Citation: | WANG Junyun, SHEN Jingwen, LU Lixia, et al. Research Progress of Compound Techniques for Enrichment and Detection of Foodborne Pathogens [J]. Science and Technology of Food Industry, 2021, 42(11): 348−355. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060210. |
[1] |
KirkM D, PiresS M, BlackR E, et al. World health organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: A data synthesis[J]. PLOS Medicine,2015,12(12):e1001921. doi: 10.1371/journal.pmed.1001921
|
[2] |
Wei Wu, Chundi Yu, Qi Wang, et al. Research advances of DNA aptasensors for foodborne pathogen detection[J]. Critical Reviews in Food Science and Nutrition,2020,60(14):2353−2368. doi: 10.1080/10408398.2019.1636763
|
[3] |
白亚龙, 索玉娟, 周昌艳. 食源性致病菌PCR检测前处理方法研究进展[J]. 食品与机械,2017,33(12):191−196.
|
[4] |
Reta N, Saint C P, Michelmore A, et al. Nanostructured electrochemical biosensors forlabel-free detection of water- and food-borne pathogens[J]. ACS Applied Materials & Interfaces,2018,10(7):6055−6072.
|
[5] |
Tao J, Liu W, Ding W, et al. A multiplex PCR assay with a common primer for the detection of eleven foodborne pathogens[J]. Journal of Food Science,2020,85(3):744−754. doi: 10.1111/1750-3841.15033
|
[6] |
苏粉良, 李冰燕, 陈雨欣, 等. 食源性致病菌的检测技术研究进展[J]. 农产品加工,2018(4):58−61.
|
[7] |
Sharma A, Tok A I, Palaniappan A, et al. Gold nanoparticle conjugated magnetic beads for extraction and nucleation based signal amplification in lateral flow assaying[J]. Sensors and Actuators B-chemical,2020,312:127959. doi: 10.1016/j.snb.2020.127959
|
[8] |
Salehi S S, Shamloo A, Hannani S K, et al. Microfluidic technologies to engineer mesenchymal stem cell aggregates—applications and benefits[J]. Biophysical Reviews,2020,12(1):123−133. doi: 10.1007/s12551-020-00613-8
|
[9] |
KerroucheA, Lithgow J, Muhammad I, et al. Towards the development of rapid and low-cost pathogen detection systems using microfluidic technology and optical image processing[J]. Applied Sciences,2020,10(7):2527. doi: 10.3390/app10072527
|
[10] |
Brandao D, Liebana S, Campoy S, et al. Immunomagnetic separation of Salmonella with tailored magnetic micro and nanocarriers. A comparative study.[J]. Talanta,2015,143:198−204. doi: 10.1016/j.talanta.2015.05.035
|
[11] |
吴俊, 陆利霞, 刘元建, 等. 基于裸磁珠的金黄色葡萄球菌富集优化[J]. 现代食品科技,2019,35(2):186−192.
|
[12] |
邱晋, 樊学军, 沈圣, 等. 自制裸磁珠对常见食源性致病菌吸附性能的研究[J]. 现代预防医学,2006(1):4−5. doi: 10.3969/j.issn.1003-8507.2006.01.002
|
[13] |
Li J, Liu Q, Wan Y, et al. Rapid detection of trace Salmonella in milk and chicken by immunomagnetic separation in combination with a chemiluminescencemicroparticle immunoassay[J]. Analytical and Bioanalytical Chemistry,2019,411(23):6067−6080. doi: 10.1007/s00216-019-01991-z
|
[14] |
李云霞. 纳米磁珠对单增李斯特菌低场磁共振检测的影响研究[D]. 上海: 上海师范大学, 2016.
|
[15] |
Jalal U M, Jin G J, Eom K S, et al. On-chip signal amplification of magnetic bead-based immunoassay by aviating magnetic bead chains[J]. Bioelectrochemistry,2017,122:221−226.
|
[16] |
吴孟娟. 基于纳米抗体的免疫磁珠捕获-qPCR技术建立河弧菌的快速检测方法[D]. 南昌: 南昌大学, 2019.
|
[17] |
Huang J, Bian X, Chang K, et al. Capture and analysis of cell surface n-glycans by hydrazide-modified magnetic beads and CE-LIF[J]. Chromatographia,2019,82(7):1079−1088. doi: 10.1007/s10337-019-03742-9
|
[18] |
Zhan S, Yang Y, Shen Z, et al. Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles[J]. Journal of Hazardous Materials,2014,274:115−123. doi: 10.1016/j.jhazmat.2014.03.067
|
[19] |
Kim T, Park J, Kim C, et al. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens[J]. Analytical Chemistry,2014,86(8):3841−3848. doi: 10.1021/ac403971h
|
[20] |
Agrawal S, Morarka A R, Bodas D, et al. Multiplexed Detection of waterborne pathogens in circular microfluidics[J]. Applied Biochemistry and Biotechnology,2012,167(6):1668−1677. doi: 10.1007/s12010-012-9597-8
|
[21] |
Joshi R, Janagama H K, Dwivedi H P, et al. Selection, characterization, and application of DNA aptamers for the capture and detection ofSalmonella entericaserovars[J]. Molecular and Cellular Probes,2009,23(1):20−28. doi: 10.1016/j.mcp.2008.10.006
|
[22] |
Liu P, Wang Y, Han L, et al. Colorimetric assay of bacterial pathogens based on Co3O4magnetic nanozymes conjugated with specific fusion phage proteins and magnetophoreticchromatography[J]. ACS Applied Materials & Interfaces,2020,12(8):9090−9097.
|
[23] |
Wang C, Sauvageau D, Elias A L, et al. Immobilization of active bacteriophages on polyhydroxyalkanoatesurfaces[J]. ACS Applied Materials & Interfaces,2016,8(2):1128−1138.
|
[24] |
Wang R, Lum J, Callaway Z, et al. Alabelfree impedance immunosensor using screen-printed interdigitatedelectrodes and magnetic nanobeads for the detection of E. coliO157: H7[J]. Biosensors,2015,5(4):791–803.
|
[25] |
Yi Z, Wang S, Meng X, et al. Lysin cell-binding domain-functionalized magnetic beads for detection ofStaphylococcus aureusvia inhibition of fluorescence of Amplex Red/hydrogen peroxide assay by intracellular catalase[J]. Analytical and Bioanalytical Chemisty,2019,411(27):7177−7185. doi: 10.1007/s00216-019-02099-0
|
[26] |
Cooper R M, Leslie D C, Domansky K, et al. A microdevice for rapid optical detection of magnetically captured rare blood pathogens[J]. Lab on a Chip,2014,14(1):182−188. doi: 10.1039/C3LC50935D
|
[27] |
王娉, 胡玥, 田雪, 等. 食品中4种常见致病菌的磁珠吸附-PCR检测方法研究[J]. 卫生研究,2014,43(4):556−561.
|
[28] |
李倩倩, 陈萍, 任常菲. 不同磁珠对致病菌吸附性能的比较研究[J]. 卫生研究,2012,41(2):293−297.
|
[29] |
Bruno J G. Predicting the uncertain future of aptamer-based diagnostics and therapeutics[J]. Molecules,2015,20(4):6866−6887. doi: 10.3390/molecules20046866
|
[30] |
Bruno J G, Sivils J C, Phillips T, et al. Aptamer-magnetic bead quantum dot sandwich assays for foodborne pathogen detection: Pros, cons, and lessons learned[J]. Journal of AOAC International,2017,100(4):895−899. doi: 10.5740/jaoacint.17-0163
|
[31] |
Abbaspour A, Norouzsarvestani F, Noori A, et al. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus Aureus[J]. Biosensors and Bioelectronics,2015,68:149−155. doi: 10.1016/j.bios.2014.12.040
|
[32] |
Osullivan L, Bolton D, Mcauliffe O, et al. The use of bacteriophages to control and detect pathogens in the dairy industry[J]. International Journal of Dairy Technology,2020,73(1):1−11. doi: 10.1111/1471-0307.12641
|
[33] |
Sultan K S, Ali T A, Fahmy N A, et al. Using millimeteraves for rapid detection of pathogenic bacteria in food based on bacteriophage[J]. Engineering Reports,2019,1(1):1−24.
|
[34] |
Tu S, Uknalis J, Irwin P L, et al. Theuseofstreptavidincoatedmagneticbeadsfordetecting pathogenic bacteria by light addressable potentiometric sensor (laps)[J]. Journal of Rapid Methods and Automation in Microbiology,2000,8(2):95−109. doi: 10.1111/j.1745-4581.2000.tb00353.x
|
[35] |
Kant K, Shahbazi M, Dave V P, et al. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens[J]. Biotechnology Advances,2018,36(4):1003−1024. doi: 10.1016/j.biotechadv.2018.03.002
|
[36] |
Hyun-Ju Hwang, Jin-WookHan, HancheolJeon, et al. Characterization of a novel mannose-binding lectin with antiviral activities from red alga, Grateloupiachiangii[J]. Biomolecules,2020,10(2):333. doi: 10.3390/biom10020333
|
[37] |
Chen J, Park B. Effect of immunomagnetic bead size on recovery of foodborne pathogenic bacteria[J]. International Journal of Food Microbiology,2018,267(1):1−8.
|
[38] |
张璇, 戴娟, 王祖忠, 等. 基于纳米免疫磁珠快速富集4种海洋致病性弧菌的研[J]. 海洋与湖沼,2015,46(6):1478−1486.
|
[39] |
周莉, 王永, 王法云, 等. 免疫磁珠检测食品中金黄色葡萄球菌的研究[J]. 河南科学,2015,33(7):1119−1123.
|
[40] |
Mao Y, Huang X, Xiong S, et al. Large-volume immunomagnetic separation combined with multiplex PCR assay for simultaneous detection of Listeria monocytogenes and Listeria ivanoviiin lettuce[J]. Food Control,2016,59:601−608. doi: 10.1016/j.foodcont.2015.06.048
|
[41] |
Rainbow J, Sedlackova E, Jiang S, et al. Integrated electrochemical biosensors for detection of waterborne pathogens in low-resource settings[J]. Biosensors,2020,10(4):36. doi: 10.3390/bios10040036
|
[42] |
MengXu, Ronghui Wang, Yanbin Li. Rapid detection of Escherichia coli O157: H7and Salmonella Typhimurium in foods using an electrochemical immunosensor based on screen-printed interdigitated microelectrode and immunomagneticseparation[J]. Talanta,2016,148(8):200−208.
|
[43] |
MajetiNarasimhaVara Prasad, Anna Grobelak. Waterborne pathogens detection and treatment[M]. Butterworth-Heinemann Press, 2020.
|
[44] |
Li Q, Zhang S, Cai Y, et al. Rapid detection of Listeria monocytogenes using fluorescence immunochromatographic assay combined with immunomagnetic separation technique[J]. International Journal of Food Science and Technology,2017,52(7):1559−1566. doi: 10.1111/ijfs.13428
|
[45] |
Gao P, Xu G, Shi X, et al. Rapid detection of Staphylococcus aureus by a combination of monoclonal antibody-coated latex and capillary electrophoresis[J]. Electrophoresis,2006,27(9):1784−1789. doi: 10.1002/elps.200500656
|
[46] |
陈萍, 李仁宽, 徐小华, 等. 毛细管电泳法快速分离和检测肠毒性大肠杆菌[J]. 色谱,2002(5):439−441. doi: 10.3321/j.issn:1000-8713.2002.05.014
|
[47] |
何玲, 黎源倩. 多重PCR-毛细管电泳-激光诱导荧光检测食源性致病菌[J]. 现代预防医学,2009,36(3):523−525.
|
[48] |
VijayaraghavanA. Bottom-up assembly of nano-carbon devices by dielectrophoresis[J]. Physica StatusB,2013,250(12):2505−2517.
|
[49] |
胡冲. 基于荧光纳米颗粒标记的芯片介电电泳技术检测沙门氏菌[D]. 长沙: 湖南大学, 2012.
|
[50] |
Yang L. Dielectrophoresis assisted immuno-capture and detection of foodborne pathogenic bacteria in biochips.[J]. Talanta,2009,80(2):551−558. doi: 10.1016/j.talanta.2009.07.024
|
[51] |
Nakano M, Obara R, Ding Z, et al. Detection of norovirus and rotavirus by dielectrophoretic impedance measurement[C]// 2013 Seventh International Conference on Sensing Technology (ICST). IEEE, 2013: 374-378.
|
[52] |
Wang R, Xu Y, Liu H, et al. An integrated microsystem with dielectrophoresis enrichment and impedance detection for detection ofEscherichia coli[J]. Biomedical Microdevices,2017,19:34. doi: 10.1007/s10544-017-0167-2
|
[53] |
Ding J, Lawrence R M, Jones P V, et al. Concentration of Sindbis virus with optimized gradient insulator-based dielectrophoresis[J]. Analyst,2016,141(6):1997−2008. doi: 10.1039/C5AN02430G
|
[54] |
Jones Paul V, DeMicheleAlexa F, Kemp LaKeta, et al. Differentiation of Escherichia coli serotypes using DC gradient insulator dielectrophoresis[J]. Analytical and Bioanalytical Chemistry,2014,406(1):183−192. doi: 10.1007/s00216-013-7437-5
|
[55] |
Liu WT, ZhuL, Qin QW, et al. Microfluidicdeviceasanewplatformforimmunofluorescent detection of viruses[J]. Lab Chip,2005,5(11):1327–1330.
|
[56] |
Yonghee Kim, Jinyeop Lee, SungsuPark. A 3D-printed millifluidic platform enabling bacterial preconcentration and DNA purification for molecular detection of pathogens in blood[J]. Micromachines,2018,9(427):1−12.
|
[57] |
李永新, 黎源倩, 渠凌丽, 等. 微流控芯片-激光诱导荧光快速检测4种食源性致病菌[J]. 分析化学,2008,36(12):1667−1671. doi: 10.3321/j.issn:0253-3820.2008.12.013
|
[58] |
Kim G, Moon J, Moh C, et al. A microfluidic nano-biosensor for the detection of pathogenic Salmonella[J]. Biosensors and Bioelectronics,2015,67:243−247. doi: 10.1016/j.bios.2014.08.023
|
[59] |
Safavieh M, Ahmed M U, Tolba M, et al. Microfluidic electrochemical assay for rapid detection and quantification of Escherichia coli[J]. Biosensors and Bioelectronics,2012,31(1):523−528. doi: 10.1016/j.bios.2011.11.032
|
[60] |
Altintas Z, Akgun M, Kokturk G, et al. A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection[J]. Biosensors and Bioelectronics,2018,100:541−548. doi: 10.1016/j.bios.2017.09.046
|
[61] |
Chen Q, Wang D, Cai G, et al. Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics[J]. Biosensors and Bioelectronics,2016,86:770−776. doi: 10.1016/j.bios.2016.07.071
|
[62] |
Cong H, Xu X, Yu B, et al. Recent progress in preparation and application of microfluidic chip electrophoresis[J]. Journal of Micromechanics and Microengineering,2015,25(5):053001. doi: 10.1088/0960-1317/25/5/053001
|
[63] |
Thaitrong N, Charlermroj R, Himananto O, et al. Implementation of microfluidic sandwich ELISA for superior detection of plant pathogens[J]. PLoS One,2013,8(12):e 83231. doi: 10.1371/journal.pone.0083231
|
[64] |
Kanayeva D, Wang R, Rhoads D D, et al. Efficient separation and sensitive detection of Listeria monocytogenes using an impedance immunosensor based on magnetic nanoparticles, a microfluidic chip, and an interdigitated microelectrode.[J]. Journal of Food Protection,2012,75(11):1951−1959. doi: 10.4315/0362-028X.JFP-11-516
|
[65] |
Yao L, Wang L, Huang F, et al. A microfluidic impedance biosensor based on immunomagnetic separation and urease catalysis for continuous-flow detection of E. coliO157: H7[J]. Sensors and Actuators B-chemical,2018,259:1013−1021. doi: 10.1016/j.snb.2017.12.110
|
[66] |
Beyor N, Seo T S, Liu P, et al. Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection[J]. Biomedical Microdevices,2008,10(6):909−917. doi: 10.1007/s10544-008-9206-3
|