SUN Liangge, ZHANG Xinxiao, BIAN Huan, et al. Review in the Effect and Mechanism of Cytokeleton Proteins on Water Holding Capacity of Meat[J]. Science and Technology of Food Industry, 2021, 42(18): 413−420. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080206.
Citation: SUN Liangge, ZHANG Xinxiao, BIAN Huan, et al. Review in the Effect and Mechanism of Cytokeleton Proteins on Water Holding Capacity of Meat[J]. Science and Technology of Food Industry, 2021, 42(18): 413−420. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080206.

Review in the Effect and Mechanism of Cytokeleton Proteins on Water Holding Capacity of Meat

More Information
  • Received Date: August 20, 2020
  • Available Online: July 11, 2021
  • Water-holding capacity (WHC) is an important quality attribute of meat, which affects the color, juiciness and tenderness of meat. Drip loss is often used as a measure of WHC. Excessive drip loss after slaughter causes a certain amount of economic losses to the meat industry. Therefore, studies on WHC of meat are important for the meat industry. As the main component of muscle cells, cytoskeleton proteins plays a critical role in maintaining the integrity of cell structures and functions, which has effect on the WHC of meat. In this paper, the physiological and biochemical properties of recently identified cytoskeleton proteins and their effects on meat WHC were reviewed. This study further discussed the factors and mechanisms affecting degradation of cytoskeleton proteins in order to provide theoretical reference for the control of WHC of meat.
  • loading
  • [1]
    贾胜男. 骨架蛋白降解对冷鲜草鱼质构影响的研究[D]. 无锡: 江南大学, 2019.

    Jia S N. Study on the effect of skeleton protein degradation on the texture of chilled grass carp[D]. Wuxi: Jiangnan University, 2019.
    [2]
    魏秀丽. 宰后Calpain介导的猪肉水分迁移机制研究[D]. 北京: 中国农业科学院, 2016.

    Wei X L. Study on the mechanism of calpain-mediated pork water migration after slaughter[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.
    [3]
    Huff L, Parrish F C, Robson R M. Effects of postmortem aging time, animal age, and sex on degradation of titin and nebulin in bovine longissimus muscle[J]. Anim Science,1995,73(4):1064−1073. doi: 10.2527/1995.7341064x
    [4]
    金英, 张炯, 王金泉. 肾小球足细胞骨架蛋白的研究进展[J]. 临床与病理杂志,2020,40(4):971−976. [Jing Y, Zhang J, Wang J Q. Research progress of glomerular podocyte skeletal protein[J]. Journal of Clinical and Pathology,2020,40(4):971−976. doi: 10.3978/j.issn.2095-6959.2020.04.027
    [5]
    Magdalena Górska, Wojtysiak D. Integrin degradation during postmortem storage and drip loss in pork[J]. Medycyna Weterynaryjna,2017,73(6):325−328. doi: 10.21521/mw.5711
    [6]
    Kristensen L, Purslow P P. The effect of ageing on the water-holding capacity of pork: Role of cytoskeletal proteins[J]. Meat Science,2001,58(1):17−23. doi: 10.1016/S0309-1740(00)00125-X
    [7]
    钱书意. 肌肉蛋白冷冻变性介导的解冻汁液“回吸”机制[D]. 天津: 天津商业大学, 2018.

    Qian S Y. The mechanism of muscle protein freezing and denaturation-mediated thawing juice “back sucking”[D]. Tianjin: Tianjin University of Commerce, 2018.
    [8]
    Huff-Lonergan E, Lonergan S M. New frontiers in understanding drip loss in pork: Recent insights on the role of postmortem muscle biochemistry[J]. Journal of Animal Breeding & Genetics,2015,124:19−26.
    [9]
    Puolanne E. New aspects of meat quality: Developments in our understanding of water-holding capacity in meat[J]. 2017: 167-190.
    [10]
    Xie X, Mahmood S R, Gjorgjieva T, et al. Emerging roles of cytoskeletal proteins in regulating gene expression and genome organization during differentiation[J]. Nucleus(Austin Tex),2020,11(1):53−65.
    [11]
    于滢, 杨诚, 武俸羽. 骨骼肌结构与损伤修复机制研究[J]. 哈尔滨体育学院学报,2019(6):16−21. [Yu Y, Yang C, Wu F Y. Research on skeletal muscle structure and damage repair mechanism[J]. Journal of Harbin Institute of Physical Education,2019(6):16−21. doi: 10.3969/j.issn.1008-2808.2019.06.003
    [12]
    Yuen M, Ottenheijm C A C. Nebulin: Big protein with big responsibilities[J]. Journal of Muscle Research and Cell Motility,2020,41(Pt11):103−124.
    [13]
    Hoffman E P. The discovery of dystrophin, the protein product of the duchenne muscular dystrophy gene[J]. The FEBS Journal,2020:287.
    [14]
    黄巧婷. 低氧暴露对大鼠急性离心运动后Dystrophin表达的影响[D]. 北京: 北京体育大学, 2016.

    Huang Q T. Effects of hypoxia exposure on the expression of Dystrophin after acute eccentric exercise in rats[D]. Beijing: Beijing Sport University, 2016.
    [15]
    Skuk Daniel, Tremblay J P. Confirmation of donor-derived dystrophin in a duchenne muscular dystrophy patient allotransplanted with normal myoblasts[J]. Muscle & Nerve,2016,54(5):979−981.
    [16]
    Taylor R G, Geesink G H, Thompson V F, et al. Is Z-disk degradation responsible for postmortem tenderization?[J]. Journal of Animal Science,1995,73(5):1351−1367. doi: 10.2527/1995.7351351x
    [17]
    Wojtysiak D, Calik J, Krawczyk J, et al. Postmortem degradation of desmin and dystrophin in breast muscles from capons and cockerels[J]. Annals of Animal Science,2019,19(3):835−846. doi: 10.2478/aoas-2019-0034
    [18]
    Nemova N N, Lysenko L A, Kantserova N P. Degradation of skeletal muscle protein during growth and development of salmonid fish[J]. Russian Journal of Developmental Biology,2016,47(4):161−172. doi: 10.1134/S1062360416040068
    [19]
    Maria J C, Walko G, Winter L, et al. Plectin–intermediate filament partnership in skin, skeletal muscle, and peripheral nerve[J]. Histochemistry and Cell Biology,2013:33−53.
    [20]
    Tian X, Wang Y, Fan X, et al. Expression of pork plectin during postmortem aging[J]. Journal of Agricultural and Food Chemistry,2019,67(42):11718−11727. doi: 10.1021/acs.jafc.9b03040
    [21]
    Argente-Escrig H, Schultheis D, Kamm L, et al. Plectin-related scapuloperoneal myopathy with treatment-responsive myasthenic syndrome[J]. Neuropathology and Applied Neurobiology,2020,47(2):352−356.
    [22]
    阿依木古丽·艾尼, 叶建蔚, 李静. 踝蛋白的功能及其研究进展[J]. 中国医药导报,2019,16(27):37−40. [Ayimuguli Aini, Ye J W, Li J. The function of talarin and its research progress[J]. China Medical Herald,2019,16(27):37−40.
    [23]
    Fehon R G, McClatchey A I, Bretscher A. Organizing the cell cortex: The role of ERM proteins[J]. Nature Reviews Molecular Cell Biology,2010,11(4):276−287. doi: 10.1038/nrm2866
    [24]
    Kuroda M, Wada H, Kimura Y, et al. Vinculin promotes nuclear localization of TAZ to inhibit ECM stiffness-dependent differentiation into adipocytes[J]. Journal of Cell Science,2017,130(5):989−1002.
    [25]
    Atherton P, Stutchbury B, Jethwa D, et al. Mechanosensitive components of integrin adhesions: Role of vinculin[J]. Experimental Cell Research,2016,343(1):21−27. doi: 10.1016/j.yexcr.2015.11.017
    [26]
    Huff-Lonergan E, Lonergan S M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes[J]. Meat Science,2005,71(1):194−204. doi: 10.1016/j.meatsci.2005.04.022
    [27]
    Tomisaka Y, Ahhmed A M, Tabata S, et al. Changes in water-holding capacity and textural properties of chicken gizzard stored at 4 ℃[J]. Animal Science Journal,2010,81(3):362−368. doi: 10.1111/j.1740-0929.2010.00739.x
    [28]
    Melody J L, Lonergan S M, Rowe L J, et al. Early postmortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles[J]. Journal of Animal Science,2004,82(4):1195−1205. doi: 10.2527/2004.8241195x
    [29]
    杨汝男, 李燕清, 陈韬. 宰后猪背最长肌踝蛋白降解与汁液流失率的关系[J]. 食品工业科技,2018,39(20):12−17. [Yang R N, Li Y Q, Chen T. Relationship between degradation of longissimus muscle ankle protein and juice loss rate of pigs[J]. Food Industry Technology,2018,39(20):12−17.
    [30]
    Schäfer A, Rosenvold K, Purslow P P, et al. Physiological and structural events post mortem of importance for drip loss in pork[J]. Meat Science,2002,61(4):355−366. doi: 10.1016/S0309-1740(01)00205-4
    [31]
    Ferry A, Messéant J, Parlakian A, et al. Desmin prevents muscle wasting, exaggerated weakness and fragility, and fatigue in dystrophic mdx mouse[J]. The Journal of Physiology,2020,598(17):3667−3689. doi: 10.1113/JP279282
    [32]
    张冬怡, 陈韬, 吴霜, 等. 猪宰后正常肉与PSE肉中肌间线蛋白和钙激活酶的变化与持水性的关系[J]. 食品科技,2015,40(6):130−135. [Zhang D Y, Chen T, Wu S, et al. The relationship between the changes of myogenin and calcium activating enzyme in normal meat and PSE meat after slaughter and the water holding capacity[J]. Food Technology,2015,40(6):130−135.
    [33]
    郑伟. 猪宰后肌肉肌间线蛋白和整联蛋白变化与持水性的关系[D]. 昆明: 云南农业大学, 2013.

    Zheng W. The relationship between the changes of muscle myolin and integrin and water holding capacity after slaughter in pigs[D]. Kunming: Yunnan Agricultural University, 2013.
    [34]
    王颖, 李欣, 李铮, 等. 极限pH对羊肉宰后成熟过程中肌原纤维蛋白特型的影响[J]. 食品工业科技,2019,40(2):13−18. [Wang Y, Li X, Li Z, et al. The effect of extreme pH on the characteristics of myofibrillar protein during the maturation of mutton after slaughter[J]. Science and Technology of Food Industry,2019,40(2):13−18.
    [35]
    张鲁馨, 张欣, 王继红. 整合蛋白内化及再循环机制[J]. 中国细胞生物学学报,2017,39(9):1228−1233. [Zhang L X, Zhang X, Wang J H. Integrin internalization and recycling mechanism[J]. Chinese Journal of Cell Biology,2017,39(9):1228−1233. doi: 10.11844/cjcb.2017.09.0089
    [36]
    张西德, 倪豪, 陆文博, 等. 整合素α7与肿瘤关系的研究进展[J]. 癌变·畸变·突变,2020,32(4):317−320, 324. [Zhang X, Ni H, Lu W B, et al. Research progress of the relationship between integrin α7 and tumor[J]. Carcinogenesis ·Aberration ·Mutation,2020,32(4):317−320, 324.
    [37]
    李洋, 洪莉. 整合素与细胞骨架生物学关系研究进展[J]. 医学综述,2019,25(1):44−48. [Li Y, Hong L. Research progress on the relationship between integrins and cytoskeleton biology[J]. Medical Review,2019,25(1):44−48. doi: 10.3969/j.issn.1006-2084.2019.01.009
    [38]
    Bromberger T, Zhu L, Klapproth S, et al. Rap1 and membrane lipids cooperatively recruit talin to trigger integrin activation[J]. Journal of Cell Science,2019,132(21):1799−1809.
    [39]
    Lawson M A. The role of integrin degradation in post-mortem drip loss in pork[J]. Meat Science,2004,68(4):559−566. doi: 10.1016/j.meatsci.2004.05.019
    [40]
    Basser P J, Schneiderman R, Bank R A, et al. Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique[J]. Archives of Biochemistry and Biophysics,1998,351(2):207−219. doi: 10.1006/abbi.1997.0507
    [41]
    李华健, 陈韬, 杨波若, 等. 宰后猪肉pH、骨架蛋白变化和持水性之间的关系[J]. 食品科学,2021,42(3):14−20. [Li H J, Chen T, Yang B, et al. Relationships of pH and cytoskeletal protein expression levels with water-holding capacity of pork during post-mortem aging[J]. Food Science,2021,42(3):14−20. doi: 10.7506/spkx1002-6630-20200113-142
    [42]
    Zhang W G, Lonergan S M, Gardner M A, et al. Contribution of postmortem changes of integrin, desmin and μ-calpain to variation in water holding capacity of pork[J]. Meat Science,2006,74(3):578−585. doi: 10.1016/j.meatsci.2006.05.008
    [43]
    刘瑞. 一氧化氮在猪肉成熟过程中的作用机理研究[D]. 南京: 南京农业大学, 2018.

    Liu R. Study on the mechanism of nitric oxide in the ripening process of pork[D]. Nanjing: Nanjing Agricultural College, 2018.
    [44]
    Bee G, Anderson A L, Lonergan S M, et al. Rate and extent of pH decline affect proteolysis of cytoskeletal proteins and water-holding capacity in pork[J]. Meat Science,2007,76(2):359−365. doi: 10.1016/j.meatsci.2006.12.004
    [45]
    Guttmann R P, Johnson G V. Oxidative stress inhibits calpain activity in situ[J]. The Journal of Biological Chemistry,1998,273(21):13331−13338. doi: 10.1074/jbc.273.21.13331
    [46]
    Jakoš T, Pišlar A, Fonović U P, et al. Lysosomal peptidases in innate immune cells: implications for cancer immunity[J]. Cancer Immunology and Immunotherapy,2020,69(2):275−283. doi: 10.1007/s00262-019-02447-0
    [47]
    李晶晶, 张瑞红, 韩冬雪, 等. 畜禽宰后肌肉嫩化相关酶研究进展[J]. 食品科学,2015,36(15):240−244. [Li J J, Zhang R H, Han D X, et al. Research progress on related enzymes of muscle tenderization after slaughter in livestock and poultry[J]. Food Science,2015,36(15):240−244. doi: 10.7506/spkx1002-6630-201515044
    [48]
    丰永红, 李海鹏, 张松山, 等. 牛肉肌纤维类型差异及成熟过程中组织蛋白酶活性研究[J]. 农业机械学报,2020,51(7):355−364. [Feng Y H, Li H P, Zhang S S, et al. Study on the difference of beef muscle fiber types and cathepsin activity during maturation[J]. Journal of Agricultural Machinery,2020,51(7):355−364. doi: 10.6041/j.issn.1000-1298.2020.07.040
    [49]
    Baron C P, Jacobsen S, Purslow P P. Cleavage of desmin by cysteine proteases: Calpains and cathepsin B[J]. Meat Science,2004,68(3):447−456. doi: 10.1016/j.meatsci.2004.03.019
    [50]
    颜龙杰, 沈建东, 张凌晶, 等. 凡纳滨对虾组织蛋白酶L性质分析及其对肌肉蛋白的降解[J]. 食品科学,2017,38(22):34−40. [Yan L J, Shen J D, Zhang L J, et al. Analysis of the properties of cathepsin L in Litopenaeus vannamei and its degradation of muscle protein[J]. Food Science,2017,38(22):34−40. doi: 10.7506/spkx1002-6630-201722006
    [51]
    Zhang L T, Zhang Y Q, Jia S L, et al. Stunning stress-induced textural softening in silver carp(Hypophthalmichthys molitrix) fillets and underlying mechanisms[J]. Food Chemistry,2019,295(OCT. 15):520−529.
    [52]
    Kemp C M, Bardsley R G, Parr T. Changes in caspase activity during the postmortem conditioning period and its relationship to shear force in porcine longissimus muscle[J]. Journal of Animal Science,2006,84(10):2841−2846. doi: 10.2527/jas.2006-163
    [53]
    Huang F, Huang M, Zhou G, et al. In vitro proteolysis of myofibrillar proteins from beef skeletal muscle by caspase-3 and caspase-6[J]. Journal of Agricultural & Food Chemistry,2011,59(17):9658.
    [54]
    贾青. 细胞凋亡酶-3及其抑制剂对宰后牦牛肉品质变化的影响[D]. 兰州: 甘肃农业大学, 2016.

    Jia Q. Effects of apoptosis enzyme-3 and its inhibitors on the quality of yak meat after slaughter[D]. Lanzhou: Gansu Agricultural University, 2016.
    [55]
    郎玉苗, 孙宝忠, 马立新, 等. 蛋白质巯基亚硝基化及其对宰后成熟肉品质影响的研究进展[J]. 食品工业科技,2018,39(8):330−334. [Lang Y M, Sun B Z, Ma L X, et al. Research progress on protein sulfhydryl nitrosylation and its effect on the quality of mature meat after slaughter[J]. Science and Technology of Food Industry,2018,39(8):330−334.
    [56]
    李玉品. 蛋白质亚硝基化对宰后猪肉钙蛋白酶系统和蛋白质降解的影响[D]. 南京: 南京农业大学, 2015.

    Li Y P. The effect of protein nitrosylation on the calpain system and protein degradation of pork after slaughter[D]. Nanjing: Nanjing Agricultural University, 2015.
    [57]
    张朝阳. 蛋白质亚硝基化对牛肉成熟过程中品质的影响研究[D]. 南京: 南京农业大学, 2018.

    Zhang C Y. The effect of protein nitrosylation on beef quality during maturation[D]. Nanjing: Nanjing Agricultural University, 2018.
    [58]
    贺学岗, 张广智, 马占军, 等. 热休克蛋白在脊髓损伤中的研究进展[J]. 生命科学研究,2020,24(4):339−344. [He X G, Zhang G Z, Ma Z J, et al. Research progress of heat shock proteins in spinal cord injury[J]. Life Science Research,2020,24(4):339−344.
    [59]
    陆鹰, 郭小芙, 徐蓉. 热休克蛋白27、白细胞介素-37与重症胰腺炎肺损伤的相关性研究[J]. 标记免疫分析与临床,2020,27(8):1333−1336. [Lu Y, Guo X F, Xu R. The relationship between heat shock protein 27, interleukin-37 and lung injury in severe pancreatitis[J]. Labeled Immunoassays and Clinics,2020,27(8):1333−1336.
    [60]
    Balan P, Kim Y H B, Blijenburg R. Small heat shock protein degradation could be an indicator of the extent of myofibrillar protein degradation[J]. Meat Science,2014,97(2):220−222. doi: 10.1016/j.meatsci.2014.01.019
    [61]
    孙金龙, 师希雄, 黄峰, 等. 藏羊肉宰后成熟过程中热休克蛋白27对肌原纤维蛋白及细胞凋亡酶的影响[J]. 食品科学,2020,41(3):24−29. [Sun J L, Shi X X, Huang F, et al. Effects of heat shock protein 27 on myofibril protein and apoptosis enzymes during postmortem maturation of Tibetan lamb[J]. Food Science,2020,41(3):24−29. doi: 10.7506/spkx1002-6630-20181203-038

Catalog

    Article Metrics

    Article views (253) PDF downloads (35) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return