LI Xinxin, LI Wenxiang. Isolation, Purification and Antioxidant Activity of Inonotus obliquus Polysaccharide[J]. Science and Technology of Food Industry, 2021, 42(11): 192−197. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020040211.
Citation: LI Xinxin, LI Wenxiang. Isolation, Purification and Antioxidant Activity of Inonotus obliquus Polysaccharide[J]. Science and Technology of Food Industry, 2021, 42(11): 192−197. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020040211.

Isolation, Purification and Antioxidant Activity of Inonotus obliquus Polysaccharide

More Information
  • Received Date: April 19, 2020
  • Available Online: April 06, 2021
  • The chemical compositions of Inonotus obliquus were analyzed and crude polysaccharides (IOP)were isolated from Inonotus obliquus by water extraction. The component of polysaccharides were purified by DEAE-52, and Sephadex G-100 column chromatography, and the highly active polysaccharide component was screened out through antioxidant activity, and the purity of the polysaccharide component was analyzed by high-performance liquid chromatography.The experimental results showed that the chemical composition of Inonotus obliquus was rich, including polysaccharide 13.10%± 0.31%, reducing sugar 4.21%±0.40%, protein 2.70%±0.71%, ash 9.60%±0.31%.After IOP undergoes DEAE-52 cellulose column chromatography, four monosaccharide components were obtained: IOP-1, IOP-2, IOP-3, and IOP-4. Antioxidation experiments on four polysaccharide components found that IOP-2 had the highest scavenging rate for DPPH free radicals. After passing through Sephadex-100 chromatography column, IOP-2 obtained two polysaccharide components: IOP-2a and IOP-2b. Compared with its antioxidant activity, the polysaccharide component with higher activity was selected as IOP-2a. Using high performance liquid chromatography to identify the polysaccharide component IOP-2a, only one symmetrical peak was detected, indicating that IOP-2a was a homogeneous polysaccharide.
  • loading
  • [1]
    Chun-Xin Zou, Xiao-Bo Wang, Tian-Ming Lv, et al. Flavan derivative enantiomers and drimane sesquiterpene lactones from theInonotus obliquus with neuroprotective effects[J]. Bioorganic Chemistry,2020,96:103588. doi: 10.1016/j.bioorg.2020.103588
    [2]
    贺紫薇, 刘旭, 李东辉, 等. 桦褐孔菌研究进展[J]. 中医药信息,2020,37(2):119−123.
    [3]
    Fan L, Ding S, Ai L, et al. Antitumor and immunomodulatory activity of water-soluble polysaccharide from Inonotus obliquus[J]. Carbohydrate Polymers,2012,90(2):870−874. doi: 10.1016/j.carbpol.2012.06.013
    [4]
    Shibnev V A, Garaev T M, Finogenova M P, et al. Antiviral activity of aqueous extracts of the birch fungus Inonotus obliquus on the human immunodeficiency virus[J]. Voprosy Virusologii,2015,60(2):35.
    [5]
    Yang Hu, Yi Sheng, Min Yu, et al. Antioxidant activity of Inonotus obliquus polysaccharide and its amelioration for chronic pancreatitis in mice[J]. Int J Biol Macromol,2016,87:348−356. doi: 10.1016/j.ijbiomac.2016.03.006
    [6]
    ]Lu Xu, Yifan Yu, Rui Sang, et al. Inonotus obliquus polysaccharide protects against adverse pregnancy caused by Toxoplasma gondii infection through regulating Th17/Treg balance via TLR4/NF-κB pathway[J]. International Journal of Biological Macromolecules,2020,146:832−840. doi: 10.1016/j.ijbiomac.2019.10.051
    [7]
    李建华. 桦褐孔菌的药理作用研究进展[J]. 科学技术创新,2019(36):45−46.
    [8]
    金黎达, 欧文斌, 徐向群. 液体发酵桦褐孔菌三萜类成分抑制肿瘤细胞活性研究[J]. 自然科学版,2019,41(1):98−105.
    [9]
    徐正哲, 王飞雪, 王昊月, 等. 发酵桦褐孔菌对链脲佐菌素诱导的Ⅱ型糖尿病大鼠降血糖作用的影响[J]. 食品与机械,2017,33(6):176−179.
    [10]
    齐亭娟, 周玉柏, 曾毅. 桦褐孔菌活性成分及药理作用的研究进展[J]. 智慧健康,2018,4(24):50−53.
    [11]
    Du X J, Mu H M, Zhou S, et al. Chemical analysis and antioxidant activity of polysaccharides extracted from Inonotus obliquus sclerotia[J]. International Journal of Biological Macromolecules,2013(62):691−696.
    [12]
    崔杰, 于新, 王立勋, 等. 桦褐孔菌化学成分和药理作用研究进展[J]. 河北中医药学报,2017,32(3):48−53.
    [13]
    李依韦, 代玉坤, 周雨玫. 桦褐孔菌多糖提取条件优化[J]. 内蒙古民族大学学报(自然科学版),2018,33(6):508−513.
    [14]
    王梦雅, 赵喆禛, 薛娇, 等. 桦褐孔菌纯化多糖体外降血糖活性研究[J]. 食品工业科技,2020,41(10):316−320, 326.
    [15]
    刘鑫, 侯若琳, 许凯强, 等. 桦褐孔菌提取物抗乳腺癌活性部位筛选及成分分析[J]. 食品与生物技术学报,2018,37(12):1266−1271. doi: 10.3969/j.issn.1673-1689.2018.12.006
    [16]
    Youn M J, Kim J K, Park S Y, et al. Potential anticancer properties of the water extract of Inontus obliquus by induction of apoptosis in melanoma B16-F10 cells[J]. Journal of Ethnopharmacology,2009,121(2):221−228. doi: 10.1016/j.jep.2008.10.016
    [17]
    胡欣蕾, 田雪梅, 李文香, 等. 花脸香蘑菌丝体多糖提取条件优化及其体外免疫活性[J]. 食品科学,2017,38(20):185−190. doi: 10.7506/spkx1002-6630-201720026
    [18]
    王楠, 张民, 李茜, 等. 裸燕麦多糖酶解产物OP-1纯化组分结构分析[J]. 天津科技大学学报,2016,31(1):8−12.
    [19]
    王文平, 郭祀远, 李琳, 等. 考马斯亮蓝法测定野木瓜多糖中蛋白质的含量[J]. 食品研究与开发,2008(1):115−117. doi: 10.3969/j.issn.1005-6521.2008.01.036
    [20]
    常晨, 包怡红. 桦褐孔菌多糖的研究进展[J]. 食品与机械,2017,33(1):201−204.
    [21]
    玄光善, 郑晓, 孙钦勇, 等. 桦褐孔菌多糖的纯化及其单糖组成分析[J]. 中南药学,2014,12(10):981−984. doi: 10.7539/j.issn.1672-2981.2014.10.011
    [22]
    田淑雨, 陈韵, 鹿士峰, 等. 灵芝多糖脱色工艺研究[J]. 食品安全质量检测学报,2019,10(4):912−920. doi: 10.3969/j.issn.2095-0381.2019.04.016
    [23]
    刘力萍, 吴天祥, 张宗启. 灰树花胞外多糖不同脱色方法的研究[J]. 食品科技,2018,43(11):196−201.
    [24]
    徐妍, 白羽, 崔桂花, 等. 桦褐孔菌活性成分的提取与药理活性研究进展[J]. 吉林医药学院学报,2017,38(6):460−462.
    [25]
    罗敬文, 司风玲, 顾子玄, 等. 3种木耳多糖的抗氧化活性与抑菌能力比较分析[J]. 食品科学,2018,39(19):64−69. doi: 10.7506/spkx1002-6630-201819011

Catalog

    Article Metrics

    Article views (300) PDF downloads (26) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return