XIANG Feng-ying, ZHANG Ying, LU Qi, GAO Yue, SUN Ji-xu, ZHANG Jun. Preparation and pharacterization of soluble dietary fiber by water bath and ultrasound from pineapple pomace[J]. Science and Technology of Food Industry, 2014, (10): 150-154. DOI: 10.13386/j.issn1002-0306.2014.10.025
Citation: XIANG Feng-ying, ZHANG Ying, LU Qi, GAO Yue, SUN Ji-xu, ZHANG Jun. Preparation and pharacterization of soluble dietary fiber by water bath and ultrasound from pineapple pomace[J]. Science and Technology of Food Industry, 2014, (10): 150-154. DOI: 10.13386/j.issn1002-0306.2014.10.025

Preparation and pharacterization of soluble dietary fiber by water bath and ultrasound from pineapple pomace

More Information
  • Received Date: August 29, 2013
  • Impacts on the extraction yield of pineapple pomace soluble dietary fiber (SDF) of factors of water bath method and ultrasonic method. And on the basis of single factor experiment, these optimal conditions for extracting soluble dietary fiber (SDF) of pineapple pomace by orthogonal experiment methods of ultrasound was established. In addition, using IR, SEM and XRD to structuralize and check antioxidant which was extracted from the ultrasonic extraction of the pineapple pomace soluble dietary fiber (SDF) . The result showed as follow:pH5, ultrasonic temperature 60℃, solid-liquid ratio of ultrasound 1 ∶20g·mL-1, ultrasonic time 45min. Under the optimal condition the SDF yield was 15.91%. The pineapple pomace soluble dietary fiber (SDF) IR spectra of slag appeared a strong round bottom absorption on peak around 3404cm-1, pineapple pomace soluble dietary fiber (SDF) had high purity and high crystallinity. Furthermore, form the SEM, pineapple pomace soluble dietary fiber (SDF) presented a more structured block structure, which was consistent with the XRD results. At the same concentration, the antioxidant activity of pineapple pomace SDF was better than that of pineapple pomace, but lower than the commercial synthetic antioxidant (BHA) .
  • loading
  • [1]
    苑艳辉.菠萝皮的综合利用[J].食品与发酵工业, 2005, 31 (2) :145.
    [2]
    黄发新, 詹云辉.菠萝皮渣白兰地的初步研究[J].热带作物机械化, 1997 (1) :7-9.
    [3]
    舒肇緞.广东省菠萝产业现状[J].中国果业信息, 2005, 22 (4) :1-5.
    [4]
    文尚华.我国菠萝产业发展现状与对策探讨[J].中国热带农业, 2006 (1) :9-11.
    [5]
    杨礼富, 谢贵水.菠萝加工废料:果皮渣的综合利用[J].热带农业科学, 2002, 22 (4) :67-71.
    [6]
    Patist A, Bates D.Ultrasonic innovations in the food industry:From the laboratory to commercial production[J].Innovative Food Science and Emerging Technologies, 2008, 9 (2) :147-154.
    [7]
    幸宏伟, 陈劲春.酶法提高红薯渣可溶性膳食纤维得率的研究[J].食品工业, 2011 (10) :153-156.
    [8]
    孟令, 曹龙奎.高速混合条件下不同增塑剂对热塑性淀粉结构及性能的影响[J].食品工业科技, 2011 (1) :112-114.
    [9]
    BLOIS M S.Antioxidant determinations by the use of a stablefree radica[J].Nature, 1958, 181:1199-1200.
    [10]
    郭爽.四种抗氧化剂的活性研究及测定总抗氧化能新法初探[D].郑州:河南农业大学, 2005.
    [11]
    Vinatoru M.An overview of the ultrasonically assisted extraction of bioactive principles from herbs[J].Ultrasonics Sonochemistry, 2001, 8 (3) :303-313.
    [12]
    Wang Z M, Cheung Y C, Leung P H, et al.Ultrasonic treatment for improved solution properties of a high-molecular weight exopolysaccharide produced by a medicinal fungus[J].Bioresource Technology, 2010, 101 (14) :5517-5522.
    [13]
    王标诗, 陈月飞, 张金仪, 等.正交实验优化菠萝果渣膳食纤维制备及其性质的比较[J].食品科学, 2013, 34 (6) :88-92.
    [14]
    王世宽.微生物发酵法制备菠萝渣膳食纤维的工艺研究[J].食品工业, 2007 (6) :18-20.
    [15]
    张艳华, 凡启光, 何建新, 等.木棉纤维的结构与热性能[J].山东纺织科技, 2009 (1) :48-52.
    [16]
    陈宗其.胶体化学[M].北京:高等教育出版社, 1985.
    [17]
    高洁, 汤烈贵.纤维素科学[M].北京:科学出版社, 1999:41-60.
    [18]
    周小理.植物性膳食纤维抗氧化活性的研究与应用[J].食品与机械, 2010, 26 (3) :158-160.

Catalog

    Article Metrics

    Article views (107) PDF downloads (269) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return