anti-inflammatory potential of the aqueous extract of Floccularia luteovirens in diabetic rats[J]. Mycosystema,2019,38(9):1519−1526.
    [29]
    马春宇, 于洪宇, 王慧娇, 等. 苦瓜总皂苷对 2 型糖尿病大鼠降血糖作用机制的研究[J]. 天津医药,2014,42(4):321−324. [Ma C Y, Yu H Y, Wang H J, et al. Hypoglycemic mechanism of total saponins of Momordica charantia in type 2 diabetes mellitus rats[J]. Tianjin Med J,2014,42(4):321−324. doi: 10.3969/j.issn.0253-9896.2014.04.010
    [30]
    张苗, 李建宽, 葛睿, 等. 桦褐孔菌总多糖抗糖尿病作用的研究[J]. 山西医科大学学报,2020,51(4):327−331. [Zhang M, Li J K, Ge R, et al. Antidiabetic effects of Inonotus obliquus total polysaccharides[J]. J Shanxi Med Univ,2020,51(4):327−331.

Catalog

    Article Metrics

    Article views (213) PDF downloads (17) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return