• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

咖啡生物活性物质及其健康功效研究进展

段仪, 刘秦明, 卢开华, 刘丽静, 杨芳, 代佳和, 李宏, 胡永金

段仪,刘秦明,卢开华,等. 咖啡生物活性物质及其健康功效研究进展[J]. 食品工业科技,2025,46(7):1−12. doi: 10.13386/j.issn1002-0306.2024060149.
引用本文: 段仪,刘秦明,卢开华,等. 咖啡生物活性物质及其健康功效研究进展[J]. 食品工业科技,2025,46(7):1−12. doi: 10.13386/j.issn1002-0306.2024060149.
DUAN Yi, LIU Qinming, LU Kaihua, et al. Progress in the Study of Bioactive Substances in Coffee and Health Effects[J]. Science and Technology of Food Industry, 2025, 46(7): 1−12. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060149.
Citation: DUAN Yi, LIU Qinming, LU Kaihua, et al. Progress in the Study of Bioactive Substances in Coffee and Health Effects[J]. Science and Technology of Food Industry, 2025, 46(7): 1−12. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060149.

咖啡生物活性物质及其健康功效研究进展

基金项目: 咖啡产业云南省高校协同创新中心(云教发[2023]7号);云南省高校微生物资源与利用重点实验室(云教发[2018]135号)。
详细信息
    作者简介:

    段仪(1999−)(ORCID:0009−0006−9693−4634)男,硕士研究生,研究方向:咖啡加工学,E-mail:1741795319@qq.com

    通讯作者:

    李宏: 胡永金(1972−)(ORCID:0000−0001−5149−0079)男,博士,教授,研究方向:食品微生物资源与利用,E-mail:huyjin@126.com

  • 中图分类号: TS201.6

Progress in the Study of Bioactive Substances in Coffee and Health Effects

  • 摘要: 咖啡富含咖啡因、葫芦巴碱、绿原酸、多糖、黄酮等生物活性物质,具有多种生理活性与潜在的应用价值。广泛研究表明,咖啡对人类健康有益。经常喝咖啡可以预防包括心血管疾病、2型糖尿病等慢性病。其次,喝咖啡也与一些神经退行性疾病(如阿尔茨海默病、帕金森病和痴呆)的发病风险降低相关。然而,对这些效应的潜在机制仍知之甚少。本文将从生物碱、酚酸化合物、萜类化合物三类着手,从免疫调节,菌群调节、抑制炎症等多方面着手阐述咖啡中的主要生物活性物质及其健康效应,为咖啡生物活性物质的开发利用提供参考,助力咖啡的高值化利用。
    Abstract: Coffee is rich in various bioactive substances such as caffeine, trigonelline, chlorogenic acid, polysaccharides, and flavonoids, which exhibit diverse physiological activities and potential application values. Extensive research has shown that coffee is beneficial to human health. Regular coffee consumption can prevent chronic diseases including cardiovascular disease and type 2 diabetes. Secondly, coffee consumption is also associated with a reduced risk of developing some neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and dementia. However, the underlying mechanisms of these effects are still poorly understood. This article will delve into three major categories of these substances: alkaloids, phenolic acid compounds, and terpenoid compounds. This article will expound on the health effects of the principal bioactive components in coffee from multiple angles, including immune regulation, microbiome modulation, and inflammation inhibition. This comprehensive review aims to provide a reference for the development and utilization of coffee's bioactive components, thereby contributing to the high-value utilization of coffee.
  • 咖啡、茶以及可可被称为世界三大饮料[1],咖啡在中国市场备受关注,在2023年,中国咖啡的进出口总量达到了171,700吨,总贸易额高达8.78亿美元[2]。随着咖啡精品化的浪潮推进,伴随着大量咖啡副产物的产生。探究咖啡中的生物活性物质及其生理功能将有助于提高其综合价值。咖啡消费水平的不断提高,人们不仅青睐于咖啡烘焙后的独特风味,开始探究其功效,其中咖啡因的提神效果最为出名,咖啡内含物的生物活性功能越来越备受关注,如酚类物质的消耗可以保护机体免受氧化应激产生的炎症、癌症等之类研究成为热点。下面将对咖啡活性物质的功效研究进展进行综述。

    生物碱是咖啡中最重要的生物活性物质之一,常见的有咖啡因、葫芦巴碱、可可碱、烟酸,在大果咖啡叶中还有1,3,7,9-四甲基尿酸、大果咖啡碱、甲基大果咖啡碱等特有生物碱[3];此外,咖啡中还含有绿原酸和咖啡酸,以及衍生酸如阿魏酸、对-香豆酸,咖啡奎宁酸等酚酸[45];儿茶素、表儿茶素、槲皮素、芦丁等黄酮类物质[67];及咖啡豆醇和咖啡醇等萜类物质[8]。这些生物活性物质与咖啡中其它营养素如多糖和肽类等共同影响其健康效应[9]。咖啡中生物活性物质的含量受到品种、气候、土壤等多种因素的影响[10],此外咖啡豆的烘焙条件,包括烘焙过程的温度和时间;咖啡冲泡条件,即,冲泡方法,咖啡/水的比例,水温,咖啡研磨的大小,以及萃取时间也影响着它们的含量[9,11]。生豆和烘焙咖啡豆中活性物质、营养物质和矿物质的详细化学组成和含量如表1所示。

    表  1  咖啡的化学成分[1112]
    Table  1.  The chemical composition of green and roasted coffee beans
    混合物 主要成分 咖啡豆干重含量
    生豆 烘焙豆
    碳水化合物 多糖-纤维素、阿拉伯半乳聚糖、
    半乳甘露聚糖
    低聚糖-水苏糖、棉子糖
    二糖-蔗糖
    单糖-葡萄糖、半乳糖、阿拉伯糖、果糖、
    甘露糖、甘露醇、木糖、核糖
    60 43
    脂类 甘油三酯
    甾醇-豆甾醇、谷甾醇
    脂肪酸-亚油酸、亚麻酸、油酸、棕榈酸、
    硬脂酸、花生酸、二十四烷酸
    二萜-咖啡醇、咖啡豆醇-蜡-生育酚-磷脂
    8~18 10~15
    氨基酸 天冬酰胺,谷氨酸,丙氨酸,
    天冬氨酸,赖氨酸
    9~16 7.5~10
    矿物质 4 3.7~5
    生物碱 咖啡因 0.9~3.33 1
    葫芦巴碱 0.88~3.42 0.7~1
    烟酸 2~3×10−6 0.01~0.04
    有机酸、
    无机酸、酯类
    绿原酸 4~14.4 1~4
    脂肪酸、奎宁酸 0.7~2.5 1.4-2.5
    其他酸类 2 <0.3
    类黑素 25
    黄酮类 儿茶素、表儿茶素、芦丁、槲皮素等
    下载: 导出CSV 
    | 显示表格

    咖啡因是咖啡化学成分中最为著名的嘌呤生物碱,它的来源广泛,是通过从咖啡生豆、茶叶和可可豆中提取产生的,也可以通过合成获取例如,各种黄嘌呤和茶碱的甲基化[13]。咖啡因的主要代谢物是副黄嘌呤、可可碱和茶碱。咖啡因的吸收速度取决于肠道pH,在胃部酸性环境下咖啡因溶解速度和吸收大于肠道,一般在45 min内吸收完全,其峰值平均在30 min,代谢半衰期在3~5 h之间,且由于亲脂性特征,容易穿过细胞膜,包括胎盘屏障和血脑屏障[14]。咖啡因的吸收不受年龄、性别、遗传、疾病、伴随药物影响。咖啡因在人体各个器官以及所有体液都有分布,但70%摄入量咖啡因都会通过肾排泄排出体外[15]人体对咖啡因的吸收受基因的影响,几种细胞色素P450同工型涉及咖啡因去甲基化和C8羟基化(即,CYP 1A 2、CYP 1A 1、CYP 2 E1、CYP 2D 6-Met和CYP 3A),CYP 1A 2基因主要负责咖啡因代谢[16]

    胡芦巴碱(Trigonelline,TRG)是由烟酸(或烟酰胺)的甲基化合成的,因此也被称为N-甲基烟酸。TRG发挥其作为植物激素、膳食成分和人类尿液代谢物的功能。在植物中,TRG执行各种功能,包括植物细胞周期调节和植物生长和存活的调节。TRG在咖啡豆中含量丰富,占其干重的1%~3%。作为一种膳食物质,TRG可以脱甲基化为烟酸,并且在烘焙过程中也会产生1-甲基吡啶和1,2-二甲基吡啶[17]。TRG的生物合成有两条途径。在经典途径中,TRG通过吡啶核苷酸循环降解NAD(烟酰胺腺嘌呤二核苷酸,简称辅酶I)而形成。在另一种途径中,TRG通过三种酶系统从NaMN(烟酰胺单核苷酸)直接合成:NaMN核苷酸酶、NaR(烟酰胺核苷)酶和烟酸甲基转移酶(葫芦巴碱合酶)[18]。根据现有研究TRG具有抗炎和抗氧化的作用,对许多器官和组织具有多种有益作用。它可以调节糖脂代谢;帮助神经系统从异常中恢复,如神经退行性疾病、缺血性脑损伤、抑郁症、认知障碍和糖尿病周围神经病变;缓解糖尿病及其并发症相关的疾病;保护心血管系统、肝脏、肺、肾脏、胃系统和皮肤;抑制肿瘤细胞的增殖和迁移[1923]。通过高效液相色谱法对咖啡及其制品中的TRG进行含量测定发现,咖啡生豆中的含量最高,其次是速溶咖啡冷冻粉,烘焙豆和冻干粉的的含量最低,整体平均值在0.09%~1.41%[24]

    绿原酸具有抗菌、抗炎、抗氧化、抗癌和免疫调节等多种生物活性作用[2526]。绿原酸是一种存在于植物中的多羟基酸,常见于咖啡、茶叶、忍冬、蒲公英、向日葵、杜仲等植物中[27]。绿原酸是奎宁酸(QA)和一个反式肉桂酸残基(如咖啡酸(CA)、对香豆酸(p-CoA)和阿魏酸(FA))的经脱水缩合酯大类[2832]。咖啡中至少有30种不同类型的绿原酸(CGA),包括咖啡酰奎宁酸(CQA),二咖啡酰奎宁酸(DCQA),三咖啡酰奎宁酸(TCQA),阿魏酰奎宁酸(AFA)和p-香豆酰奎宁酸(p-CoQA)[33]。无论是生豆或是烘焙豆,咖啡的健康效益都归因于咖啡中的高含量CGA(绿原酸)和酚类化合物提供的抗氧化活性,以及烘焙过程中产生的抗氧化活性[34]。咖啡生豆中活性多酚的浓度取决于咖啡豆的种类,烘焙程度也会影响CGA含量,已经确定浅度烘焙咖啡中的CGA浓度高于深度烘焙咖啡,而生豆中是最高的,结果表明在高温条件下绿原酸含量呈下降趋势[35]。而对于饮品,则是取决于冲泡过程的因素如,冲泡温度、冲泡时间、冲泡方法等[36]。有研究对比了八种不同冲泡方法并对其绿原酸含量进行测定,发现冷萃的含量最高,其次是意式浓缩[26]

    CA(coffeeic acid)是一种二羟基肉桂酸,通过植物的次级代谢合成,存在于各种植物中,如橄榄、咖啡、豆类、水果、土豆、胡萝卜和菠菜。CA被发现为有机酯、糖酯、酰胺、糖苷等多样的形式,如二聚体、三聚体和酚酸衍生物。它具有广泛的药理作用,包括抗炎、抗氧化、抗菌和抗癌[3739]。咖啡酸是绿原酸、迷迭香酸、丹酚酸B、咖啡酸苯乙酯等优质化合物的前体。由于植物生长周期长,积累量较低,故在生物合成方面有较多的研究。苯丙胺氨裂解酶(PAL)催化L-苯丙氨酸脱氨形成反式肉桂酸,反式肉桂酸在肉桂酸4-羟化酶(4H)催化下得到对香豆酸,对香豆酸被对香豆酸3-羟化酶(C3H)催化成咖啡酸[40]。另外相关研究表明西班牙糖丝菌[41]、弗氏链霉菌[42]、大肠杆菌[43]、酿酒酵母[44]通过不同的表达形成咖啡酸前体物,再通过转化形成咖啡酸。

    咖啡是咖啡豆醇和咖啡醇的主要来源,二者是一对呋喃二萜类化合物,具有抗肿瘤、抗癌和抗炎的特性[45]。咖啡豆的烘焙改变了咖啡冲煮物中生物活性化合物如多酚和二萜的最终含量[4648]。咖啡醇和咖啡豆醇水平也受到烘焙程度的影响。在阿拉比卡咖啡豆的轻度烘焙中观察到二萜类化合物的最高含量(每100 g中622±5.29 mg咖啡醇和453±8.62 mg咖啡豆醇)。相对的,在强烈烘焙条件下(在445 ℃下全城市烘焙60 s),咖啡生豆中约60%的二萜初始量减少[49]。有文献指出咖啡烘焙程度与抗肿瘤作用相关联,强调多酚是受烘焙影响的主要生物活性化合物,因此,得出轻度烘焙可能更有利于获得抗癌特性的结论[5051]。但二萜还没有降解对抗肿瘤特性相关的讨论。由于咖啡冲煮物在水中的溶解度低,冲泡方法会影响咖啡饮品中的脂质含量,滤纸对脂肪的通过没有阻力,而是咖啡粉的粒径影响二萜的浓度,细咖啡粉得到的二萜浓度较高[52]。煮过的咖啡中咖啡豆醇和咖啡醇的含量最高,而过滤咖啡的含量最低[53]。过滤的材料也会影响二萜类含量,纸或布过滤器的使用是咖啡饮料中二萜类含量差异的决定性因素,因为滤纸的孔隙会部分保留[54]。有研究进行了咖啡废粉的体外消化,并研究了二萜的生物可利用性。咖啡豆醇和咖啡醇的生物可利用度分别为11.04%和13.39%[55]

    咖啡的健康功效主要表现在对神经系统的保护、免疫系统的调节以及菌群结构的改善等。咖啡中主要生物活性物质如表2所示,咖啡因是一种刺激性神经递质,促使神经系统兴奋,提高警觉性和注意力,并减轻疲劳感。此外烟酸、葫芦巴碱、二甲基黄嘌呤等生物碱类物质,具有利尿、神经舒张和肠道平滑肌松弛等作用。咖啡中丰富的抗氧化物质,如多酚类化合物和羟基肉桂酸等,通过中和自由基,起到降低氧化应激对身体的损害的作用[56]。而咖啡果皮以及果壳同样带有黄酮、多酚等物质,且含有一定量的可溶性纤维,及果胶和半乳聚糖等。这对促进肠道蠕动,消化系统的健康起到积极影响。最终萃取的咖啡液带有赖氨酸、组氨酸和内啡肽等氨基酸和多肽物质,它们参与调节神经系统和心血管系统[57]。咖啡的健康益处功效得益于多种活性物质共同作用,如咖啡因和绿原酸都对神经保护起到积极影响,但作用机制稍有不同,下面将具体展开阐述。

    表  2  咖啡中的主要生物活性物质及其功能[9,1112]
    Table  2.  Main bioactive substances in coffee and functions
    生物活性物质 功能/性质
    咖啡因 刺激中枢神经系统[59]、神经保护作用[60]
    提高警觉性和注意力[61]、抗炎[62]、抑制腺苷受体[63]
    绿原酸 神经保护作用[64] 、降血脂、保肝、心脏保护,
    抗糖尿病和抗肥胖活动[65]、抗氧化[66]
    葫芦巴碱 抗高血糖、抗高血脂、抗菌、抗病毒和抗肿瘤活性[6768]
    类黑素 抗炎、神经保护[69]
    二萜 抗菌、抗氧化、抗炎、抗肿瘤[70]
    多糖 降胆固醇、刺激免疫系统[71]
    类黄酮 抗氧化、抗癌、抗炎抗菌[38,7273]
    酯类 降胆固醇[74]
    下载: 导出CSV 
    | 显示表格

    大量的体外和体内研究表明,咖啡的生物活性化合物通过抗氧、抗炎、抗凋亡的机制对神经具有保护作用,表明它们对不同的神经退行性疾病具有预防和/或治疗潜力(图2)。

    图  1  咖啡神经保护作用概要
    Figure  1.  Summary of the neuroprotective effects of coffee
    图  2  咖啡化合物抗炎机制的示意图。
    Figure  2.  Schematic representation of the anti-inflammatory mechanisms of coffee compounds

    咖啡因在对抗帕金森病方面发挥了积极作用,其机制包括通过竞争性抑制腺苷A1和A2A受体(A1R),从而促进多巴胺的释放和传递[75]。咖啡因可通过影响纹状体多巴胺水平来改善PD病理,Wang等[76]通过临床实验比较了普通人群和帕金森患者纹状体DAT特征差异,研究发现咖啡消费量与尾状核中纹状体DAT可用性降低相关。咖啡因作为兴奋剂促进多巴胺释放,导致DAT可用性减少,进而导致PD患者多巴胺水平下降。这种相反变化可以解释咖啡因对PD病理的积极影响。另有研究发现咖啡对神经的保护作用源于其代谢产物,咖啡因代谢产物副黄嘌呤和茶碱与PD风险呈负相关[77]。咖啡豆中的成分具有抗炎症效应,对减轻炎症反应具有潜在益处,这对于帕金森病患者尤为重要,因为炎症与该疾病的发展有关。咖啡因通过拮抗所有类型的腺苷受体(AR)引起其大部分生物效应包括A1 R,A2 AR,A2 BR和A3 R且通过PDE的作用可以使细胞中cAMP的浓度增加,还可对γ-氨基丁酸A型(GABAA)受体作用增加抗炎和减少促炎因子达到抗炎活性[16]。此外,咖啡可减少肠道中α-突触核蛋白的致癌过程,降低了帕金森病的风险[78],并降低了致病因子从肠道传递到大脑的几率。有研究发现,在新诊断的男性帕金森病患者中,喝咖啡的人表现出较低的震颤评分,且咖啡的摄入量与震颤程度呈负相关。这暗示咖啡可能在帕金森病患者中具有一定的保护作用。最后,咖啡豆中的二十烷醇-5-羟色胺也显示出潜在降低MPTP(1-甲基-4-苯基-1,2,3,6-四氢吡啶)性帕金森病的神经炎症反应的效果,通过抑制氧化应激和c-Jun氨基末端激酶的活化,减少小鼠帕金森病的风险。这些研究结果强调了咖啡豆及其成分对预防和管理帕金森病可能产生的积极影响。然而,咖啡对帕金森病的预防及缓解效果受到个体基因表达影响,CGA调节PD和神经元细胞中自噬相关基因(α-syn、lc3b、p62、atg5、atg7和ulk1b)的来缓解PD,但咖啡因与绿原酸的共同实际效果有待进一步研究[79]

    中老年人认知能力下降亦成为一个日趋严重的社会问题。伴随着认知能力的恶化,中老年人可能会出现不可逆的认知障碍,并伴随着阿尔兹海默症发病风险的增加。咖啡因作为重要的生物碱类其通过降低AD动物体内上调的炎症因子和氧化应激标记物的水平,从而提供神经保护。Serrano-Pozo等[80]进一步证明咖啡因通过调节CD45、TLR2(Toll-like receptor 2)、CCL4(Chemokine (C-C motif) ligand 4)等促炎症因子的表达,促进降低炎症反应和氧化损伤的效果。另有研究发现绿原酸和咖啡酸通过抑制乙酰胆碱酯酶和丁酰胆碱酯酶的活性来恢复因AD导致的胆碱能缺陷,这有助于改善神经传导,减轻认知功能下降[81]。除了咖啡因和绿原酸主要活性物质外,咖啡豆中的酸类物质也对改善认知能力具有重要作用,其有效抑制谷氨酸兴奋毒性,通过减少谷氨酸的毒性作用,助于保护神经元。通过小鼠海马区的病理特征的减少,证明咖啡中的5-CQA(5-咖啡酰奎宁酸)可减少神经元受损。一项研究调查了10年内中老年男性认知能力下降情况,结果表明,喝咖啡的男性认知能力下降率为1.2%,低于不喝咖啡的男性的1.4%[82]。另外咖啡豆提取物可以通过调节脑胰岛素信号级联,对因胰岛素抵抗引导的AD起到神经保护作用,这有助于改善神经细胞的健康和功能[83]

    癫痫发作主要相关的海马体积显著减小和海马结构改变[84]。最常见的是由上调的谷氨酸能神经传递(兴奋性毒性)引起尿素相关的神经元死亡,这导致钙离子大量流入细胞、渗透压应激和细胞死亡途径的刺激[82]。随后导致小胶质细胞、星形胶质细胞和少突胶质细胞的增殖和肥大,这与脑中促炎细胞因子水平升高相关[85]。此外观测到脑血管系统的变化和血脑屏障的损伤,但尚未确定血脑屏障中的微血管增殖和破坏与癫痫发作是否有关,或者它们是癫痫发作的结果[8687]

    咖啡酸被认为可以降低癫痫大鼠海马和前额皮质细胞的凋零率,减少了大鼠在癫痫状态下产生的氧化应激物质,从而表现出对持续癫痫大鼠的神经保护效果。而葫芦巴碱对红藻氨酸诱导的颞叶癫痫起到神经保护作用。同时葫芦巴碱在咖啡烘焙过程中会部分降解,产生如烟酸等生物活性化合物。已经证明这些化合物能够促进树突和轴突的再生,提高大鼠的记忆力[67]

    葫芦巴碱对痴呆脑神经元网络再生的影响,被认为是通过作用于肌酸激酶b型神经元介导的[86]。肌酸激酶b型神经元是葫芦巴碱的结合靶点,而烟酸则是葫芦巴碱去甲基化产生的产物。同时,烟酸本身也具有神经保护特性。每杯咖啡中含有1~3 mg的烟酸。缺乏这种物质可能导致NAD+和NADP+(烟酰胺腺嘌呤二苷酸磷酸)的减少,与多种神经系统病理有关,包括痴呆和抑郁症以及与神经退行性疾病类似的症状。

    5-咖啡酰奎宁酸(5-CQA)是咖啡中含量最高的绿原酸衍生物[61]。它由奎宁酸残留与咖啡酸残留在C5位点酯化而成。CGA的含量受多个因素影响,例如咖啡混合物(罗布斯塔咖啡含量较高)、烘焙程度(随着烘焙而减少)和冲泡方法[88]。除了单一的5-CQA外,咖啡中还含有双酰奎宁酸(DCQA),如3,4-DCQA、3,5-DCQA和4,5-DCQA。一些研究探讨了这些化合物的神经保护作用。在阿尔茨海默病的大鼠模型中,已经证明DCQAs治疗能够改善空间学习和记忆[89]

    如图所示,咖啡中咖啡因、类黑素、二萜类、绿原酸等物质可通过各种途径达到抗炎作用。咖啡因具有抗化化特性,咖啡因可通过抑制PDE的活性,从而导致细胞内环磷酸腺苷(cAMP)水平上升[26]。cAMP能够抑制炎症介质的产生,如促炎细胞因子和炎性介质的合成和释放。以及通过抑制IκBα的降解来阻止NF-κB的激活,使得NF-κB炎症关键调节因子无法进入细胞核并转录促炎基因,从而抑制炎症反应的发生[57]。并且咖啡因可能通过调节多个细胞信号通路来发挥其抗炎作用,如蛋白激酶A(PKA)和丝裂原活化蛋白激酶(MAPK)等信号通路[90]。咖啡因的抗炎机制还可解释为,腺苷通过A1(抑制)或A2 A(促进)受体调节谷氨酸的突触前释放,腺苷受体的咖啡因拮抗剂作用使其能够直接阻断这些受体,减少小胶质细胞中的炎症反应[91]

    5-CQA在细胞和动物实验中均显示出对炎症的保护作用,通过调节如TNF-α和白细胞介素(IL)关键转录因子对促炎细胞因子起到下调作用[92]。在小鼠实验中5-CQA可抑制LPS诱导炎症中的促炎细胞因子,包括TNF-α和IL-1β,其作用机制被总结为布洛芬对类风湿关节炎患者的作用[93]。在Caco-2细胞模型中,CQA的异构体(包括单咖啡酰奎宁酸和二咖啡酰奎宁酸)可分别使促炎性IL-8分泌减少50%和90%,其中佛波醇肉豆蔻酸酯乙酸酯(PMA)和干扰素γ(IFNγ)用作阳性对照以诱导炎症反应。CGA能够提供氢原子,使得炎症反应产生的自由基得到稳定[94]。CGA的抗炎活性也与其下调活化B细胞调节核因子κ-轻链增强子的能力有关,NFκB是炎症的关键调节因子。NFκB通过其抑制蛋白IκBα的磷酸化和降解而被激活,这允许NFκB易位到细胞核并转录促炎基因。已表明CGA可直接结合抑制蛋白,使其稳定,从而防止NFκB活化[9596]。CGA在单独的体外模型中显示出抗炎性质,但在冲泡后的咖啡液或CGA结合的类黑素富集体没有呈现这种活性。这可以通过在咖啡冲泡物中同时存在具有抗炎(CGA)和免疫刺激(例如,多糖)拮抗活性来解释。然而,由于在体内情况下,游离酚类化合物的生物利用度发生在小肠,而多糖仅在结肠降解,因此预计这些拮抗化合物可沿着胃肠道独立发挥其各自的生物活性[97]

    萜类化合物(terpenes)是一类天然产物,广泛存在于植物中,具有多种生理活性,包括抗炎作用。二萜能够抑制多种炎症介质的合成和释放,如前列腺素、白细胞趋化因子、促炎细胞因子等[98]。这些炎症介质在炎症反应中扮演重要角色,通过抑制它们的产生,二萜可以减轻炎症反应。二萜对免疫系统的功能具有调节作用,它可以影响巨噬细胞、淋巴细胞和树突状细胞等免疫细胞的活性,调节免疫细胞的分泌物和介导物的产生,并影响免疫细胞的互动过程,从而实现抗炎效果[99]。二萜可能通过影响炎症相关的信号通路来发挥其抗炎作用。例如,它可以抑制NF-κB信号通路的激活,从而减少促炎基因的转录和表达[100]。此外,二萜还可以影响丝裂原活化蛋白激酶(MAPK)信号通路、线粒体途径等与炎症相关的信号传导。许多二萜具有明显的抗氧化活性,可以中和自由基并减轻氧化应激。通过减少氧化损伤,二萜能够减轻炎症引起的细胞损伤和炎症反应。

    类黑素(melanoidins)是由糖类和氨基酸等还原物质在高温反应中生成的深色化合物[101]。根据研究,在高脂肪饮食诱导的大鼠模型中,添加分子量高于12~14 kDa的类黑素后观察到了抗炎效果。这种类黑素的作用表现为降低促炎细胞因子如TNF-α和IFN-γ的浓度,并增加抗炎细胞因子IL-4的浓度[102]。这些观察结果可以解释为类黑素对NF-κB激活的抑制作用,类似于CGA和二萜的机制[88]。类黑素中含有多种官能团,包括羰基,这些官能团可能与关键炎症调节剂中的氨基酸反应,从而抑制促炎酶或细胞因子的活性。

    咖啡中的多糖可以直接作为微生物的营养源,并促进一些有益菌的生长。这些有益菌可能会产生有益的代谢产物,如短链脂肪酸(SCFAs),对肠道健康起到积极的影响[103]。多糖在被微生物降解时会产生有机酸,从而改变肠道的酸碱平衡,影响肠道内微生物的组成和活性。适当的酸碱平衡有助于维持正常的微生物群,并抑制有害菌的生长。多糖可以增加肠道黏液层的厚度,从而加强肠道屏障的功能,这有助于阻止有害物质的渗透,并减少炎症反应的发生。多糖可能通过激活或抑制免疫细胞,影响免疫系统的调节,并对微生物群产生间接影响[104]。它们可能调节炎症反应、抗菌肽的产生等,从而塑造肠道内微生物的组成和功能。

    与深度烘焙和中等烘焙相比,轻度烘焙咖啡中获得的类黑素在促进类杆菌-普氏菌细胞数量增长方面表现更好。这可能是因为中等烘焙导致的阿拉伯糖残留物的不稳定性,使得其中的阿拉伯半乳聚糖更容易被微生物发酵。据报道,分子量为100 kDa的类黑素比分子量为3~10 kDa的类黑素更能促进细菌的增殖。这可能是因为分子量大于100 kDa的部分含有更多的糖分。由于轻度烘焙>100 kDa高分子量部分中的糖含量高于中度和深度烘焙,细菌对该部分进行发酵产生的丁酸盐含量较高,这可能与细菌数量增长之间存在关联[98]

    绿原酸具有一定的抗菌活性,可以直接抑制一些有害菌的生长。这可能导致有益菌相对于有害菌获得竞争优势,从而调节微生物菌群的平衡。绿原酸具有广泛的抗菌谱,包括革兰阴性菌,如大肠埃希菌、肺炎克雷伯菌、铜绿假单胞菌、鼠伤寒沙门菌、小肠结肠炎耶尔森菌、痢疾志贺菌、嗜麦芽窄食单胞菌,以及革兰阳性菌如金黄色葡萄球菌、枯草芽胞杆菌、化脓链球菌、肺炎链球菌等[105106]。近年来有大量的国内外研究对绿原酸的抗菌机制进行揭示:其一抑制生物膜形成,抑制细菌繁殖。绿原酸可下调mrk Amrk Dwbb M以及tre C基因的表达抑制CPS(荚膜多糖)合成,以到达抑制细菌生物膜的形成[107108]。其二通过增加细胞膜通透性促进细胞死亡,革兰阴性菌外膜中的LPS(脂多糖)和蛋白质通过与二价阳离子(如Mg2+等)的静电作用维持外膜完整性,增加细胞膜通透性,使得细菌中的营养成分如可溶蛋白、ATP(三磷酸腺苷)、核酸等大分子泄露最终达到细菌死亡的目的[109]。此外β-内酰胺酶被证明是利于细菌生成更厚实的生物膜而绿原酸正好能抑制这种酶的活性[110]。绿原酸可抑制三羧酸循环相关酶的活性(苹果酸脱氢酶和琥珀酸脱氢酶)降低物质和能量的代谢水平[111],从而抑制细菌活性。例如绿原酸可以显著降低三羧酸循环中柠檬酸、异柠檬酸和琥珀酸水平,以及糖酵解途径中的葡萄糖6-磷酸和果糖1,6-二磷酸[112]。其三抑制细菌信号分子的表达水平,绿原酸影响细胞内的信号通路,导致细胞功能障碍,具体如通过抑制NLRP3炎症小体活化,上调mi R-124-3p表达并灭活p38MAPK途径来下调肺炎克雷伯菌感染的炎症水平,进一步说明了绿原酸对细菌感染的保护作用[113]

    绿原酸在结肠中被水解为咖啡酸等化合物,这些化合物可以作为益生元供给有益菌的生长[114]。有益菌在代谢过程中产生有益的代谢产物,如短链脂肪酸(SCFAs),这些代谢产物有助于调节肠道健康和维持微生物菌群的稳定性。绿原酸可通过调节免疫系统的功能来影响微生物菌群。它可以影响免疫细胞的激活状态、细胞因子的产生以及炎症反应的调节。这些免疫调节作用可能对微生物菌群的组成和功能产生影响。绿原酸具有明显的抗氧化活性,可以中和自由基并减轻氧化应激。通过减少氧化损伤,绿原酸可以维持肠道环境的稳定性,从而影响微生物菌群的健康[115]

    与几种有益微生物群的水平相比,咖啡因显示出正相关关系(P<0.05),这些微生物群包括拟杆菌-卟啉单胞杆菌、双歧杆菌、梭菌群XIVa组和prausnitzii Faecalibacterium[116]。咖啡因对这些微生物群的作用机制尚未披露,相反地,已经证明咖啡因对乳酸杆菌的丰度有负面影响,乳酸杆菌以其益生菌效应而闻名[117]。另外,咖啡因的代谢产物可可碱也被证明对一些肠道微生物群产生影响,尤其是拟杆菌-普氏菌-卟啉单胞菌,但这种影响并不显著。

    过度的免疫刺激可能导致炎症反应的持续性和过度放大,从而对机体产生负面影响咖啡因对免疫反应的调节作用具有剂量依赖性[118]。体内和体外的研究表明[119],咖啡因可以通过多种机制影响免疫系统。咖啡因与腺苷受体结合并阻断了腺苷对腺苷酸环化酶的抑制作用。这会促进cAMP的产生,并通过抑制自然杀伤细胞信号通路来抑制免疫细胞产生和释放促炎细胞因子。这种免疫抑制作用可能在高剂量咖啡因下观察到。低剂量的咖啡因[120](如10和20 mg/kg)显示出相反的效果,即增加促炎细胞因子的水平,加速急性炎症性肝损伤。这可能是由于低剂量咖啡因引起的其他生化靶点的影响,如cAMP磷酸二酯酶的抑制导致cAMP积累。

    研究发现,咖啡中的活性成分可降低细胞对胰岛素的抵抗性,促进胰岛素的有效利用。这可能是因为咖啡中的某些化合物(如咖啡酰基奎宁和绿原酸)具有抗氧化和抗炎作用,减少了胰岛素抵抗的发生[121]。咖啡中的一些成分,如咖啡因和绿原酸,被认为能够调节血糖平衡。咖啡因可以促进胰岛素的分泌,增加肝脏和肌肉对葡萄糖的摄取和利用。绿原酸则能够抑制葡萄糖的吸收,并且减缓肠道中葡萄糖的释放速度。这些作用协同起来,有助于维持血糖水平的稳定。胰岛β细胞是胰岛中负责产生胰岛素的关键细胞,慢性高血糖状态下,胰岛β细胞容易受到损伤,导致胰岛素分泌不足。炎症在糖尿病的发展中起到重要作用,咖啡中的一些活性成分具有保护胰岛β细胞免受氧化应激和炎症的作用[122]。这些成分包括咖啡酰基奎宁、咖啡因和绿原酸等,它们通过抑制氧化应激和炎症反应,保护胰岛β细胞的功能和存活。

    相关研究证明天然的3,4-DCQA(二咖啡酰奎宁酸)通过PI3K/Akt/HIF-1α信号通路,降低凋亡蛋白Caspase-3、Bax和增加抗凋亡蛋白Bcl-2表达,发挥抗细胞凋亡作用,保护了心血管细胞,为治疗HF提供理论依据[123]。根据一项Meta分析的结果显示[124],适量饮用咖啡(每日2~4杯)可以降低心血管疾病的死亡率。这种效果可能与咖啡豆中的绿原酸成分有关,该成分具有多种机制来降低自发性高血压大鼠的血压和血管肥厚,包括抑制血管活性氧的产生、降低氧化应激水平以及提高一氧化氮的生物利用度。此外,研究人员指出,适量饮用咖啡对冠状动脉疾病、心律失常和心力衰竭也具有改善作用。通过对多名慢性心力衰竭患者进行调查研究,发现摄入较高量的咖啡与患者心房颤动事件呈负相关关系,即摄入更多咖啡与心房颤动的发生有关联,但是具体的作用机制还需要进一步研究探索[125]

    图3咖啡化合物会引起血管收缩和动脉血管舒张。咖啡因的急性升压作用与咖啡因对腺苷受体的拮抗作用有关。由于腺苷受体刺激诱导血管舒张,咖啡因拮抗作用可能导致血管收缩和总外周阻力增加可能会导致血压和心率增加[6667],相反咖啡中的绿原酸参与降压过程,一方面通过抑制肿瘤坏死因子-α(TNF-α)和白细胞介素(IL)-6等递质的产生达到抗炎作用,另一方面通过增加NO产生,作用于血管平滑肌细胞控制血管舒张和血管收缩,从而达到降压作用,另外咖啡酸类衍生物hit1被证实能够显著降低肾性高血压大鼠的股动脉壁腔比,改善高血压大鼠股动脉血管壁的顺应性与抵抗力。该化合物能够显著降低AT1R的表达,且呈剂量依赖性[68]

    图  3  咖啡化合物对血管收缩和舒张的影响
    Figure  3.  Effects of coffee compounds on vasoconstriction and diastole

    在所查文献中关于咖啡饮料的降压效果还没有达成共识[32]。剂量-反应的荟萃分析研究表明[69],咖啡饮料可以适度降低高血压的风险,但也有研究结果显示它可能轻微增加高血压的风险[56]。此外,急性摄入咖啡与血压升高有关,这主要归因于其中的咖啡因成分。然而,当考虑到长期摄入咖啡时,这种影响并未持续存在,因为经常饮用咖啡会导致对咖啡因的耐受性[70]

    本文通过对咖啡中生物活性物质及其功能的综述表明咖啡中的咖啡因、绿原酸、类黑素、二萜等物质具有抗氧化功能,可通过抗炎、抗凋亡、抗氧化的功能对神经系统发挥保护作用。以及通过上调抗炎因子,或是下调促炎因子形成信号通路达到抗炎目的,在老年痴呆、抗高血压、抗糖尿病等疾病上有所缓解或预防。然而,部分生物活性物质其作用机制与代谢途径尚不明确,这对咖啡中生物活性物质的应用产生了限制。咖啡中生物活性物质丰富,作用机理复杂。咖啡因和绿原酸都影响血压的升降,咖啡因对血压的作用并不统一,一部分研究认为绿原酸的抗氧化作用影响咖啡因引起的血脉扩张,但二者作用机理尚不清楚。因此,未来研究应着眼于,生物活性物质之间可能存在的相互作用(拮抗或协同),以及研究如孕妇、老人、儿童、特定病患(心脏病、糖尿病、消化系统疾病患者)个体差异对于制定个性化的健康建议至关重要,和在咖啡豆在烘焙和加工过程中,生物活性物质的种类和含量可能发生的变化。目前咖啡果皮、咖啡壳、咖啡渣等副产物中咖啡因、酚类等活性物质也正在被开发利用。综上所述的结论与展望便于促进咖啡产业进一步高值化利用。

  • 图  1   咖啡神经保护作用概要

    Figure  1.   Summary of the neuroprotective effects of coffee

    图  2   咖啡化合物抗炎机制的示意图。

    Figure  2.   Schematic representation of the anti-inflammatory mechanisms of coffee compounds

    图  3   咖啡化合物对血管收缩和舒张的影响

    Figure  3.   Effects of coffee compounds on vasoconstriction and diastole

    表  1   咖啡的化学成分[1112]

    Table  1   The chemical composition of green and roasted coffee beans

    混合物 主要成分 咖啡豆干重含量
    生豆 烘焙豆
    碳水化合物 多糖-纤维素、阿拉伯半乳聚糖、
    半乳甘露聚糖
    低聚糖-水苏糖、棉子糖
    二糖-蔗糖
    单糖-葡萄糖、半乳糖、阿拉伯糖、果糖、
    甘露糖、甘露醇、木糖、核糖
    60 43
    脂类 甘油三酯
    甾醇-豆甾醇、谷甾醇
    脂肪酸-亚油酸、亚麻酸、油酸、棕榈酸、
    硬脂酸、花生酸、二十四烷酸
    二萜-咖啡醇、咖啡豆醇-蜡-生育酚-磷脂
    8~18 10~15
    氨基酸 天冬酰胺,谷氨酸,丙氨酸,
    天冬氨酸,赖氨酸
    9~16 7.5~10
    矿物质 4 3.7~5
    生物碱 咖啡因 0.9~3.33 1
    葫芦巴碱 0.88~3.42 0.7~1
    烟酸 2~3×10−6 0.01~0.04
    有机酸、
    无机酸、酯类
    绿原酸 4~14.4 1~4
    脂肪酸、奎宁酸 0.7~2.5 1.4-2.5
    其他酸类 2 <0.3
    类黑素 25
    黄酮类 儿茶素、表儿茶素、芦丁、槲皮素等
    下载: 导出CSV

    表  2   咖啡中的主要生物活性物质及其功能[9,1112]

    Table  2   Main bioactive substances in coffee and functions

    生物活性物质 功能/性质
    咖啡因 刺激中枢神经系统[59]、神经保护作用[60]
    提高警觉性和注意力[61]、抗炎[62]、抑制腺苷受体[63]
    绿原酸 神经保护作用[64] 、降血脂、保肝、心脏保护,
    抗糖尿病和抗肥胖活动[65]、抗氧化[66]
    葫芦巴碱 抗高血糖、抗高血脂、抗菌、抗病毒和抗肿瘤活性[6768]
    类黑素 抗炎、神经保护[69]
    二萜 抗菌、抗氧化、抗炎、抗肿瘤[70]
    多糖 降胆固醇、刺激免疫系统[71]
    类黄酮 抗氧化、抗癌、抗炎抗菌[38,7273]
    酯类 降胆固醇[74]
    下载: 导出CSV
  • [1] 高聂叶子, 娄志超, 杨世龙, 等. 世界咖啡产业竞争力评价及中国的对策[J]. 南方农村,2023,39(1):15−23. [GAONIE Yezi, LOU Zhichao, YANG Shilong, et al. Evaluation of world coffee industry competitiveness and china's countermeasures[J]. South China Rural Area,2023,39(1):15−23.] doi: 10.3969/j.issn.1008-2697.2023.1.nfnc202301004

    GAONIE Yezi, LOU Zhichao, YANG Shilong, et al. Evaluation of world coffee industry competitiveness and china's countermeasures[J]. South China Rural Area, 2023, 39(1): 15−23. doi: 10.3969/j.issn.1008-2697.2023.1.nfnc202301004

    [2]

    [2024-04-18]. https://mp.weixin.qq.com/s/bq_j8ftl15ZwkBD2RELuRw.

    [3]

    NAVEEN P, LINGARAJU H B, DEEPAK M, et al. Method Development and Validation for the Determination of Caffeine:An Alkaloid from Coffea arabica by High-performance Liquid Chromatography Method[J]. Pharmacognosy Research,2018,10(1):88−91.

    [4]

    CHEN X M. A review on coffee leaves:Phytochemicals, bioactivities and applications[J]. Critical Reviews in Food Science and Nutrition,2019,59(6):1008−1025. doi: 10.1080/10408398.2018.1546667

    [5]

    GELILA A, Heon-WOONG K, MIN-KI L, et al. Comprehensive characterization of hydroxycinnamoyl derivatives in green and roasted coffee beans:A new group of methyl hydroxycinnamoyl quinate[J]. Food Chemistry:X,2019,2(C):100033.

    [6]

    SUJITRA R, SUNATE S. Caffeine and catechins in fresh coffee leaf (Coffea arabica) and coffee leaf tea[J]. Maejo International Journal of Science and Technology,2017,11(3):211−218.

    [7]

    MARTINS S C V, ARAÚJO W L, TOHGE T, et al. In high-light-acclimated coffee plants the metabolic machinery is adjusted to avoid oxidative stress rather than to benefit from extra light enhancement in photosynthetic yield[J]. PLoS One,2017,9(4):e94862.

    [8]

    HIROAKI I, KOUJI I, ARIUNBOLD N, et al. Coffee diterpenes kahweol acetate and cafestol synergistically inhibit the proliferation and migration of prostate cancer cells[J]. The Prostate,2019,79(5):468−479. doi: 10.1002/pros.23753

    [9]

    Nutritional and Metabolic Diseases and Conditions - Type 2 Diabetes; Investigators from Spanish National Research Council (CSIC) Target Type 2 Diabetes (Long-term consumption of a green/roasted coffee blend positively affects glucose metabolism and insulin resistance in humans)[J]. Food Weekly News, 2016.

    [10] 别玮, 祁正有, 曾侣斌, 等. 云南普洱咖啡的品质特性及其标准化现状[J]. 中国口岸科学技术,2023,5(S2):80−88. [BIE Wei, QI Zhengyou, ZENG Lübin, et al. Quality characteristics and standardization research of Pu'er coffee in Yunnan[J]. China Port Science and Technology,2023,5(S2):80−88.]

    BIE Wei, QI Zhengyou, ZENG Lübin, et al. Quality characteristics and standardization research of Pu'er coffee in Yunnan[J]. China Port Science and Technology, 2023, 5(S2): 80−88.

    [11]

    DIVIŠ P, POŘÍZKA J, KŘÍKALA J. The effect of coffee beans roasting on its chemical composition[J]. Potravinarstvo,2019,13(1):344−350. doi: 10.5219/1062

    [12]

    A LUDWIG I, N CLIFFORD M, J LEAN M E, et al. Coffee:Biochemistry and potential impact on health[J]. Food & function,2014,5(8):1695−1717.

    [13]

    De MEJIA E G, RAMIREZ-MARES M V. Impact of caffeine and coffee on our health[J]. Trends in Endocrinology & Metabolism,2014,25(10):489−492.

    [14]

    SACHSE K T, JACKSON E K, WISNIEWSKI S R, et al. Increases in cerebrospinal fluid caffeine concentration are associated with favorable outcome after severe traumatic brain injury in humans[J]. Journal of Cerebral Blood Flow & Metabolism,2008,28(2):395−401.

    [15]

    J ARNAUD M. Pharmacokinetics and metabolism of natural methylxanthines in animal and man[J]. Handbook of Experimental Pharmacology,2011(200):33−91.

    [16]

    HUIHUI K, P J P, ANDREA K, et al. Caffeine induces Ca2+ release by reducing the threshold for luminal Ca2+ activation of the ryanodine receptor[J]. The Biochemical Journal,2008,414(3):441−452. doi: 10.1042/BJ20080489

    [17]

    KOSHIRO Y, ZHENG X, WANG M, et al. Changes in content and biosynthetic activity of caffeine and trigonelline during growth and ripening of Coffea arabica and Coffea canephora fruits[J]. Plant Science,2006,171(2):242−250. doi: 10.1016/j.plantsci.2006.03.017

    [18]

    ZHENG X, MATSUI A, ASHIHARA H. Biosynthesis of trigonelline from nicotinate mononucleotide in mungbean seedlings[J]. Phytochemistry,2008,69(2):390−395. doi: 10.1016/j.phytochem.2007.08.008

    [19]

    YOSHINARI O, SATO H, IGARASHI K. Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on Goto-Kakizaki rats[J]. Bioscience, Biotechnology, and Biochemistry,2009,73(5):1033−1041. doi: 10.1271/bbb.80805

    [20]

    WANG H, ZHANG H, CAO F, et al. Protection of insulin-like growth factor 1 on experimental peripheral neuropathy in diabetic mice[J]. Molecular Medicine Reports,2018,18(5):4577−4586.

    [21]

    LIU L, DU X, ZHANG Z, et al. Trigonelline inhibits caspase 3 to protect β cells apoptosis in streptozotocin-induced type 1 diabetic mice[J]. European Journal of Pharmacology,2018,836:115−121. doi: 10.1016/j.ejphar.2018.08.025

    [22]

    SHARMA L, LONE N A, KNOTT R M, et al. Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6J mice, via restoration of hepatic autophagy[J]. Food and Chemical Toxicology,2018,121:283−296. doi: 10.1016/j.fct.2018.09.011

    [23]

    ILAVENIL S, KIM D H, JEONG Y, et al. Trigonelline protects the cardiocyte from hydrogen peroxide induced apoptosis in H9c2 cells[J]. Asian Pacific Journal of Tropical Medicine,2015,8(4):263−268. doi: 10.1016/S1995-7645(14)60328-X

    [24] 邵金良, 刘兴勇, 杨东顺, 等. 咖啡及咖啡制品中葫芦巴碱、绿原酸和咖啡因含量比较分析[J]. 山西农业科学,2016,44(2):158−163. [SHAO Jinliang, LIU Xingyong, YANG Dongshun, et al. Comparative analysis on trigonelline, chlorogenic acid and caffeine content in coffee and its product[J]. Journal of Shanxi Agricultural Sciences,2016,44(2):158−163.] doi: 10.3969/j.issn.1002-2481.2016.02.07

    SHAO Jinliang, LIU Xingyong, YANG Dongshun, et al. Comparative analysis on trigonelline, chlorogenic acid and caffeine content in coffee and its product[J]. Journal of Shanxi Agricultural Sciences, 2016, 44(2): 158−163. doi: 10.3969/j.issn.1002-2481.2016.02.07

    [25]

    LEE T, KANG I, KIM B, et al. Experimental pretreatment with chlorogenic acid prevents transient ischemia-induced cognitive decline and neuronal damage in the hippocampus through anti-oxidative and anti-inflammatory effects[J]. Molecules,2020,25(16):3578. doi: 10.3390/molecules25163578

    [26]

    ANGELONI G, GUERRINI L, MASELLA P, et al. What kind of coffee do you drink? An investigation on effects of eight different extraction methods[J]. Food Research International,2019,116:1327−1335. doi: 10.1016/j.foodres.2018.10.022

    [27] 严颖, 赵慧, 邹立思, 等. 基于LC-Triple TOF MS/MS技术分析杜仲不同药用部位化学成分差异[J]. 质谱学报,2018,39(1):101−111. [YAN Ying, ZHAO Hui, ZHOU Lisi, et al. Difference of chemical constituents in different medicinal parts of eucommia ulmoides by LC-Triple TOF MS/MS[J]. Journal of Chinese Mass Spectrometry Society,2018,39(1):101−111.] doi: 10.7538/zpxb.2017.0032

    YAN Ying, ZHAO Hui, ZHOU Lisi, et al. Difference of chemical constituents in different medicinal parts of eucommia ulmoides by LC-Triple TOF MS/MS[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(1): 101−111. doi: 10.7538/zpxb.2017.0032

    [28]

    J B R, TOMASZ H, MARCIN O, et al. The impact of coffee and its selected bioactive compounds on the development and progression of colorectal cancer in vivo and in vitro[J]. Molecules (Basel, Switzerland),2018,23(12):3309. doi: 10.3390/molecules23123309

    [29]

    SANTANA-GÁLVEZ J, CISNEROS-ZEVALLOS L, JACOBO-VELÁZQUEZ D A. Chlorogenic acid:Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome[J]. Molecules,2017,22(3):358. doi: 10.3390/molecules22030358

    [30]

    WENWU L, JINGDA L, XUEMEI Z, et al. Current advances in naturally occurring caffeoylquinic acids:Structure, bioactivity and synthesis[J]. Journal of Agricultural and Food Chemistry,2020,68(39):10489−10516. doi: 10.1021/acs.jafc.0c03804

    [31]

    LU H J, TIAN Z M, CUI Y Y, et al. Chlorogenic acid:A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(6):3130−3158. doi: 10.1111/1541-4337.12620

    [32]

    LI L, SU C, CHEN X, et al. Chlorogenic acids in cardiovascular disease:A review of Dietary consumption, pharmacology, and pharmacokinetics[J]. J Agric Food Chem,2020,68(24):6464−6484. doi: 10.1021/acs.jafc.0c01554

    [33]

    FADILA A K, J M F, EMILIA F, et al. Aquaculture and its by-products as a source of nutrients and bioactive compounds[J]. Advances in Food and Nutrition Research,2020,92:31−33.

    [34]

    PERRONE D, FARAH A, DONANGELO C M, et al. Comprehensive analysis of major and minor chlorogenic acids and lactones in economically relevant Brazilian coffee cultivars[J]. Food Chemistry,2007,106(2):859−867.

    [35]

    CHANYARIN SOMPORN A K P T. Effects of roasting degree on radical scavenging activity, phenolics and volatile compounds of Arabica coffee beans (Coffea arabica L. cv. Catimor)[J]. International Journal of Food Science and Technology,2011,46(11):2287−2296. doi: 10.1111/j.1365-2621.2011.02748.x

    [36]

    TELLES S C, CORRÊA S M, FONSECA M A P D, et al. Thermal stability and sensory evaluation of a bioactive extract from roasted coffee (Coffea arabica) beans added at increasing concentrations to conventional bread[J]. Journal of Food Processing and Preservation,2021,45(11):e15955.

    [37]

    CASTRO M F V, ASSMANN C E, STEFANELLO N, et al. Caffeic acid attenuates neuroinflammation and cognitive impairment in streptozotocin-induced diabetic rats:Pivotal role of the cholinergic and purinergic signaling pathways[J]. The Journal of Nutritional Biochemistry,2023,115:109280. doi: 10.1016/j.jnutbio.2023.109280

    [38]

    MATEJCZYK M, ŚWISŁOCKA R, GOLONKO A, et al. Cytotoxic, genotoxic and antimicrobial activity of caffeic and rosmarinic acids and their lithium, sodium and potassium salts as potential anticancer compounds[J]. Advances in medical sciences,2018,63(1):14−21. doi: 10.1016/j.advms.2017.07.003

    [39]

    KUMAR N, GOEL N. Phenolic acids:Natural versatile molecules with promising therapeutic applications[J]. Biotechnology Reports,2019,24:e370.

    [40]

    KIM Y H, KWON T, YANG H J, et al. Gene engineering, purification, crystallization and preliminary X-ray diffraction of cytochrome P450 p-coumarate-3-hydroxylase (C3H), the Arabidopsis membrane protein[J]. Protein Expression and Purification,2011,79(1):149−155. doi: 10.1016/j.pep.2011.04.013

    [41]

    BERNER M, KRUG D, BIHLMAIER C, et al. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis[J]. Journal of Bacteriology,2006,188(7):2666−2673. doi: 10.1128/JB.188.7.2666-2673.2006

    [42]

    CHOI O, WU C, KANG S Y, et al. Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli[J]. Journal of Industrial Microbiology and Biotechnology,2011,38(10):1657−1665. doi: 10.1007/s10295-011-0954-3

    [43]

    LIN Y, YAN Y. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex[J]. Microbial Cell Factories,2012,11:1−9. doi: 10.1186/1475-2859-11-1

    [44] 袁豆豆, 周秀琪, 庞雪晴, 等. 代谢工程改造酿酒酵母发酵生产咖啡酸[J]. 食品与发酵工业,2023,50(19):17−24. [YUAN Doudou, ZHOU Yongqi, PANG Xueqing, et al. Metabolic engineering of Saccharomyces cerevisiae for biosynthesis of caffeic acid[J]. Food and Fermentation Industries,2023,50(19):17−24.]

    YUAN Doudou, ZHOU Yongqi, PANG Xueqing, et al. Metabolic engineering of Saccharomyces cerevisiae for biosynthesis of caffeic acid[J]. Food and Fermentation Industries, 2023, 50(19): 17−24.

    [45]

    SILVA M, BRAND A, NOVAES F, et al. Cafestol, kahweol and their acylated derivatives:Antitumor potential, pharmacokinetics, and chemopreventive profile[J]. Food Reviews International,2023,39(9):7048−7080. doi: 10.1080/87559129.2022.2141776

    [46]

    KITZBERGER C S G, DOS SANTOS SCHOLZ M B, De TOLEDO BENASSI M. Bioactive compounds content in roasted coffee from traditional and modern Coffea arabica cultivars grown under the same edapho-climatic conditions[J]. Food Research International,2014,61:61−66. doi: 10.1016/j.foodres.2014.04.031

    [47]

    LAUKALEJA I, KRUMA Z. Influence of the roasting process on bioactive compounds and aroma profile in specialty coffee:A review[J]. 2019.

    [48]

    VIGNOLI J A, VIEGAS M C, BASSOLI D G, et al. Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees[J]. Food Research International,2014,61:279−285. doi: 10.1016/j.foodres.2013.06.006

    [49]

    SRIDEVI V, GIRIDHAR P, RAVISHANKAR G A. Evaluation of roasting and brewing effect on antinutritional diterpenes-cafestol and kahweol in coffee[J]. Global Journal of Medical Research,2011,11(5):1−7.

    [50]

    NIGRA A D, De ALMEIDA BAUER GUIMARÃES D, PRUCCA C G, et al. Antitumor effects of freeze-dried Robusta coffee (Coffea canephora) extracts on breast cancer cell lines[J]. Oxidative Medicine and Cellular Longevity,2021,2021:1−16.

    [51]

    De SOUZA L D S, HORTA I P C, De SOUZA ROSA L, et al. Effect of the roasting levels of Coffea arabica L. extracts on their potential antioxidant capacity and antiproliferative activity in human prostate cancer cells[J]. RSC Advances,2020,10(50):30115−30126. doi: 10.1039/D0RA01179G

    [52]

    FARAH A. Coffee constituents[J]. Coffee:Emerging Health Effects and Disease Prevention,2012,1:22−58.

    [53]

    URGERT R, VAN DER WEG G, KOSMEIJER-SCHUIL T G, et al. Levels of the cholesterol-elevating diterpenes cafestol and kahweol in various coffee brews[J]. Journal of Agricultural and Food Chemistry,1995,43(8):2167−2172. doi: 10.1021/jf00056a039

    [54]

    RENDÓN M Y, DOS SANTOS SCHOLZ M B, BRAGAGNOLO N. Physical characteristics of the paper filter and low cafestol content filter coffee brews[J]. Food Research International,2018,108:280−285. doi: 10.1016/j.foodres.2018.03.041

    [55]

    IRIONDO-DEHOND A, CORNEJO F S, FERNANDEZ-GOMEZ B, et al. Bioaccesibility, metabolism, and excretion of lipids composing spent coffee grounds[J]. Nutrients,2019,11(6):1411. doi: 10.3390/nu11061411

    [56]

    ALCUBIERRE N, GRANADO-CASAS M, BOGDANOV P, et al. Caffeine and the risk of diabetic retinopathy in Type 2 diabetes mellitus:Findings from clinical and experimental studies[J]. Nutrients,2023,15(5):1169. doi: 10.3390/nu15051169

    [57]

    HORRIGAN L A, KELLY J P, CONNOR T J. Caffeine suppresses TNF-alpha production via activation of the cyclic AMP/protein kinase a pathway[J]. Int Immunopharmacol,2004,4(10-11):1409−1417. doi: 10.1016/j.intimp.2004.06.005

    [58] 喻敏. 电针对术后肠麻痹患者炎症反应及胃肠激素分泌的影响[D]. 南昌:江西中医药大学, 2022. [YU Min. The effect of electroacupuncture onpostoperative ileus and its influenceon inflammation and gastrointestinalhormones secretion[D]. Nanchang:Jiangxi University of Chinese Medicine, 2022.]

    YU Min. The effect of electroacupuncture onpostoperative ileus and its influenceon inflammation and gastrointestinalhormones secretion[D]. Nanchang: Jiangxi University of Chinese Medicine, 2022.

    [59]

    RODAK K, BEBEN D, BIRSKA M, et al. Evaluating the neuroprotective potential of caffeinated coffee in the context of aluminum-induced neurotoxicity:Insights from a PC12 cell culture model[J]. Antioxidants (Basel),2024,13(3):342. doi: 10.3390/antiox13030342

    [60] 王睿, 吴叶琪. 补充替代疗法治疗轮班工作睡眠障碍的研究现状[J]. 中国现代医生,2022,60(9):193−196. [WANG Rui, WU Yeqi. Research status of complementary and alternative therapy in treatment of shift work sleep disorders[J]. China Modern Doctor,2022,60(9):193−196.] doi: 10.3969/j.issn.1673-9701.2022.9.zwkjzlml-yyws202209047

    WANG Rui, WU Yeqi. Research status of complementary and alternative therapy in treatment of shift work sleep disorders[J]. China Modern Doctor, 2022, 60(9): 193−196. doi: 10.3969/j.issn.1673-9701.2022.9.zwkjzlml-yyws202209047

    [61] 曾琬婷, 周丽婷, 贾茹, 等. 关白附炮制前后对缺血性中风沙鼠药效学和代谢组学的影响[J]. 辽宁中医药大学学报,2024,26(4):55−63. [ZENG Wanting, ZHOU Liting, JIA Ru, et al. Effect of Guanbaifu (Radix Aconiti Coreani) before and after processing on the metabolomics of gerbils with ischemic stroke[J]. Journal of Liaoning University of Traditional Chinese Medicine,2024,26(4):55−63.]

    ZENG Wanting, ZHOU Liting, JIA Ru, et al. Effect of Guanbaifu (Radix Aconiti Coreani) before and after processing on the metabolomics of gerbils with ischemic stroke[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2024, 26(4): 55−63.

    [62] 胡岳云, 谢忠稳, 袁静静, 等. 茯苓配方浸膏对高脂饮食小鼠肥胖及脂质沉积的影响[J]. 安徽农业大学学报,2023,50(2):349−355. [HU Yueyun, XIE Zhongwen, YUAN Jingjing, et al. Effects of poria cocos wolf formula extracts on obesity and lipidosis in high-fat diet-induced mice[J]. Journal of Anhui Agricultural University,2023,50(2):349−355.]

    HU Yueyun, XIE Zhongwen, YUAN Jingjing, et al. Effects of poria cocos wolf formula extracts on obesity and lipidosis in high-fat diet-induced mice[J]. Journal of Anhui Agricultural University, 2023, 50(2): 349−355.

    [63]

    HEITMAN E, INGRAM D K. Cognitive and neuroprotective effects of chlorogenic acid[J]. Nutr Neurosci,2017,20(1):32−39. doi: 10.1179/1476830514Y.0000000146

    [64]

    NAVEED M, HEJAZI V, ABBAS M, et al. Chlorogenic acid (CGA):A pharmacological review and call for further research[J]. Biomed Pharmacother,2018,97:67−74. doi: 10.1016/j.biopha.2017.10.064

    [65]

    CASTALDO L, TORIELLO M, SESSA R, et al. Antioxidant and anti-Inflammatory activity of coffee brew evaluated after simulated gastrointestinal digestion[J]. Nutrients,2021,13(12):4368. doi: 10.3390/nu13124368

    [66]

    QIU Z, WANG K, JIANG C, et al. Trigonelline protects hippocampal neurons from oxygen-glucose deprivation-induced injury through activating the PI3K/Akt pathway[J]. Chem Biol Interact,2020,317:108946. doi: 10.1016/j.cbi.2020.108946

    [67]

    MOHAMADI N, SHARIFIFAR F, POURNAMDARI M, et al. A review on biosynthesis, analytical techniques, and pharmacological activities of trigonelline as a plant alkaloid[J]. J Diet Suppl,2018,15(2):207−222. doi: 10.1080/19390211.2017.1329244

    [68]

    LI Y, JIA X, TANG N, et al. Melanoidins, extracted from Chinese traditional vinegar powder, inhibit alcohol-induced inflammation and oxidative stress in macrophages via activation of SIRT1 and SIRT3[J]. Food Funct,2021,12(17):8120−8129. doi: 10.1039/D1FO00978H

    [69]

    CHAVEZ-GUTIERREZ L, SZARUGA M. Mechanisms of neurodegeneration-Insights from familial Alzheimer's disease[J]. Semin Cell Dev Biol,2020,105:75−85. doi: 10.1016/j.semcdb.2020.03.005

    [70] 沈晓静, 字成庭, 辉绍良, 等. 咖啡化学成分及其生物活性研究进展[J]. 热带亚热带植物学报,2021,29(1):112−122. [SHEN Xiaojing, ZI Chengting, HUI Shaoliang, et al. Advances on chemical components and biological activities of coffee[J]. Journal of Tropical and Subtropical Botany,2021,29(1):112−122.] doi: 10.11926/jtsb.4249

    SHEN Xiaojing, ZI Chengting, HUI Shaoliang, et al. Advances on chemical components and biological activities of coffee[J]. Journal of Tropical and Subtropical Botany, 2021, 29(1): 112−122. doi: 10.11926/jtsb.4249

    [71]

    TAVARES C, SAKATA R K. Caffeine in the treatment of pain[J]. Brazilian Journal of Anesthesiology,2012,62(3):387−401. doi: 10.1016/S0034-7094(12)70139-3

    [72]

    JIANQING L, ZHOUREN G, GUICAI Y. Process intensification and kinetic studies of ultrasound-assisted extraction of flavonoids from peanut shells[J]. Ultrasonics Sonochemistry,2021,76:105661. doi: 10.1016/j.ultsonch.2021.105661

    [73]

    CORETA-GOMES F M, LOPES G R, PASSOS C P, et al. In vitro hypocholesterolemic effect of coffee compounds[J]. Nutrients,2020,12(2):437. doi: 10.3390/nu12020437

    [74]

    GAN L, COOKSON M R, PETRUCELLI L, et al. Converging pathways in neurodegeneration, from genetics to mechanisms[J]. Nat Neurosci,2018,21(10):1300−1309. doi: 10.1038/s41593-018-0237-7

    [75]

    WANG C, ZHOU C, GUO T, et al. Current coffee consumption is associated with decreased striatal dopamine transporter availability in Parkinson's disease patients and healthy controls[J]. BMC Med,2023,21(1):272. doi: 10.1186/s12916-023-02994-5

    [76]

    ZHAO Y, LAI Y, KONIJNENBERG H, et al. Association of coffee consumption and prediagnostic caffeine metabolites with incident parkinson disease in a population-based cohort[J]. Neurology,2024,102(8):e209201. doi: 10.1212/WNL.0000000000209201

    [77]

    LEE K W, IM J Y, WOO J M, et al. Neuroprotective and anti-inflammatory properties of a coffee component in the MPTP model of Parkinson's disease[J]. Neurotherapeutics,2013,10(1):143−153. doi: 10.1007/s13311-012-0165-2

    [78]

    GAO X, ZHANG B, ZHENG Y, et al. Neuroprotective effect of chlorogenic acid on Parkinson's disease like symptoms through boosting the autophagy in zebrafish[J]. Eur J Pharmacol,2023,956:175950. doi: 10.1016/j.ejphar.2023.175950

    [79]

    SERRANO-POZO A, FROSCH M P, MASLIAH E, et al. Neuropathological alterations in Alzheimer disease[J]. Cold Spring Harb Perspect Med,2011,1(1):a6189. doi: 10.1101/cshperspect.a006189

    [80]

    MALAFAIA D, ALBUQUERQUE H, SILVA A. Amyloid-beta and tau aggregation dual-inhibitors:A synthetic and structure-activity relationship focused review[J]. Eur J Med Chem,2021,214:113209. doi: 10.1016/j.ejmech.2021.113209

    [81]

    MIRANDA A M, GOULART A C, BENSENOR I M, et al. Coffee consumption and risk of hypertension:A prospective analysis in the cohort study[J]. Clin Nutr,2021,40(2):542−549. doi: 10.1016/j.clnu.2020.05.052

    [82]

    STEFANELLO N, SPANEVELLO R M, PASSAMONTI S, et al. Coffee, caffeine, chlorogenic acid, and the purinergic system[J]. Food Chem Toxicol,2019,123:298−313. doi: 10.1016/j.fct.2018.10.005

    [83] 王子晴, 姬辛娜, 陈倩. 癫痫体液生物标志物的研究进展[J]. 中国医学前沿杂志(电子版),2023,15(11):97−102. [WANG Ziqing, JI Xinna, CHEN Qian. Advances in the study of fluid biomarkers of epilepsy[J]. Chinese Journal of the Frontiers of Medical Science (Electronic Version),2023,15(11):97−102.]

    WANG Ziqing, JI Xinna, CHEN Qian. Advances in the study of fluid biomarkers of epilepsy[J]. Chinese Journal of the Frontiers of Medical Science (Electronic Version), 2023, 15(11): 97−102.

    [84]

    HENSHALL D C. Apoptosis signalling pathways in seizure-induced neuronal death and epilepsy[J]. Biochem Soc Trans,2007,35(Pt2):421−423.

    [85]

    De LANEROLLE N C, LEE T S. New facets of the neuropathology and molecular profile of human temporal lobe epilepsy[J]. Epilepsy Behav,2005,7(2):190−203. doi: 10.1016/j.yebeh.2005.06.003

    [86]

    VAN VLIET E A, DA C A S, REDEKER S, et al. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy[J]. Brain,2007,130(Pt2):521−534.

    [87]

    CIARAMELLI C, PALMIOLI A, DE LUIGI A, et al. NMR-driven identification of anti-amyloidogenic compounds in green and roasted coffee extracts[J]. Food Chem,2018,252:171−180. doi: 10.1016/j.foodchem.2018.01.075

    [88]

    ALCAZAR M A, KAMIMURA N, SOUMYANATH A, et al. Caffeoylquinic acids:Chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity[J]. Plant J,2021,107(5):1299−1319. doi: 10.1111/tpj.15390

    [89]

    BOETTCHER M I, BOLT H M, DREXLER H, et al. Excretion of mercapturic acids of acrylamide and glycidamide in human urine after single oral administration of deuterium-labelled acrylamide[J]. Arch Toxicol,2006,80(2):55−61. doi: 10.1007/s00204-005-0011-y

    [90]

    COLELLA M, ZINNI M, PANSIOT J, et al. Modulation of microglial activation by adenosine A2a receptor in animal models of perinatal brain injury[J]. Frontiers in Neurology,2018,9:605. doi: 10.3389/fneur.2018.00605

    [91]

    LIANG N, KITTS D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions[J]. Nutrients,2015,8(1):16. doi: 10.3390/nu8010016

    [92]

    SINGH C P, KUMAR S N, PUNITA S, et al. Differential effects of chlorogenic acid on various immunological parameters relevant to rheumatoid arthritis[J]. Phytotherapy Research:PTR,2012,26(8):1156−1165. doi: 10.1002/ptr.3684

    [93]

    NINGJIAN L, D K D. Chlorogenic acid (CGA) isomers alleviate interleukin 8 (IL-8) production in Caco-2 cells by decreasing phosphorylation of p38 and increasing cell integrity[J]. International Journal of Molecular Sciences,2018,19(12):3873. doi: 10.3390/ijms19123873

    [94]

    CHEN Jiali, LUO Yuheng, LI Yan, et al. Chlorogenic Acid Attenuates Oxidative Stress-Induced Intestinal Epithelium Injury by Co-Regulating the PI3K/Akt and IκBα/NF-κB Signaling[J]. Antioxidants,2021,10(12):1915. doi: 10.3390/antiox10121915

    [95]

    KWAK S C, LEE C, KIM J, et al. Chlorogenic acid inhibits osteoclast differentiation and bone resorption by down-regulation of receptor activator of nuclear factor Kappa-B ligand-induced nuclear factor of activated T cells c1 expression[J]. Biological and Pharmaceutical Bulletin,2013,36(11):1779−1786. doi: 10.1248/bpb.b13-00430

    [96]

    PASSOS C P, COSTA R M, FERREIRA S S, et al. Role of coffee caffeine and chlorogenic acids adsorption to polysaccharides with impact on brew immunomodulation effects[J]. Foods,2021,10(2):378. doi: 10.3390/foods10020378

    [97]

    MACHADO F, COIMBRA M A, CASTILLO M, et al. Mechanisms of action of coffee bioactive compounds - a key to unveil the coffee paradox[J]. Crit Rev Food Sci Nutr, 2023:1-23.

    [98]

    REN Y, WANG C, XU J, et al. Cafestol and kahweol:A review on their bioactivities and pharmacological properties[J]. Int J Mol Sci,2019,20(17):4238. doi: 10.3390/ijms20174238

    [99]

    FARAH A. Coffee :production, quality and chemistry[M]. London; Royal Society of Chemistry, 2019.

    [100]

    MOREIRA A S, NUNES F M, DOMINGUES M R, et al. Coffee melanoidins:Structures, mechanisms of formation and potential health impacts[J]. Food Funct,2012,3(9):903−915. doi: 10.1039/c2fo30048f

    [101]

    FOGLIANO V, MORALES F J. Estimation of dietary intake of melanoidins from coffee and bread[J]. Food Funct,2011,2(2):117−123. doi: 10.1039/c0fo00156b

    [102]

    GNIECHWITZ D, REICHARDT N, BLAUT M, et al. Dietary fiber from coffee beverage:Degradation by human fecal microbiota[J]. J Agric Food Chem,2007,55(17):6989−6996. doi: 10.1021/jf070646b

    [103]

    DIAZ-RUBIO M E, SAURA-CALIXTO F. Beverages have an appreciable contribution to the intake of soluble dietary fibre:A study in the Spanish diet[J]. Int J Food Sci Nutr,2011,62(7):715−718. doi: 10.3109/09637486.2011.579950

    [104]

    REN S, WU M, GUO J, et al. Sterilization of polydimethylsiloxane surface with Chinese herb extract:A new antibiotic mechanism of chlorogenic acid[J]. Scientific Reports,2015,5(1):10464. doi: 10.1038/srep10464

    [105]

    SU M, LIU F, LUO Z, et al. The antibacterial activity and mechanism of chlorogenic acid against foodborne pathogen Pseudomonas aeruginosa[J]. Foodborne Pathogens and Disease,2019,16(12):823−830. doi: 10.1089/fpd.2019.2678

    [106]

    RAJASEKHARAN S K, RAMESH S, SATISH A S, et al. Antibiofilm and anti-β-lactamase activities of burdock root extract and chlorogenic acid against Klebsiella pneumoniae[J]. Journal of Microbiology and Biotechnology,2017,27(3):542−551. doi: 10.4014/jmb.1609.09043

    [107]

    WANG L, ZHANG Y, LIU Y, et al. Effects of chlorogenic acid on antimicrobial, antivirulence, and anti-quorum sensing of carbapenem-resistant Klebsiella pneumoniae[J]. Frontiers in Microbiology,2022,13:997310. doi: 10.3389/fmicb.2022.997310

    [108]

    MIAO M, XIANG L. Pharmacological action and potential targets of chlorogenic acid[J]. Advances in Pharmacology,2020,87:71−88.

    [109]

    DAN B, DAI H, ZHOU D, et al. Relationship between drug resistance characteristics and biofilm formation in klebsiella pneumoniae strains[J]. Infection and Drug Resistance, 2023:985-998.

    [110]

    LOU Z, WANG H, ZHU S, et al. Antibacterial activity and mechanism of action of chlorogenic acid[J]. Journal of Food Science,2011,76(6):M398−M403.

    [111]

    ZHANG G, YANG Y, MEMON F U, et al. A natural antimicrobial agent:Analysis of antibacterial effect and mechanism of compound phenolic acid on Escherichia coli based on Tandem Mass Tag Proteomics[J]. Frontiers in Microbiology,2021,12:738896. doi: 10.3389/fmicb.2021.738896

    [112]

    LEE B, LEE D G. Depletion of reactive oxygen species induced by chlorogenic acid triggers apoptosis-like death in Escherichia coli[J]. Free Radical Research,2018,52(5):605−615. doi: 10.1080/10715762.2018.1456658

    [113]

    COUTEAU D, MCCARTNEY A L, GIBSON G R, et al. Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid[J]. J Appl Microbiol,2001,90(6):873−881. doi: 10.1046/j.1365-2672.2001.01316.x

    [114]

    MILLS C E, TZOUNIS X, ORUNA-CONCHA M J, et al. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth[J]. Br J Nutr,2015,113(8):1220−1227. doi: 10.1017/S0007114514003948

    [115]

    GROSSO G, MICEK A, GODOS J, et al. Long-term coffee consumption is associated with decreased incidence of new-onset hypertension:A dose-response meta-analysis[J]. Nutrients,2017,9(8):890. doi: 10.3390/nu9080890

    [116]

    KLEBER S A, MORESCO K S, MAUTONE G H, et al. Guarana (Paullinia cupana Mart.) alters gut microbiota and modulates redox status, partially via caffeine in Wistar rats[J]. Phytother Res,2018,32(12):2466−2474. doi: 10.1002/ptr.6185

    [117]

    POON M, FARBER D L. The whole body as the system in systems immunology[J]. iScience,2020,23(9):101509. doi: 10.1016/j.isci.2020.101509

    [118]

    NOSALOVA G, PRISENZNAKOVA L, PAULOVICOVA E, et al. Antitussive and immunomodulating activities of instant coffee arabinogalactan-protein[J]. Int J Biol Macromol,2011,49(4):493−497. doi: 10.1016/j.ijbiomac.2011.06.004

    [119]

    ACIKALIN B, SANLIER N. Coffee and its effects on the immune system[J]. Trends in Food Science & Technology,2021,114:625−632.

    [120]

    AKASH M S, REHMAN K, CHEN S. Effects of coffee on type 2 diabetes mellitus[J]. Nutrition,2014,30(7−8):755−763. doi: 10.1016/j.nut.2013.11.020

    [121]

    CARLSTROM M, LARSSON S C. Coffee consumption and reduced risk of developing type 2 diabetes:A systematic review with meta-analysis[J]. Nutr Rev,2018,76(6):395−417. doi: 10.1093/nutrit/nuy014

    [122] 韩亚如. 二咖啡酰奎宁酸通过PI3K/Akt/HIF-1α信号通路减轻氧化应激所导致的H9c2心肌细胞损伤[D]. 呼和浩特:内蒙古医科大学, 2023. [HAN Yaru. Dicaffeoylquinic acids alleviates oxidative stress injury inH9c2 cardiomyocytes by activating PI3K/Akt/HIF-1ɑSignalling[D]. Hohhot:Inner Mongolia Medical College, 2023.]

    HAN Yaru. Dicaffeoylquinic acids alleviates oxidative stress injury inH9c2 cardiomyocytes by activating PI3K/Akt/HIF-1ɑSignalling[D]. Hohhot: Inner Mongolia Medical College, 2023.

    [123]

    World Health Organization. Cardiovascular diseases (CVDs)[EB/OL]. [2024-04-19]. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).

    [124]

    YANG J, YUAN Y, GU J, et al. Drug synthesis and analysis of an acetylcholinesterase inhibitor:A comprehensive medicinal chemistry experience for undergraduates[J]. Journal of Chemical Education,2021,98(3):991−995. doi: 10.1021/acs.jchemed.0c01223

图(3)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-11
  • 网络出版日期:  2025-01-24

目录

/

返回文章
返回