Citation: | SUN Liangge, ZHANG Xinxiao, BIAN Huan, et al. Review in the Effect and Mechanism of Cytokeleton Proteins on Water Holding Capacity of Meat[J]. Science and Technology of Food Industry, 2021, 42(18): 413−420. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080206. |
[1] |
贾胜男. 骨架蛋白降解对冷鲜草鱼质构影响的研究[D]. 无锡: 江南大学, 2019.
Jia S N. Study on the effect of skeleton protein degradation on the texture of chilled grass carp[D]. Wuxi: Jiangnan University, 2019.
|
[2] |
魏秀丽. 宰后Calpain介导的猪肉水分迁移机制研究[D]. 北京: 中国农业科学院, 2016.
Wei X L. Study on the mechanism of calpain-mediated pork water migration after slaughter[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.
|
[3] |
Huff L, Parrish F C, Robson R M. Effects of postmortem aging time, animal age, and sex on degradation of titin and nebulin in bovine longissimus muscle[J]. Anim Science,1995,73(4):1064−1073. doi: 10.2527/1995.7341064x
|
[4] |
金英, 张炯, 王金泉. 肾小球足细胞骨架蛋白的研究进展[J]. 临床与病理杂志,2020,40(4):971−976. [Jing Y, Zhang J, Wang J Q. Research progress of glomerular podocyte skeletal protein[J]. Journal of Clinical and Pathology,2020,40(4):971−976. doi: 10.3978/j.issn.2095-6959.2020.04.027
|
[5] |
Magdalena Górska, Wojtysiak D. Integrin degradation during postmortem storage and drip loss in pork[J]. Medycyna Weterynaryjna,2017,73(6):325−328. doi: 10.21521/mw.5711
|
[6] |
Kristensen L, Purslow P P. The effect of ageing on the water-holding capacity of pork: Role of cytoskeletal proteins[J]. Meat Science,2001,58(1):17−23. doi: 10.1016/S0309-1740(00)00125-X
|
[7] |
钱书意. 肌肉蛋白冷冻变性介导的解冻汁液“回吸”机制[D]. 天津: 天津商业大学, 2018.
Qian S Y. The mechanism of muscle protein freezing and denaturation-mediated thawing juice “back sucking”[D]. Tianjin: Tianjin University of Commerce, 2018.
|
[8] |
Huff-Lonergan E, Lonergan S M. New frontiers in understanding drip loss in pork: Recent insights on the role of postmortem muscle biochemistry[J]. Journal of Animal Breeding & Genetics,2015,124:19−26.
|
[9] |
Puolanne E. New aspects of meat quality: Developments in our understanding of water-holding capacity in meat[J]. 2017: 167-190.
|
[10] |
Xie X, Mahmood S R, Gjorgjieva T, et al. Emerging roles of cytoskeletal proteins in regulating gene expression and genome organization during differentiation[J]. Nucleus(Austin Tex),2020,11(1):53−65.
|
[11] |
于滢, 杨诚, 武俸羽. 骨骼肌结构与损伤修复机制研究[J]. 哈尔滨体育学院学报,2019(6):16−21. [Yu Y, Yang C, Wu F Y. Research on skeletal muscle structure and damage repair mechanism[J]. Journal of Harbin Institute of Physical Education,2019(6):16−21. doi: 10.3969/j.issn.1008-2808.2019.06.003
|
[12] |
Yuen M, Ottenheijm C A C. Nebulin: Big protein with big responsibilities[J]. Journal of Muscle Research and Cell Motility,2020,41(Pt11):103−124.
|
[13] |
Hoffman E P. The discovery of dystrophin, the protein product of the duchenne muscular dystrophy gene[J]. The FEBS Journal,2020:287.
|
[14] |
黄巧婷. 低氧暴露对大鼠急性离心运动后Dystrophin表达的影响[D]. 北京: 北京体育大学, 2016.
Huang Q T. Effects of hypoxia exposure on the expression of Dystrophin after acute eccentric exercise in rats[D]. Beijing: Beijing Sport University, 2016.
|
[15] |
Skuk Daniel, Tremblay J P. Confirmation of donor-derived dystrophin in a duchenne muscular dystrophy patient allotransplanted with normal myoblasts[J]. Muscle & Nerve,2016,54(5):979−981.
|
[16] |
Taylor R G, Geesink G H, Thompson V F, et al. Is Z-disk degradation responsible for postmortem tenderization?[J]. Journal of Animal Science,1995,73(5):1351−1367. doi: 10.2527/1995.7351351x
|
[17] |
Wojtysiak D, Calik J, Krawczyk J, et al. Postmortem degradation of desmin and dystrophin in breast muscles from capons and cockerels[J]. Annals of Animal Science,2019,19(3):835−846. doi: 10.2478/aoas-2019-0034
|
[18] |
Nemova N N, Lysenko L A, Kantserova N P. Degradation of skeletal muscle protein during growth and development of salmonid fish[J]. Russian Journal of Developmental Biology,2016,47(4):161−172. doi: 10.1134/S1062360416040068
|
[19] |
Maria J C, Walko G, Winter L, et al. Plectin–intermediate filament partnership in skin, skeletal muscle, and peripheral nerve[J]. Histochemistry and Cell Biology,2013:33−53.
|
[20] |
Tian X, Wang Y, Fan X, et al. Expression of pork plectin during postmortem aging[J]. Journal of Agricultural and Food Chemistry,2019,67(42):11718−11727. doi: 10.1021/acs.jafc.9b03040
|
[21] |
Argente-Escrig H, Schultheis D, Kamm L, et al. Plectin-related scapuloperoneal myopathy with treatment-responsive myasthenic syndrome[J]. Neuropathology and Applied Neurobiology,2020,47(2):352−356.
|
[22] |
阿依木古丽·艾尼, 叶建蔚, 李静. 踝蛋白的功能及其研究进展[J]. 中国医药导报,2019,16(27):37−40. [Ayimuguli Aini, Ye J W, Li J. The function of talarin and its research progress[J]. China Medical Herald,2019,16(27):37−40.
|
[23] |
Fehon R G, McClatchey A I, Bretscher A. Organizing the cell cortex: The role of ERM proteins[J]. Nature Reviews Molecular Cell Biology,2010,11(4):276−287. doi: 10.1038/nrm2866
|
[24] |
Kuroda M, Wada H, Kimura Y, et al. Vinculin promotes nuclear localization of TAZ to inhibit ECM stiffness-dependent differentiation into adipocytes[J]. Journal of Cell Science,2017,130(5):989−1002.
|
[25] |
Atherton P, Stutchbury B, Jethwa D, et al. Mechanosensitive components of integrin adhesions: Role of vinculin[J]. Experimental Cell Research,2016,343(1):21−27. doi: 10.1016/j.yexcr.2015.11.017
|
[26] |
Huff-Lonergan E, Lonergan S M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes[J]. Meat Science,2005,71(1):194−204. doi: 10.1016/j.meatsci.2005.04.022
|
[27] |
Tomisaka Y, Ahhmed A M, Tabata S, et al. Changes in water-holding capacity and textural properties of chicken gizzard stored at 4 ℃[J]. Animal Science Journal,2010,81(3):362−368. doi: 10.1111/j.1740-0929.2010.00739.x
|
[28] |
Melody J L, Lonergan S M, Rowe L J, et al. Early postmortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles[J]. Journal of Animal Science,2004,82(4):1195−1205. doi: 10.2527/2004.8241195x
|
[29] |
杨汝男, 李燕清, 陈韬. 宰后猪背最长肌踝蛋白降解与汁液流失率的关系[J]. 食品工业科技,2018,39(20):12−17. [Yang R N, Li Y Q, Chen T. Relationship between degradation of longissimus muscle ankle protein and juice loss rate of pigs[J]. Food Industry Technology,2018,39(20):12−17.
|
[30] |
Schäfer A, Rosenvold K, Purslow P P, et al. Physiological and structural events post mortem of importance for drip loss in pork[J]. Meat Science,2002,61(4):355−366. doi: 10.1016/S0309-1740(01)00205-4
|
[31] |
Ferry A, Messéant J, Parlakian A, et al. Desmin prevents muscle wasting, exaggerated weakness and fragility, and fatigue in dystrophic mdx mouse[J]. The Journal of Physiology,2020,598(17):3667−3689. doi: 10.1113/JP279282
|
[32] |
张冬怡, 陈韬, 吴霜, 等. 猪宰后正常肉与PSE肉中肌间线蛋白和钙激活酶的变化与持水性的关系[J]. 食品科技,2015,40(6):130−135. [Zhang D Y, Chen T, Wu S, et al. The relationship between the changes of myogenin and calcium activating enzyme in normal meat and PSE meat after slaughter and the water holding capacity[J]. Food Technology,2015,40(6):130−135.
|
[33] |
郑伟. 猪宰后肌肉肌间线蛋白和整联蛋白变化与持水性的关系[D]. 昆明: 云南农业大学, 2013.
Zheng W. The relationship between the changes of muscle myolin and integrin and water holding capacity after slaughter in pigs[D]. Kunming: Yunnan Agricultural University, 2013.
|
[34] |
王颖, 李欣, 李铮, 等. 极限pH对羊肉宰后成熟过程中肌原纤维蛋白特型的影响[J]. 食品工业科技,2019,40(2):13−18. [Wang Y, Li X, Li Z, et al. The effect of extreme pH on the characteristics of myofibrillar protein during the maturation of mutton after slaughter[J]. Science and Technology of Food Industry,2019,40(2):13−18.
|
[35] |
张鲁馨, 张欣, 王继红. 整合蛋白内化及再循环机制[J]. 中国细胞生物学学报,2017,39(9):1228−1233. [Zhang L X, Zhang X, Wang J H. Integrin internalization and recycling mechanism[J]. Chinese Journal of Cell Biology,2017,39(9):1228−1233. doi: 10.11844/cjcb.2017.09.0089
|
[36] |
张西德, 倪豪, 陆文博, 等. 整合素α7与肿瘤关系的研究进展[J]. 癌变·畸变·突变,2020,32(4):317−320, 324. [Zhang X, Ni H, Lu W B, et al. Research progress of the relationship between integrin α7 and tumor[J]. Carcinogenesis ·Aberration ·Mutation,2020,32(4):317−320, 324.
|
[37] |
李洋, 洪莉. 整合素与细胞骨架生物学关系研究进展[J]. 医学综述,2019,25(1):44−48. [Li Y, Hong L. Research progress on the relationship between integrins and cytoskeleton biology[J]. Medical Review,2019,25(1):44−48. doi: 10.3969/j.issn.1006-2084.2019.01.009
|
[38] |
Bromberger T, Zhu L, Klapproth S, et al. Rap1 and membrane lipids cooperatively recruit talin to trigger integrin activation[J]. Journal of Cell Science,2019,132(21):1799−1809.
|
[39] |
Lawson M A. The role of integrin degradation in post-mortem drip loss in pork[J]. Meat Science,2004,68(4):559−566. doi: 10.1016/j.meatsci.2004.05.019
|
[40] |
Basser P J, Schneiderman R, Bank R A, et al. Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique[J]. Archives of Biochemistry and Biophysics,1998,351(2):207−219. doi: 10.1006/abbi.1997.0507
|
[41] |
李华健, 陈韬, 杨波若, 等. 宰后猪肉pH、骨架蛋白变化和持水性之间的关系[J]. 食品科学,2021,42(3):14−20. [Li H J, Chen T, Yang B, et al. Relationships of pH and cytoskeletal protein expression levels with water-holding capacity of pork during post-mortem aging[J]. Food Science,2021,42(3):14−20. doi: 10.7506/spkx1002-6630-20200113-142
|
[42] |
Zhang W G, Lonergan S M, Gardner M A, et al. Contribution of postmortem changes of integrin, desmin and μ-calpain to variation in water holding capacity of pork[J]. Meat Science,2006,74(3):578−585. doi: 10.1016/j.meatsci.2006.05.008
|
[43] |
刘瑞. 一氧化氮在猪肉成熟过程中的作用机理研究[D]. 南京: 南京农业大学, 2018.
Liu R. Study on the mechanism of nitric oxide in the ripening process of pork[D]. Nanjing: Nanjing Agricultural College, 2018.
|
[44] |
Bee G, Anderson A L, Lonergan S M, et al. Rate and extent of pH decline affect proteolysis of cytoskeletal proteins and water-holding capacity in pork[J]. Meat Science,2007,76(2):359−365. doi: 10.1016/j.meatsci.2006.12.004
|
[45] |
Guttmann R P, Johnson G V. Oxidative stress inhibits calpain activity in situ[J]. The Journal of Biological Chemistry,1998,273(21):13331−13338. doi: 10.1074/jbc.273.21.13331
|
[46] |
Jakoš T, Pišlar A, Fonović U P, et al. Lysosomal peptidases in innate immune cells: implications for cancer immunity[J]. Cancer Immunology and Immunotherapy,2020,69(2):275−283. doi: 10.1007/s00262-019-02447-0
|
[47] |
李晶晶, 张瑞红, 韩冬雪, 等. 畜禽宰后肌肉嫩化相关酶研究进展[J]. 食品科学,2015,36(15):240−244. [Li J J, Zhang R H, Han D X, et al. Research progress on related enzymes of muscle tenderization after slaughter in livestock and poultry[J]. Food Science,2015,36(15):240−244. doi: 10.7506/spkx1002-6630-201515044
|
[48] |
丰永红, 李海鹏, 张松山, 等. 牛肉肌纤维类型差异及成熟过程中组织蛋白酶活性研究[J]. 农业机械学报,2020,51(7):355−364. [Feng Y H, Li H P, Zhang S S, et al. Study on the difference of beef muscle fiber types and cathepsin activity during maturation[J]. Journal of Agricultural Machinery,2020,51(7):355−364. doi: 10.6041/j.issn.1000-1298.2020.07.040
|
[49] |
Baron C P, Jacobsen S, Purslow P P. Cleavage of desmin by cysteine proteases: Calpains and cathepsin B[J]. Meat Science,2004,68(3):447−456. doi: 10.1016/j.meatsci.2004.03.019
|
[50] |
颜龙杰, 沈建东, 张凌晶, 等. 凡纳滨对虾组织蛋白酶L性质分析及其对肌肉蛋白的降解[J]. 食品科学,2017,38(22):34−40. [Yan L J, Shen J D, Zhang L J, et al. Analysis of the properties of cathepsin L in Litopenaeus vannamei and its degradation of muscle protein[J]. Food Science,2017,38(22):34−40. doi: 10.7506/spkx1002-6630-201722006
|
[51] |
Zhang L T, Zhang Y Q, Jia S L, et al. Stunning stress-induced textural softening in silver carp(Hypophthalmichthys molitrix) fillets and underlying mechanisms[J]. Food Chemistry,2019,295(OCT. 15):520−529.
|
[52] |
Kemp C M, Bardsley R G, Parr T. Changes in caspase activity during the postmortem conditioning period and its relationship to shear force in porcine longissimus muscle[J]. Journal of Animal Science,2006,84(10):2841−2846. doi: 10.2527/jas.2006-163
|
[53] |
Huang F, Huang M, Zhou G, et al. In vitro proteolysis of myofibrillar proteins from beef skeletal muscle by caspase-3 and caspase-6[J]. Journal of Agricultural & Food Chemistry,2011,59(17):9658.
|
[54] |
贾青. 细胞凋亡酶-3及其抑制剂对宰后牦牛肉品质变化的影响[D]. 兰州: 甘肃农业大学, 2016.
Jia Q. Effects of apoptosis enzyme-3 and its inhibitors on the quality of yak meat after slaughter[D]. Lanzhou: Gansu Agricultural University, 2016.
|
[55] |
郎玉苗, 孙宝忠, 马立新, 等. 蛋白质巯基亚硝基化及其对宰后成熟肉品质影响的研究进展[J]. 食品工业科技,2018,39(8):330−334. [Lang Y M, Sun B Z, Ma L X, et al. Research progress on protein sulfhydryl nitrosylation and its effect on the quality of mature meat after slaughter[J]. Science and Technology of Food Industry,2018,39(8):330−334.
|
[56] |
李玉品. 蛋白质亚硝基化对宰后猪肉钙蛋白酶系统和蛋白质降解的影响[D]. 南京: 南京农业大学, 2015.
Li Y P. The effect of protein nitrosylation on the calpain system and protein degradation of pork after slaughter[D]. Nanjing: Nanjing Agricultural University, 2015.
|
[57] |
张朝阳. 蛋白质亚硝基化对牛肉成熟过程中品质的影响研究[D]. 南京: 南京农业大学, 2018.
Zhang C Y. The effect of protein nitrosylation on beef quality during maturation[D]. Nanjing: Nanjing Agricultural University, 2018.
|
[58] |
贺学岗, 张广智, 马占军, 等. 热休克蛋白在脊髓损伤中的研究进展[J]. 生命科学研究,2020,24(4):339−344. [He X G, Zhang G Z, Ma Z J, et al. Research progress of heat shock proteins in spinal cord injury[J]. Life Science Research,2020,24(4):339−344.
|
[59] |
陆鹰, 郭小芙, 徐蓉. 热休克蛋白27、白细胞介素-37与重症胰腺炎肺损伤的相关性研究[J]. 标记免疫分析与临床,2020,27(8):1333−1336. [Lu Y, Guo X F, Xu R. The relationship between heat shock protein 27, interleukin-37 and lung injury in severe pancreatitis[J]. Labeled Immunoassays and Clinics,2020,27(8):1333−1336.
|
[60] |
Balan P, Kim Y H B, Blijenburg R. Small heat shock protein degradation could be an indicator of the extent of myofibrillar protein degradation[J]. Meat Science,2014,97(2):220−222. doi: 10.1016/j.meatsci.2014.01.019
|
[61] |
孙金龙, 师希雄, 黄峰, 等. 藏羊肉宰后成熟过程中热休克蛋白27对肌原纤维蛋白及细胞凋亡酶的影响[J]. 食品科学,2020,41(3):24−29. [Sun J L, Shi X X, Huang F, et al. Effects of heat shock protein 27 on myofibril protein and apoptosis enzymes during postmortem maturation of Tibetan lamb[J]. Food Science,2020,41(3):24−29. doi: 10.7506/spkx1002-6630-20181203-038
|