WANG Junyun, SHEN Jingwen, LU Lixia, et al. Research Progress of Compound Techniques for Enrichment and Detection of Foodborne Pathogens [J]. Science and Technology of Food Industry, 2021, 42(11): 348−355. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060210.
Citation: WANG Junyun, SHEN Jingwen, LU Lixia, et al. Research Progress of Compound Techniques for Enrichment and Detection of Foodborne Pathogens [J]. Science and Technology of Food Industry, 2021, 42(11): 348−355. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060210.

Research Progress of Compound Techniques for Enrichment and Detection of Foodborne Pathogens

More Information
  • Received Date: June 17, 2020
  • Available Online: April 01, 2021
  • Foodborne pathogen poses a threat to food safety and human health.The low concentrations pathogens in food can only be detected by pretreatment combined with effective detection techniques.The rapid detection methods are affected by the composition of the enrichment solution, food components, or low cell concentration, so it is necessary to separate and enrich the pathogenic bacteria from the samples in order to shorten the detection time and carry out accurate detection.In this paper, enrichment methods for pathogenic bacteria were analyzed, including bare magnetic beads and functional magnetic beads. Moreover, the integrated methods of enrichment and detection were reviewed, including electrophoresis technology, microfluidic technology and so on.For the enrichment of specific pathogenic bacteria, it is necessary to further improve the adsorption rate and sensitivity.It is continuously improved in detection sensitivity and detection limit for the completed technology of enrichment and detection.
  • loading
  • [1]
    KirkM D, PiresS M, BlackR E, et al. World health organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: A data synthesis[J]. PLOS Medicine,2015,12(12):e1001921. doi: 10.1371/journal.pmed.1001921
    [2]
    Wei Wu, Chundi Yu, Qi Wang, et al. Research advances of DNA aptasensors for foodborne pathogen detection[J]. Critical Reviews in Food Science and Nutrition,2020,60(14):2353−2368. doi: 10.1080/10408398.2019.1636763
    [3]
    白亚龙, 索玉娟, 周昌艳. 食源性致病菌PCR检测前处理方法研究进展[J]. 食品与机械,2017,33(12):191−196.
    [4]
    Reta N, Saint C P, Michelmore A, et al. Nanostructured electrochemical biosensors forlabel-free detection of water- and food-borne pathogens[J]. ACS Applied Materials & Interfaces,2018,10(7):6055−6072.
    [5]
    Tao J, Liu W, Ding W, et al. A multiplex PCR assay with a common primer for the detection of eleven foodborne pathogens[J]. Journal of Food Science,2020,85(3):744−754. doi: 10.1111/1750-3841.15033
    [6]
    苏粉良, 李冰燕, 陈雨欣, 等. 食源性致病菌的检测技术研究进展[J]. 农产品加工,2018(4):58−61.
    [7]
    Sharma A, Tok A I, Palaniappan A, et al. Gold nanoparticle conjugated magnetic beads for extraction and nucleation based signal amplification in lateral flow assaying[J]. Sensors and Actuators B-chemical,2020,312:127959. doi: 10.1016/j.snb.2020.127959
    [8]
    Salehi S S, Shamloo A, Hannani S K, et al. Microfluidic technologies to engineer mesenchymal stem cell aggregates—applications and benefits[J]. Biophysical Reviews,2020,12(1):123−133. doi: 10.1007/s12551-020-00613-8
    [9]
    KerroucheA, Lithgow J, Muhammad I, et al. Towards the development of rapid and low-cost pathogen detection systems using microfluidic technology and optical image processing[J]. Applied Sciences,2020,10(7):2527. doi: 10.3390/app10072527
    [10]
    Brandao D, Liebana S, Campoy S, et al. Immunomagnetic separation of Salmonella with tailored magnetic micro and nanocarriers. A comparative study.[J]. Talanta,2015,143:198−204. doi: 10.1016/j.talanta.2015.05.035
    [11]
    吴俊, 陆利霞, 刘元建, 等. 基于裸磁珠的金黄色葡萄球菌富集优化[J]. 现代食品科技,2019,35(2):186−192.
    [12]
    邱晋, 樊学军, 沈圣, 等. 自制裸磁珠对常见食源性致病菌吸附性能的研究[J]. 现代预防医学,2006(1):4−5. doi: 10.3969/j.issn.1003-8507.2006.01.002
    [13]
    Li J, Liu Q, Wan Y, et al. Rapid detection of trace Salmonella in milk and chicken by immunomagnetic separation in combination with a chemiluminescencemicroparticle immunoassay[J]. Analytical and Bioanalytical Chemistry,2019,411(23):6067−6080. doi: 10.1007/s00216-019-01991-z
    [14]
    李云霞. 纳米磁珠对单增李斯特菌低场磁共振检测的影响研究[D]. 上海: 上海师范大学, 2016.
    [15]
    Jalal U M, Jin G J, Eom K S, et al. On-chip signal amplification of magnetic bead-based immunoassay by aviating magnetic bead chains[J]. Bioelectrochemistry,2017,122:221−226.
    [16]
    吴孟娟. 基于纳米抗体的免疫磁珠捕获-qPCR技术建立河弧菌的快速检测方法[D]. 南昌: 南昌大学, 2019.
    [17]
    Huang J, Bian X, Chang K, et al. Capture and analysis of cell surface n-glycans by hydrazide-modified magnetic beads and CE-LIF[J]. Chromatographia,2019,82(7):1079−1088. doi: 10.1007/s10337-019-03742-9
    [18]
    Zhan S, Yang Y, Shen Z, et al. Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles[J]. Journal of Hazardous Materials,2014,274:115−123. doi: 10.1016/j.jhazmat.2014.03.067
    [19]
    Kim T, Park J, Kim C, et al. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens[J]. Analytical Chemistry,2014,86(8):3841−3848. doi: 10.1021/ac403971h
    [20]
    Agrawal S, Morarka A R, Bodas D, et al. Multiplexed Detection of waterborne pathogens in circular microfluidics[J]. Applied Biochemistry and Biotechnology,2012,167(6):1668−1677. doi: 10.1007/s12010-012-9597-8
    [21]
    Joshi R, Janagama H K, Dwivedi H P, et al. Selection, characterization, and application of DNA aptamers for the capture and detection ofSalmonella entericaserovars[J]. Molecular and Cellular Probes,2009,23(1):20−28. doi: 10.1016/j.mcp.2008.10.006
    [22]
    Liu P, Wang Y, Han L, et al. Colorimetric assay of bacterial pathogens based on Co3O4magnetic nanozymes conjugated with specific fusion phage proteins and magnetophoreticchromatography[J]. ACS Applied Materials & Interfaces,2020,12(8):9090−9097.
    [23]
    Wang C, Sauvageau D, Elias A L, et al. Immobilization of active bacteriophages on polyhydroxyalkanoatesurfaces[J]. ACS Applied Materials & Interfaces,2016,8(2):1128−1138.
    [24]
    Wang R, Lum J, Callaway Z, et al. Alabelfree impedance immunosensor using screen-printed interdigitatedelectrodes and magnetic nanobeads for the detection of E. coliO157: H7[J]. Biosensors,2015,5(4):791–803.
    [25]
    Yi Z, Wang S, Meng X, et al. Lysin cell-binding domain-functionalized magnetic beads for detection ofStaphylococcus aureusvia inhibition of fluorescence of Amplex Red/hydrogen peroxide assay by intracellular catalase[J]. Analytical and Bioanalytical Chemisty,2019,411(27):7177−7185. doi: 10.1007/s00216-019-02099-0
    [26]
    Cooper R M, Leslie D C, Domansky K, et al. A microdevice for rapid optical detection of magnetically captured rare blood pathogens[J]. Lab on a Chip,2014,14(1):182−188. doi: 10.1039/C3LC50935D
    [27]
    王娉, 胡玥, 田雪, 等. 食品中4种常见致病菌的磁珠吸附-PCR检测方法研究[J]. 卫生研究,2014,43(4):556−561.
    [28]
    李倩倩, 陈萍, 任常菲. 不同磁珠对致病菌吸附性能的比较研究[J]. 卫生研究,2012,41(2):293−297.
    [29]
    Bruno J G. Predicting the uncertain future of aptamer-based diagnostics and therapeutics[J]. Molecules,2015,20(4):6866−6887. doi: 10.3390/molecules20046866
    [30]
    Bruno J G, Sivils J C, Phillips T, et al. Aptamer-magnetic bead quantum dot sandwich assays for foodborne pathogen detection: Pros, cons, and lessons learned[J]. Journal of AOAC International,2017,100(4):895−899. doi: 10.5740/jaoacint.17-0163
    [31]
    Abbaspour A, Norouzsarvestani F, Noori A, et al. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus Aureus[J]. Biosensors and Bioelectronics,2015,68:149−155. doi: 10.1016/j.bios.2014.12.040
    [32]
    Osullivan L, Bolton D, Mcauliffe O, et al. The use of bacteriophages to control and detect pathogens in the dairy industry[J]. International Journal of Dairy Technology,2020,73(1):1−11. doi: 10.1111/1471-0307.12641
    [33]
    Sultan K S, Ali T A, Fahmy N A, et al. Using millimeteraves for rapid detection of pathogenic bacteria in food based on bacteriophage[J]. Engineering Reports,2019,1(1):1−24.
    [34]
    Tu S, Uknalis J, Irwin P L, et al. Theuseofstreptavidincoatedmagneticbeadsfordetecting pathogenic bacteria by light addressable potentiometric sensor (laps)[J]. Journal of Rapid Methods and Automation in Microbiology,2000,8(2):95−109. doi: 10.1111/j.1745-4581.2000.tb00353.x
    [35]
    Kant K, Shahbazi M, Dave V P, et al. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens[J]. Biotechnology Advances,2018,36(4):1003−1024. doi: 10.1016/j.biotechadv.2018.03.002
    [36]
    Hyun-Ju Hwang, Jin-WookHan, HancheolJeon, et al. Characterization of a novel mannose-binding lectin with antiviral activities from red alga, Grateloupiachiangii[J]. Biomolecules,2020,10(2):333. doi: 10.3390/biom10020333
    [37]
    Chen J, Park B. Effect of immunomagnetic bead size on recovery of foodborne pathogenic bacteria[J]. International Journal of Food Microbiology,2018,267(1):1−8.
    [38]
    张璇, 戴娟, 王祖忠, 等. 基于纳米免疫磁珠快速富集4种海洋致病性弧菌的研[J]. 海洋与湖沼,2015,46(6):1478−1486.
    [39]
    周莉, 王永, 王法云, 等. 免疫磁珠检测食品中金黄色葡萄球菌的研究[J]. 河南科学,2015,33(7):1119−1123.
    [40]
    Mao Y, Huang X, Xiong S, et al. Large-volume immunomagnetic separation combined with multiplex PCR assay for simultaneous detection of Listeria monocytogenes and Listeria ivanoviiin lettuce[J]. Food Control,2016,59:601−608. doi: 10.1016/j.foodcont.2015.06.048
    [41]
    Rainbow J, Sedlackova E, Jiang S, et al. Integrated electrochemical biosensors for detection of waterborne pathogens in low-resource settings[J]. Biosensors,2020,10(4):36. doi: 10.3390/bios10040036
    [42]
    MengXu, Ronghui Wang, Yanbin Li. Rapid detection of Escherichia coli O157: H7and Salmonella Typhimurium in foods using an electrochemical immunosensor based on screen-printed interdigitated microelectrode and immunomagneticseparation[J]. Talanta,2016,148(8):200−208.
    [43]
    MajetiNarasimhaVara Prasad, Anna Grobelak. Waterborne pathogens detection and treatment[M]. Butterworth-Heinemann Press, 2020.
    [44]
    Li Q, Zhang S, Cai Y, et al. Rapid detection of Listeria monocytogenes using fluorescence immunochromatographic assay combined with immunomagnetic separation technique[J]. International Journal of Food Science and Technology,2017,52(7):1559−1566. doi: 10.1111/ijfs.13428
    [45]
    Gao P, Xu G, Shi X, et al. Rapid detection of Staphylococcus aureus by a combination of monoclonal antibody-coated latex and capillary electrophoresis[J]. Electrophoresis,2006,27(9):1784−1789. doi: 10.1002/elps.200500656
    [46]
    陈萍, 李仁宽, 徐小华, 等. 毛细管电泳法快速分离和检测肠毒性大肠杆菌[J]. 色谱,2002(5):439−441. doi: 10.3321/j.issn:1000-8713.2002.05.014
    [47]
    何玲, 黎源倩. 多重PCR-毛细管电泳-激光诱导荧光检测食源性致病菌[J]. 现代预防医学,2009,36(3):523−525.
    [48]
    VijayaraghavanA. Bottom-up assembly of nano-carbon devices by dielectrophoresis[J]. Physica StatusB,2013,250(12):2505−2517.
    [49]
    胡冲. 基于荧光纳米颗粒标记的芯片介电电泳技术检测沙门氏菌[D]. 长沙: 湖南大学, 2012.
    [50]
    Yang L. Dielectrophoresis assisted immuno-capture and detection of foodborne pathogenic bacteria in biochips.[J]. Talanta,2009,80(2):551−558. doi: 10.1016/j.talanta.2009.07.024
    [51]
    Nakano M, Obara R, Ding Z, et al. Detection of norovirus and rotavirus by dielectrophoretic impedance measurement[C]// 2013 Seventh International Conference on Sensing Technology (ICST). IEEE, 2013: 374-378.
    [52]
    Wang R, Xu Y, Liu H, et al. An integrated microsystem with dielectrophoresis enrichment and impedance detection for detection ofEscherichia coli[J]. Biomedical Microdevices,2017,19:34. doi: 10.1007/s10544-017-0167-2
    [53]
    Ding J, Lawrence R M, Jones P V, et al. Concentration of Sindbis virus with optimized gradient insulator-based dielectrophoresis[J]. Analyst,2016,141(6):1997−2008. doi: 10.1039/C5AN02430G
    [54]
    Jones Paul V, DeMicheleAlexa F, Kemp LaKeta, et al. Differentiation of Escherichia coli serotypes using DC gradient insulator dielectrophoresis[J]. Analytical and Bioanalytical Chemistry,2014,406(1):183−192. doi: 10.1007/s00216-013-7437-5
    [55]
    Liu WT, ZhuL, Qin QW, et al. Microfluidicdeviceasanewplatformforimmunofluorescent detection of viruses[J]. Lab Chip,2005,5(11):1327–1330.
    [56]
    Yonghee Kim, Jinyeop Lee, SungsuPark. A 3D-printed millifluidic platform enabling bacterial preconcentration and DNA purification for molecular detection of pathogens in blood[J]. Micromachines,2018,9(427):1−12.
    [57]
    李永新, 黎源倩, 渠凌丽, 等. 微流控芯片-激光诱导荧光快速检测4种食源性致病菌[J]. 分析化学,2008,36(12):1667−1671. doi: 10.3321/j.issn:0253-3820.2008.12.013
    [58]
    Kim G, Moon J, Moh C, et al. A microfluidic nano-biosensor for the detection of pathogenic Salmonella[J]. Biosensors and Bioelectronics,2015,67:243−247. doi: 10.1016/j.bios.2014.08.023
    [59]
    Safavieh M, Ahmed M U, Tolba M, et al. Microfluidic electrochemical assay for rapid detection and quantification of Escherichia coli[J]. Biosensors and Bioelectronics,2012,31(1):523−528. doi: 10.1016/j.bios.2011.11.032
    [60]
    Altintas Z, Akgun M, Kokturk G, et al. A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection[J]. Biosensors and Bioelectronics,2018,100:541−548. doi: 10.1016/j.bios.2017.09.046
    [61]
    Chen Q, Wang D, Cai G, et al. Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics[J]. Biosensors and Bioelectronics,2016,86:770−776. doi: 10.1016/j.bios.2016.07.071
    [62]
    Cong H, Xu X, Yu B, et al. Recent progress in preparation and application of microfluidic chip electrophoresis[J]. Journal of Micromechanics and Microengineering,2015,25(5):053001. doi: 10.1088/0960-1317/25/5/053001
    [63]
    Thaitrong N, Charlermroj R, Himananto O, et al. Implementation of microfluidic sandwich ELISA for superior detection of plant pathogens[J]. PLoS One,2013,8(12):e 83231. doi: 10.1371/journal.pone.0083231
    [64]
    Kanayeva D, Wang R, Rhoads D D, et al. Efficient separation and sensitive detection of Listeria monocytogenes using an impedance immunosensor based on magnetic nanoparticles, a microfluidic chip, and an interdigitated microelectrode.[J]. Journal of Food Protection,2012,75(11):1951−1959. doi: 10.4315/0362-028X.JFP-11-516
    [65]
    Yao L, Wang L, Huang F, et al. A microfluidic impedance biosensor based on immunomagnetic separation and urease catalysis for continuous-flow detection of E. coliO157: H7[J]. Sensors and Actuators B-chemical,2018,259:1013−1021. doi: 10.1016/j.snb.2017.12.110
    [66]
    Beyor N, Seo T S, Liu P, et al. Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection[J]. Biomedical Microdevices,2008,10(6):909−917. doi: 10.1007/s10544-008-9206-3

Catalog

    Article Metrics

    Article views (428) PDF downloads (62) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return