• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

花色苷基智能包装膜在食品保鲜中的应用进展

孙莹, 李沛钊, 刘申, 郭兴, 卢冰琳, 江连洲, 刘树萍

孙莹,李沛钊,刘申,等. 花色苷基智能包装膜在食品保鲜中的应用进展[J]. 食品工业科技,2025,46(8):1−9. doi: 10.13386/j.issn1002-0306.2024050417.
引用本文: 孙莹,李沛钊,刘申,等. 花色苷基智能包装膜在食品保鲜中的应用进展[J]. 食品工业科技,2025,46(8):1−9. doi: 10.13386/j.issn1002-0306.2024050417.
SUN Ying, LI Peizhao, LIU Shen, et al. Advances in the Application of Anthocyanin-based Smart Packaging Films for Food Preservation[J]. Science and Technology of Food Industry, 2025, 46(8): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050417.
Citation: SUN Ying, LI Peizhao, LIU Shen, et al. Advances in the Application of Anthocyanin-based Smart Packaging Films for Food Preservation[J]. Science and Technology of Food Industry, 2025, 46(8): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050417.

花色苷基智能包装膜在食品保鲜中的应用进展

基金项目: 国家自然科学基金(32372386);黑龙江省自然科学基金(LH2022C048)。
详细信息
    作者简介:

    孙莹(1982−),女,博士,副教授,研究方向:食品科学,E-mail:sunying625@163.com

    通讯作者:

    江连洲(1960−),男,博士,教授,研究方向:粮食、油脂及植物蛋白工程,E-mail:jlzname@163.com

    刘树萍(1982−),女,博士,教授,研究方向:传统烹饪工业化,E-mail:liusp201@163.com

  • 中图分类号: TS206

Advances in the Application of Anthocyanin-based Smart Packaging Films for Food Preservation

  • 摘要: 近年来,由于花色苷具有特殊化学性质,使得大量学者在花色苷基智能包装膜的功能性质以及食品新鲜度监测和保鲜中展开了研究。花色苷是黄酮类化合物,具有良好的抗氧化性和抗菌性。特殊的化学性质使其颜色根据环境酸碱度的变化做出相应的改变。使用花色苷基智能包装膜不仅可以有效延长食品的保质期、监测食品的新鲜度,并且花色苷也是一种功能性添加剂,可以改善包装薄膜的物理和功能特性。本文对花色苷基智能包装膜进行综述,先通过论述花色苷的化学性质来说明其变色原理,再从花色苷的来源差异、提取方式以及花色苷基智能包装膜成膜基质的选择进行论述,对花色苷基智能包装膜的构建进行了梳理,最后总结了花色苷基智能包装膜在食品保鲜中的应用,以期为花色苷基智能包装膜的未来研究和新产品开发提供理论依据。
    Abstract: In recent years, due to the special chemical properties of anthocyanins, a large number of scholars have researched the functional properties of anthocyanins intelligent packaging films, as well as food freshness monitoring and preservation. Anthocyanins are flavonoids that have good antioxidant and antibacterial properties due to. Special chemical properties make it possible to change its color according to changes in environmental pH. The use of anthocyanin intelligent packaging film can not only effectively extend the shelf life of food and monitor the freshness of food, but anthocyanin is also a functional additive that can improve the physical and functional characteristics of the packaging film. In this paper, the anthocyanin intelligent packaging film was reviewed. First, the chemical properties of anthocyanins were discussed to explain the principle of color change, then the source differences of anthocyanin, extraction methods, and the selection of film forming matrix of anthocyanin intelligent packaging film was discussed, and the construction of anthocyanin intelligent packaging film was sorted out. Finally, the application of anthocyanin intelligent packaging film in food preservation was summarized. To provide a theoretical basis for future research and new product development of anthocyanins intelligent packaging film.
  • 在现代食品工业中,包装对保持食品质量和食品安全起着至关重要的作用,它是食物和消费者间的最后一道屏障。智能包装膜是一种新兴的食品包装膜,与传统包装膜相比,它可以实时反应食品的新鲜程度,让消费者更加直观地判断食物的新鲜程度[1]。食品生产供应链的各个环节,如生产、收获、加工、运输和储存,都可能影响食品的质量,加速食品变质。由于无法通过包装判断食品的新鲜程度,导致了很多腐败食品流入市场[2]。因此,可以实时监测食品质量的智能包装膜尤为重要。新鲜食品受到病原微生物污染时,会产生各种代谢物,如有机酸、二氧化碳、挥发性成分或硫衍生物。这些代谢物会导致食品的颜色、味道或pH值发生不可逆的变化,直接影响食品的质量和安全,另外食品的感官和营养品质都容易受到环境条件和生理状况变化的影响[34]

    近年来,基于生物聚合物和花色苷的智能包装膜的开发受到越来越多的关注。这是因为花色苷具有优异的抗氧化和抗菌能力,富含花色苷的薄膜可用于保持食品质量、延长保质期[57];而且花色苷在不同pH条件有着不同的化学结构,并随着pH值的变化呈现出不同的颜色,这使得富含花色苷的智能包装薄膜可用于监测食品的质量[89]。并且,在加入花色苷后,生物聚合物薄膜的应用范围将大大拓宽。研究表明,多种因素(如花色苷的来源、组成和含量,以及成膜基质的选择)均会影响花色苷基智能包装膜的结构表征、物理和功能特性以及应用[10]

    本文以花色苷基智能包装膜为切入点,先论述花色苷的化学性质及变色机理;再讨论花色苷的来源差,以及花色苷指示膜的制备(从花色苷的提取方式,到花色苷基智能包装膜成膜基质的选择);最后对近几年的研究进展以及在不同类型食品中的应用进行论述和总结,以期为花色苷基智能包装膜的未来研究和新产品开发提供一定的理论参考。

    花色苷是一种次级代谢产物,属于酚类化合物黄酮家族。它是一种水溶性天然食用色素,分子量在400~1200 g/mol之间。花色苷的基本结构是2-苯基苯并吡喃,分子式为C15H11O+[11]。花色苷母核的典型特征是具有八个共轭双键的C6-C3-C6主干,包含两个苯环,由一个含氧的三碳杂环和一个含氧的六元杂环连接而成[12]。由于含有七个不同的侧基,因此花色苷可分为3-脱氧花色苷、3-羟基花色苷和O-甲基化花色苷[13]。花色苷有两种主要形式:糖基花色苷和酰化花色苷。然而在自然条件下,游离的花青素很少,主要以糖苷的形式存在。

    花色苷的颜色之所以会发生变化,是因为其独特的C6-C3-C6骨架结构,花色苷颜色的变化,会根据苯环上羟基和甲氧基的取代位置的不同和数目而发生变化。花色苷在不同pH值情况下的结构变化如图1所示。在强酸环境下(pH<4),花色苷液体里大多以黄炀盐离子的形式存在,所以为红色;当pH值升高时(pH4~5),碳环氧上的阳离子会发生水和反应,形成无色的甲醇假碱;当pH值接近碱性时(pH6~8),花色苷的主要结构就变紫色的醌基或蓝色的阴离子醌基;当pH值再升高时(pH>8),花色苷的主要结构就变成了查尔酮,所以为黄色[14]

    图  1  不同pH值情况下花色苷结构的变化
    Figure  1.  Changes in anthocyanin structure at different pH values

    花色苷广泛分布在水果、蔬菜、花卉和谷物中,并产生多种颜色(例如红色、橙色、蓝色和紫色)[15]。截至目前,自然界中已发现超过500种花色苷[16]。由于花色苷的结构特殊,因而造成了花色苷的种类繁多,也导致了不同植物来源的花色苷间的性质会有所区别。研究人员发现,基于花色苷膜的pH颜色变化能力受到许多因素的影响,例如花色苷的植物来源、花色苷的添加量、生物聚合物基质的特性[1719]。其中,花色苷的植物来源是影响膜pH变色能力的主要因素之一,这是不同植物来源的花色苷的组成和含量不同导致的[20]表1总结了近些年用于花色苷基智能包装膜的花色苷来源、总花色苷含量以及花色苷溶液颜色的变化。可以很明显地看出,不同来源花色苷的颜色差异很大,比如:山竹壳花色苷溶液的颜色是红色-浅黄色-棕红色,而紫玉米芯花色苷溶液的颜色变化是红色-粉色-青色-黄色。这是由于花色苷的不稳定性造成的,pH值、温度、光照、酶和氧气等其他环境条件均会对花色苷的稳定性产生一定影响,从而影响花色苷结构,使花色苷的颜色得以改变。图1是14种不同植物来源的花色苷在pH3~11缓冲溶液中的颜色变化[21]。可以明显看出,不同植物的花色苷在pH3~11缓冲溶液中的颜色变化不完全相同,并且有明显的区别。例如:紫薯花色苷在缓冲液中的颜色从粉红色-紫色-蓝色;黑莓花色苷在缓冲液中的颜色从粉色-粉红色-紫色;而桑葚花色苷在缓冲液中的颜色从红色-无色-灰色。

    表  1  近些年用于花色苷基智能包装膜的花色苷来源、总花色苷含量以及花色苷溶液颜色的变化
    Table  1.  Source of anthocyanin, total anthocyanin content, and color of anthocyanin solutions used for anthocyanin-based smart packaging films in recent years
    花色苷来源 总花色苷含量 不同pH下花色苷溶液
    颜色变化
    参考文献
    红甘蓝 13.66±0.69 mg/g 粉红色-紫红色-紫色-
    蓝色-绿色
    [22]
    762.3 mg Cy3G/100 g 淡红色-紫色-蓝色-
    紫色-深绿色
    [23]
    葡萄籽 208.07±4.94 mg/100 g 粉红色-浅蓝色-黄绿色 [24]
    黑大豆种皮 55.5 mg/g 橙红色-浅黄色-棕色 [25]
    葡萄 粉红色-淡黄色-橘黄色-棕色 [26]
    山竹壳 28.9 mg/g 红色-浅黄色-棕红色 [27]
    黑米 468.37 mg/g 粉红色-无色-黄绿色-黄色 [28]
    黑枸杞 147.45 mg/g 粉红色-紫色-蓝色-
    绿色-土黄色
    [29]
    桑葚 9.18 mg/g 红色-粉红色-无色-黄色-绿色 [30]
    蝴蝶豌豆花 198.3 mg/g 红色-蓝紫色-深蓝色-
    绿色-黄色
    [31]
    玫瑰 17.11±0.13 mg/g 红色-粉色-无色-紫色-
    深蓝色-绿色-黄色
    [32]
    225.01±3.99 mg/L 红色-粉色-红色-粉色-
    深绿色-黄绿色
    [33]
    紫玉米芯 2.195±0.086 mg/mL 红色-粉色-青色-黄色 [34]
    红萝卜 27.02±1.35 mg/g 红色-粉红色-紫色-黄色 [35]
    下载: 导出CSV 
    | 显示表格
    图  2  14种不同植物的花色苷在pH3~11缓冲溶液中的颜色变化[21]
    注:BE,黑莓花色苷;BBE,蓝莓花色苷;BEPE,黑茄子皮花色苷;BPPE,黑梅皮花色苷;BSPE,黑豆皮花色苷;CE,蔓越莓花色苷;CBE,杨梅花色苷;GPE,葡萄皮花色苷;HBE,蓝靛果花色苷;LRE,黑果枸杞花色苷;MBE,桑葚花色苷;PCE,紫甘蓝花色苷;PRE,紫米花色苷;PSE,紫甘薯花色苷。
    Figure  2.  Colour changes of anthocyanin from 14 different plants in pH 3~11 buffer solutions

    花色苷基智能包装膜的第一步就是从植物中提取花色苷。然而,由于花色苷和花色苷衍生色素的提取是非选择性的,天然基质的不均匀分布和高酶活性可能会降低提取能力,其他不需要的副产品的存在也会加速花色苷的降解。因此,选择一种合适的提取方法尤为重要,实验室中常见的花色苷提取方式主要有:溶剂提取法(Solvent extraction method ,SEM)、超声辅助提取法(Ultrasound assisted extraction ,UAE)、微波辅助提取法(Microwave assisted extraction ,MAE)、以及超临界二氧化碳萃取法(Supercritical carbon dioxide extraction ,SCDE)。表2总结了在实验室中常见的花色苷提取方法。SEM的原理类似于相似溶解度[36]。此法的关键是有机溶剂的选择,花色苷提取中最常用的溶剂是甲醇、乙醇、酸化水或酸化乙醇[37]。SEM具有操作方便、设备简单、易于实施等优点,但也存在耗时长、效率低、溶剂消耗大、温度高等显著缺点。

    表  2  实验室中常见的花色苷提取方法
    Table  2.  Common methods of anthocyanin extraction in the laboratory
    花色苷来源 总花色苷
    含量
    提取方法 溶剂 参考文献
    紫甘薯 153.6 mg/L SEM 乙醇溶液(40%) [41]
    蓝莓渣 17.17±0.70 mg/100 g SEM 甲醇/水 [42]
    枣核 5.33 mg cy-3-Glu/100 g SEM 80%乙醇/3%盐酸(v/v) [43]
    杨梅果 33.45±
    0.05 mg/g
    UAE 95%乙醇、0.1 mol/L柠檬酸和蒸馏水组成(比例为4:1:3 v/v/v) [44]
    红米糠 5.80 mg/g UAE 78.37%乙醇 [45]
    红甘蓝 241.20 mg/g MAE 50%乙醇 [46]
    黑豆种皮 55.5 mg/g MAE 70%乙醇 [25]
    洛神花 1197 mg/100 g SCDE CO2 [47]
    蓝莓果渣 1.48 mg/g SCDE CO2 [48]
    下载: 导出CSV 
    | 显示表格

    UAE利用频率在20~50 MHz之间的超声波产生的空化效应和强剪切力来增强花色苷的提取能力,缩短花青素的提取时间[38]。然而,UAE过程中超声波产生的空化和机械效应可能会破坏花色苷的结构。因此,必须严格控制超声条件(超声功率、提取温度、料液比、提取时间),才能更好地发挥超声提取的优势。

    同样,MAE也会导致花色苷的结构破坏,这是由于提取物局部过度振动和局部高温造成的。微波提取的主要机制是介电材料中固有的离子传导和偶极弛豫[39]。微波辐射使溶剂的温度迅速升高,升高的温度可以明显降低提取物的粘度,促进目标成分的溶解。并且,微波辐射可以破坏植物细胞的微观结构,显著降低目标成分的传质阻力,促进花色苷由内向外扩散[40]。但是,提取参数(微波功率、提取时间和固液比)应控制在合理的水平,以获得高花色苷得率。

    由于人们环保意识的逐渐增强,现在用于包装膜的基质已从石油基变为生物聚合物。生物聚合物是从生物体中提取的天然聚合物,含有可在环境中自然降解的共价键单体单元。多糖、蛋白质和脂类等生物聚合物是传统合成塑料的天然替代品,已被用于制备含有花色苷的包装膜。这些生物聚合物可与花色苷之间形成氢键和静电作用,从而增强花色苷的变色效果和稳定性,并且还具有成膜性好、无生物毒性、可生物降解和生物相容性好的优点。因此,这些生物聚合物已被广泛用作制备花色苷基智能包装膜的基材,以改善薄膜的机械性能和阻隔性能。

    壳聚糖(Chitosan,CS)是一种高分子量的天然阳离子多糖,是甲壳素脱乙酰化的产物[49]。它具有生物降解性、生物相容性、无毒性、良好的抗菌性和成膜性[50],并因其分子链上含有很多的羟基和氨基[51],可以和花色苷中的羟基发生如氢键等相互作用从而使得花色苷更为稳定,被广泛用于花色苷基智能包装膜。Yong等[52]将紫茄子花色苷和黑茄子花色苷分别加入到CS中,与纯CS相比,添加紫茄子花色苷和黑茄子花色苷的复合膜有着更高的pH敏感性和抗氧化性能。然而,CS由于质地脆、机械性能差,在食品包装中的应用受到限制。因此,CS可以与其他聚合物混合以拓宽其应用范围。Zheng等[53]将马铃薯支链淀粉纳米颗粒和CS作为成膜基质用来封装玫瑰花色苷,促进了薄膜基质(淀粉/壳聚糖)的相容性,显著改善了基质的均匀性。并且比仅含有游离玫瑰花色苷的指示剂膜表现出更高的颜色稳定性,说明CS和马铃薯支链淀粉纳米颗粒形成的复配物在一定程度上也可以稳定花色苷的活性。

    淀粉是自然界中广泛存在的一种高分子碳水化合物,通常存在于豆类、谷物和块茎作物中[54]。可以与花色苷中的羟基通过氢键形成分子间相互作用,使得智能包装膜的结构更加稳定[51],并具有供应充足、成本低廉、生物降解性好、可生物加工和成膜性强等优点,被认为是一种理想的食品包装材料[55]。然而,淀粉薄膜具有亲水性、易老化和机械性能差等缺点,这些缺点可以通过添加增塑剂或混合具有互补性能的材料来改善[56]。CS和聚乙烯醇(Polyvinyl alcohol,PVA)都是有良好生物相容性的成膜材料,常用于与淀粉制备复合膜[57]。Li等[58]将CS和马铃薯淀粉作为成膜基质,以忍冬花色苷为指示剂,制成了指示膜,结果表明CS通过氢键结合在马铃薯淀粉表面,使忍冬花色苷更好地固定在基质中。

    PVA是一种多羟基水溶性可生物降解的聚合体,可被天然微生物分解成二氧化碳和水,因此具有良好的生物相容性且降解产物对环境友好。可以与花色苷形成分子间氢键,使得花色苷更加的稳定[59]。此外,PVA还具有良好的气体阻隔性、成膜性、透明度和机械性能,被广泛用作包装材料[60]。为了扩大其应用范围,人们将淀粉、CS、单宁和纤维素等不同性质的聚合物材料与PVA混合使用,以增强PVA薄膜的弹性、机械强度和耐水性[6162]。Wu等[63]将淀粉和PVA共混作为成膜基质,再将黑果花楸花色苷作为指示剂制成智能包装膜,研究表明淀粉和PVA的共混的机械性能最好,这主要是因为糊化淀粉颗粒可以嵌入PVA骨架中并相互形成紧密的结合,并且添加适量的黑果花楸花色苷可以改善淀粉/PVA的相容性,也起到了稳定花色苷的作用。

    海藻酸盐(Alginate)是从多种褐藻中提取的天然聚阴离子多糖[60]。它由β-D-甘露糖醛酸和α-L-古洛糖醛酸通过1,4-糖苷键连接而成。海藻酸盐具有良好的胶体、成胶和成膜性能,常被用作食品的增稠剂、乳化剂和稳定剂[64],可以和花色苷发生相互作用(形成氢键),在花色苷基智能包装膜中也可也起到稳定花色苷的作用[65]。Zhao等[66]用海藻酸钠稳定紫甘薯皮花色苷,发现紫甘薯皮花色苷与海藻酸钠基质具有优异的相容性,并通过氢键与其连接。

    明胶(gelatin)是一种源自蛋白质的可食用薄膜材料,具有良好的成膜性能、生物相容性和商业利用能力,可作为食品包装领域理想的生物材料[67]。明胶中含有许多高反应活性基团如:羟基、羧基、氨基等。花色苷中的羟基可以和明胶中的氨基和羟基形成氢键,提高材料的结晶度[51]。然而,其延展性较差也极大地影响了其作为薄膜制备材料的应用和推广。通常会将明胶和其它生物聚合物联用来提高复合膜的综合性能。Zong等[68]将明胶和加入到含紫甘薯花色苷的智能包装膜中,发现与纯淀粉膜相比,明胶的加入显著提高了指示的拉伸强度。

    在肉类和水产品变质过程中,微生物可以降解蛋白质,产生各种挥发性氮化合物(如氨、二甲胺和三甲胺),从而改变食品的pH值状态[69]。而花色苷在不同pH下会呈现不同的颜色,因此花色苷基智能包装膜可以很好的体现出食品的pH状态从而判断食品的质量安全。许多研究表明,基于花色苷的智能包装膜可以帮助消费者或生产者监控食品的新鲜度,如肉类、海鲜、乳制品、水果和蔬菜,从而保持食品质量、保质期和安全。

    在鲜肉和海鲜中含有丰富的蛋白质和脂肪。在贮存过程中,易被微生物和酶分解,生成生物胺、二甲胺、三甲胺、氨等各种挥发性碱性物质。这些物质会导致包装内食品pH值的变化[6970]。而花色苷可以与生物大分子通过分子间作用力,固定到复合物中,形成一种稳定、有抑菌性、抗氧化性的指示膜,这种指示膜对pH十分敏感,可以用来判断食物的新鲜程度。Wang等[71]把黑枸杞花色苷(Black wolfberry anthocyanins,BWA)加入到PVA和甲基纤维素(Methylcellulose,MC)组成的固体基质中,制备了一种智能视觉指示膜,用来检测鸡肉和虾的品质变化,结果表明BWA的引入增强了聚合物之间的氢键相互作用,并且花色苷在聚合物基体中得到了很好的固定。5%BW花青素能提高膜的热稳定性和力学性能,并且能灵敏地检测鸡肉和虾的品质变化,从图3A可以明显看出,鸡肉指示膜的颜色由红色变成青色;虾指示膜的颜色由红色变成绿色,甚至NH3的浓度低至25 ppm,薄膜也做出响应。此外,一些研究人员使用智能手机提取指示器标签和传感器的照片。在确定颜色强度后,可以通过算法计算对食品成分、新鲜度和含量进行限制和量化[72]。Li等[73]以CS和明胶(Gelatin,GL)为成膜基质,蝴蝶豌豆花色苷(Butterfly pea flower anthocyanin extract,BAE)为指示剂,开发了一种新型挥发性氨响应食品新鲜智能薄膜CG-BAE。通过调整成膜液的pH值,发现CG-BAE-2.0(pH为2)指示膜具有优异的胺敏感性、抗氧化性能和颜色稳定性。牛肉新鲜度监测结果表明,在20 ℃下,随着储存时间的延长,CG-BAE-2.0薄膜呈现出明显的颜色变化,清楚地体现了牛肉新鲜度的四个阶段,即新鲜度(亮粉色)、亚新鲜度(淡紫色)、开始变质(紫色)、和彻底的腐败(蓝绿色)。并且通过手机app,分析指示膜的颜色变化和相应的RGB值(用智能手机app识别用于校准的参考颜色的RGB值,将RGB值转换为TVBN值,并计算线性组合。消费者可以根据手机app指示膜的RGB值轻松判断肉类是否新鲜可食用)来检测牛肉的新鲜度。

    图  3  花色苷基智能包装膜在肉和海鲜中的应用
    注:A、BWA/PVA-MC指示膜在鸡肉和虾中的应用[71];B、CG-BAE-2.0在牛肉中通过手机app的应用[72]
    Figure  3.  Application of anthocyanin-based smart packaging films in meat and seafood

    在乳制品储存过程中,微生物代谢产生的有机酸和乳酸菌的生长会导致pH值和酸度的变化,进而使含有花色苷的薄膜变色。近些年出现了许多检测乳制品变质的创新传感技术。研究表明,与传统的检测乳制品新鲜度和变质的方法相比,这些技术具有更高的准确性、安全性和效率[74]。陈赛艳等[75]通过流延法将紫甘蓝花色苷添加到大豆分离蛋白智能包装膜中,用于监测巴氏杀菌乳在37 ℃下腐败的情况。在贮藏的过程中,可以观察到在6 h内膜的颜色为青色;当贮藏时间到9 h时,膜的颜色变为红色,此时其菌落总数已超过50000 CUF/mL,为不新鲜状态;当贮藏时间超过18 h时,膜的红色加深,巴氏杀菌乳已经完全变质,呈现出凝乳的状态,并且其智能包装膜在5 d内有着良好的稳定性,可用于牛乳新鲜度的监测。研究表明,与单一体系相比,复合体系在包封和保护作用方面表现出更大的功效。Zhang等[76]用壳聚糖季铵盐和海藻酸钠纳米复合物负载蓝莓花色苷,并使用PVA作为成膜基质制成的智能包装膜,用来监测牛奶的新鲜度(图4),结果表明在48 h后牛奶的pH从6.69下降到5.49,牛奶的颜色由紫色变为紫红色;在72 h后pH为4.60,颜色变为红色,属于变质奶,并且在21 d后智能包装膜依然有较高的稳定性。花色苷基智能包装膜为乳制品的检测方面提供了另一种思路,这种监测手段相比其它的检测手段要更加的便捷和简单。

    图  4  花色苷基智能包装膜在牛奶中的应用[76]
    Figure  4.  Application of anthocyanin-based smart packaging films in milk

    目前,花青素薄膜在水果和蔬菜中的应用还相对较少,但已引起人们的关注,值得在未来进行研究。新鲜采摘的水果和蔬菜的呼吸作用比较旺盛,释放出的二氧化碳使包装呈现酸性环境。含花色苷的薄膜可根据包装中的pH值变化而改变颜色,从而显示食品的质量。因此,呼吸作用的强弱是影响花色苷基智能包装膜灵敏性的一个关键因素。Zong等[68]制备了一种含有紫甘薯花色苷的pH型淀粉/明胶膜用来监测金针菇的新鲜度(图5),结果表明,在20 ℃贮藏24 h后,金针菇的可溶性蛋白质和可溶性糖含量分别下降了18.7%和16.3%,失重率和茎伸长率分别为1.68%和4.43%,膜的颜色由绿色变为紫灰色,而平菇处于亚新鲜状态。当贮藏时间达到60 h时,指示膜呈黄绿色,说明此时金针菇已经失去了新鲜度。可见在呼吸程度不太高的金针菇中,花色苷基智能包装膜的颜色变化十分明显,起到了监测食物新鲜度的作用。因此,花色苷基智能包装膜可以监测那些呼吸作用较高的水果和蔬菜(如:芒果、蘑菇等)。Yi等[77]用纳米TiO2负载红萝卜花色苷的壳聚糖-玉米蛋白智能包装膜,用来监测蘑菇的新鲜度。结果表明,所制成的智能包装膜对蘑菇的新鲜度有较高的准确性,从粉红色0~3 d(新鲜),到紫色6~9 d(亚新鲜),再到红棕色12~15 d(完全腐败)。因此,花色苷基智能包装膜在一些较低呼吸强度的水果和蔬菜中能否应用还需要进一步的研究。

    图  5  花色苷基智能包装膜在金针菇中的应用[68]
    Figure  5.  Application of anthocyanin-based smart packaging films in enoki mushrooms

    花色苷基智能包装膜是食品包装领域的一项重要创新,也是当下研究的热点。它除了具有传统包装的功能外,还兼具监测食品质量安全的功能,可以直观的将食品的品质告诉消费者。花色苷基智能包装膜以其简便、快速、无损食品等优点,为食品新鲜度监测提供了一种新策略。花色苷基薄膜的物理性能主要受花色苷的来源和含量、花色苷与生物聚合物之间的相互作用以及薄膜的制备条件的影响。因而,选择一种合适来源的花色苷就显得尤为重要了。花色苷的多种化学结构使薄膜具有pH显色响应功能,可用于监测一些生鲜食品(肉类、海鲜、乳制品、水果和蔬菜)的质量和安全性。此外,花色苷作为天然活性物质,可以赋予薄膜优异的抗菌和抗氧化性能,防止包装食品变色或脂质氧化。然而由于花色苷的稳定性低、易降解、显色性差等限制了其在食品工业中的应用。

    如今,虽然花色苷基智能包装膜的研究取得了一些进展,但是还存在着一些问题以及还有一些可以改进的地方:

    首先,目前花色苷基智能包装膜的各项参数指标标准尚未统一。不同植物来源的花色苷之间的差异、分别适用于什么类型的研究、以及制成的指示膜的统一标准都尚未有人进行研究。这都需要未来的研究人员通过探索不同植物来源的花色苷的性质,然后进行归纳与整理,从而建立起该行业的行业标准。

    其次,花色苷基智能包装膜的毒理性质和安全问题尚未有人进行验证。在制膜阶段的增塑剂以及溶剂的选择会不会带来这些问题,研究人员应当进行毒理性试验。

    然后,花色苷的稳定性问题。花色苷是一种极不稳定的物质,因此怎样让花色苷在指示膜中稳定的存在仍然是一项巨大的挑战。研究人员可以从稳定花色苷的角度入手:将花色苷微胶囊化、包埋,或者加入一种可以稳定花色苷的物质(如:PVA等)。

    接着,花色苷的特性没有完全利用。花色苷具有很强的抗氧化性和抑菌性,但目前绝大数的研究并非将智能包装膜与食品直接包裹,而是采用顶空设计,因此不能完全发挥花色苷的抗氧化性和抑菌性。

    最后,真实食品成分复杂,实验室获得的良好监测结果与实际应用结果不一致。目前的花色苷基智能包装膜现在仅存在于实验室阶段,还有很多问题尚未研究清楚。

    因此,随着科学研究的不断深入和相关技术的提高,监控食品质量和安全的花色苷基智能包装膜将具有更广阔的市场和发展前景。

  • 图  1   不同pH值情况下花色苷结构的变化

    Figure  1.   Changes in anthocyanin structure at different pH values

    图  2   14种不同植物的花色苷在pH3~11缓冲溶液中的颜色变化[21]

    注:BE,黑莓花色苷;BBE,蓝莓花色苷;BEPE,黑茄子皮花色苷;BPPE,黑梅皮花色苷;BSPE,黑豆皮花色苷;CE,蔓越莓花色苷;CBE,杨梅花色苷;GPE,葡萄皮花色苷;HBE,蓝靛果花色苷;LRE,黑果枸杞花色苷;MBE,桑葚花色苷;PCE,紫甘蓝花色苷;PRE,紫米花色苷;PSE,紫甘薯花色苷。

    Figure  2.   Colour changes of anthocyanin from 14 different plants in pH 3~11 buffer solutions

    图  3   花色苷基智能包装膜在肉和海鲜中的应用

    注:A、BWA/PVA-MC指示膜在鸡肉和虾中的应用[71];B、CG-BAE-2.0在牛肉中通过手机app的应用[72]

    Figure  3.   Application of anthocyanin-based smart packaging films in meat and seafood

    图  4   花色苷基智能包装膜在牛奶中的应用[76]

    Figure  4.   Application of anthocyanin-based smart packaging films in milk

    图  5   花色苷基智能包装膜在金针菇中的应用[68]

    Figure  5.   Application of anthocyanin-based smart packaging films in enoki mushrooms

    表  1   近些年用于花色苷基智能包装膜的花色苷来源、总花色苷含量以及花色苷溶液颜色的变化

    Table  1   Source of anthocyanin, total anthocyanin content, and color of anthocyanin solutions used for anthocyanin-based smart packaging films in recent years

    花色苷来源 总花色苷含量 不同pH下花色苷溶液
    颜色变化
    参考文献
    红甘蓝 13.66±0.69 mg/g 粉红色-紫红色-紫色-
    蓝色-绿色
    [22]
    762.3 mg Cy3G/100 g 淡红色-紫色-蓝色-
    紫色-深绿色
    [23]
    葡萄籽 208.07±4.94 mg/100 g 粉红色-浅蓝色-黄绿色 [24]
    黑大豆种皮 55.5 mg/g 橙红色-浅黄色-棕色 [25]
    葡萄 粉红色-淡黄色-橘黄色-棕色 [26]
    山竹壳 28.9 mg/g 红色-浅黄色-棕红色 [27]
    黑米 468.37 mg/g 粉红色-无色-黄绿色-黄色 [28]
    黑枸杞 147.45 mg/g 粉红色-紫色-蓝色-
    绿色-土黄色
    [29]
    桑葚 9.18 mg/g 红色-粉红色-无色-黄色-绿色 [30]
    蝴蝶豌豆花 198.3 mg/g 红色-蓝紫色-深蓝色-
    绿色-黄色
    [31]
    玫瑰 17.11±0.13 mg/g 红色-粉色-无色-紫色-
    深蓝色-绿色-黄色
    [32]
    225.01±3.99 mg/L 红色-粉色-红色-粉色-
    深绿色-黄绿色
    [33]
    紫玉米芯 2.195±0.086 mg/mL 红色-粉色-青色-黄色 [34]
    红萝卜 27.02±1.35 mg/g 红色-粉红色-紫色-黄色 [35]
    下载: 导出CSV

    表  2   实验室中常见的花色苷提取方法

    Table  2   Common methods of anthocyanin extraction in the laboratory

    花色苷来源 总花色苷
    含量
    提取方法 溶剂 参考文献
    紫甘薯 153.6 mg/L SEM 乙醇溶液(40%) [41]
    蓝莓渣 17.17±0.70 mg/100 g SEM 甲醇/水 [42]
    枣核 5.33 mg cy-3-Glu/100 g SEM 80%乙醇/3%盐酸(v/v) [43]
    杨梅果 33.45±
    0.05 mg/g
    UAE 95%乙醇、0.1 mol/L柠檬酸和蒸馏水组成(比例为4:1:3 v/v/v) [44]
    红米糠 5.80 mg/g UAE 78.37%乙醇 [45]
    红甘蓝 241.20 mg/g MAE 50%乙醇 [46]
    黑豆种皮 55.5 mg/g MAE 70%乙醇 [25]
    洛神花 1197 mg/100 g SCDE CO2 [47]
    蓝莓果渣 1.48 mg/g SCDE CO2 [48]
    下载: 导出CSV
  • [1] 孙朋媛, 曹传爱, 刘骞, 等. 基于壳聚糖的智能指示包装及其在食品贮藏中应用的研究进展[J]. 食品工业科技,2023,44(10):416−422. [SUN P Y, CAO C A, LIU Q, et al. Research progress of intelligent indication packaging based on chitosan and its application in food storage:a review[J]. Science and Technology of Food Industry,2023,44(10):416−422.]

    SUN P Y, CAO C A, LIU Q, et al. Research progress of intelligent indication packaging based on chitosan and its application in food storage: a review[J]. Science and Technology of Food Industry, 2023, 44(10): 416−422.

    [2]

    GHAANI M, COZZOLINO C A, CASTELLI G, et al. An overview of the intelligent packaging technologies in the food sector[J]. Trends in Food Science & Technology,2016,51:1−11.

    [3]

    KANHA N, OSIRIPHUN S, RAKARIYATHAM K, et al. On‐package indicator films based on natural pigments and polysaccharides for monitoring food quality:a review[J]. Journal of the Science of Food and Agriculture,2022,102(15):6804−6823. doi: 10.1002/jsfa.12076

    [4]

    POYATOS-RACIONERO E, ROS-LIS J V, VIVANCOS J L, et al. Recent advances on intelligent packaging as tools to reduce food waste[J]. Journal of Cleaner Production,2018,172:3398−3409. doi: 10.1016/j.jclepro.2017.11.075

    [5]

    LIU B, XU H, ZHAO H Y, et al. Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications[J]. Carbohydrate Polymers,2017,157:842−849. doi: 10.1016/j.carbpol.2016.10.067

    [6]

    MUSHTAQ M, GANI A, GANI A, et al. Use of pomegranate peel extract incorporated zein film with improved properties for prolonged shelf life of fresh Himalayan cheese (Kalari/kradi)[J]. Innovative Food Science & Emerging Technologies,2018,48:25−32.

    [7]

    WANG S, XIA P, WANG S Z, et al. Packaging films formulated with gelatin and anthocyanins nanocomplexes:Physical properties, antioxidant activity and its application for olive oil protection[J]. Food Hydrocolloids,2019,96:617−624. doi: 10.1016/j.foodhyd.2019.06.004

    [8]

    JIANG G Y, HOU X Y, ZENG X D, et al. Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness[J]. International Journal of Biological Macromolecules,2020,143:359−372. doi: 10.1016/j.ijbiomac.2019.12.024

    [9]

    LIU J R, WANG H L, GUO M, et al. Extract from Lycium ruthenicum Murr. Incorporating κ-carrageenan colorimetric film with a wide pH–sensing range for food freshness monitoring[J]. Food Hydrocolloids,2019,94:1−10. doi: 10.1016/j.foodhyd.2019.03.008

    [10]

    YONG H M, LIU J. Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films[J]. Food Packaging and Shelf Life,2020,26:100550. doi: 10.1016/j.fpsl.2020.100550

    [11]

    KHOO H E, AZLAN A, TANG S T, et al. Anthocyanidins and anthocyanins:Colored pigments as food, pharmaceutical ingredients, and the potential health benefits[J]. Food & Nutrition Research,2017,62:1.

    [12]

    ECHEGARAY N, MUNEKATA P E S, GULLÓN P, et al. Recent advances in food products fortification with anthocyanins[J]. Critical Reviews in Food Science and Nutrition,2022,62(6):553−1567.

    [13]

    ECHEGARAY N, GUZEL N, KUMAR M, et al. Recent advancements in natural colorants and their application as coloring in food and in intelligent food packaging[J]. Food Chemistry,2023,404:134453. doi: 10.1016/j.foodchem.2022.134453

    [14] 雷桥, 张文惠. 负载天然色素的生物基智能包装指示器研究进展[J]. 食品科学技术学报,2024,42(01):20−31. [LEI Q, ZHANG W H. Research progress of bio-based intelligent packaging indicator loaded with natural pigments[J]. Journal of Food Science and Technology,2024,42(01):20−31.] doi: 10.12301/spxb202300271

    LEI Q, ZHANG W H. Research progress of bio-based intelligent packaging indicator loaded with natural pigments[J]. Journal of Food Science and Technology, 2024, 42(01): 20−31. doi: 10.12301/spxb202300271

    [15]

    FLESCHHUT J, KRATZER F, RECHKEMMER G, et al. Stability and biotransformation of various dietary anthocyanins in vitro[J]. European Journal of Nutrition,2006,45:7−18. doi: 10.1007/s00394-005-0557-8

    [16]

    COOK M D, WILLEMS M E T. Dietary anthocyanins:A review of the exercise performance effects and related physiological responses[J]. International Journal of Sport Nutrition and Exercise Metabolism,2019,29(3):322−330. doi: 10.1123/ijsnem.2018-0088

    [17]

    ROY S, RHIM J W. Anthocyanin food colorant and its application in pH-responsive color change indicator films[J]. Critical Reviews in Food Science and Nutrition,2021,61(14):2297−2325. doi: 10.1080/10408398.2020.1776211

    [18]

    YONG H M, LIU J, QIN Y, et al. Antioxidant and pH-sensitive films developed by incorporating purple and black rice extracts into chitosan matrix[J]. International Journal of Biological Macromolecules,2019,137:307−316. doi: 10.1016/j.ijbiomac.2019.07.009

    [19]

    PERALTA J, BITENCOURT-CERVI C M, MACIEL V B V, et al. Aqueous hibiscus extract as a potential natural pH indicator incorporated in natural polymeric films[J]. Food Packaging and Shelf Life,2019,19:47−55. doi: 10.1016/j.fpsl.2018.11.017

    [20]

    CASTAÑEDA-OVANDO A, de LOURDES PACHECO-HERNÁNDEZ M, PÁEZ-HERNÁNDEZ M E, et al. Chemical studies of anthocyanins:A review[J]. Food Chemistry,2009,113(4):859−871. doi: 10.1016/j.foodchem.2008.09.001

    [21]

    KAN J, LIU J, XU F F, et al. Development of pork and shrimp freshness monitoring labels based on starch/polyvinyl alcohol matrices and anthocyanins from 14 plants:A comparative study[J]. Food Hydrocolloids,2022,124:107293. doi: 10.1016/j.foodhyd.2021.107293

    [22]

    ZHAN S Q, YI F X, HOU F Y, et al. Development of pH-freshness smart label based on gellan gum film incorporated with red cabbage anthocyanins extract and its application in postharvest mushroom[J]. Colloids and Surfaces B:Biointerfaces,2024,236:113830. doi: 10.1016/j.colsurfb.2024.113830

    [23]

    ANUGRAH D S B, DARMALIM L V, SINANU J D, et al. Development of alginate-based film incorporated with anthocyanins of red cabbage and zinc oxide nanoparticles as freshness indicator for prawns[J]. International Journal of Biological Macromolecules,2023,251:126203. doi: 10.1016/j.ijbiomac.2023.126203

    [24]

    NOGUEIRA G F, MENEGHETTI B B, SOARES I H B T, et al. Multipurpose arrowroot starch films with anthocyanin-rich grape pomace extract:Color migration for food simulants and monitoring the freshness of fish meat[J]. International Journal of Biological Macromolecules,2024,265:130934. doi: 10.1016/j.ijbiomac.2024.130934

    [25]

    SHI S, XU X W, FENG J, et al. Preparation of NH3-and H2S-sensitive intelligent pH indicator film from sodium alginate/black soybean seed coat anthocyanins and its use in monitoring meat freshness[J]. Food Packaging and Shelf Life,2023,35:100994. doi: 10.1016/j.fpsl.2022.100994

    [26]

    TAHERI-YEGANEH A, AHARI H, MASHAK Z, et al. Monitor the freshness of shrimp by smart halochromic films based on gelatin/pectin loaded with pistachio peel anthocyanin nanoemulsion[J]. Food Chemistry:X,2024,21:101217.

    [27]

    GUO H, YUE Z, SHAO C, et al. Intelligent carboxymethyl cellulose composite films containing Garcinia mangostana shell anthocyanin with improved antioxidant and antibacterial properties[J]. International Journal of Biological Macromolecules,2024,263:130362. doi: 10.1016/j.ijbiomac.2024.130362

    [28]

    ZENG F S, YE Y Q, LIU J N, et al. Intelligent pH indicator composite film based on pectin/chitosan incorporated with black rice anthocyanins for meat freshness monitoring[J]. Food Chemistry:X,2023,17:100531.

    [29]

    XU F F, YAN Y M, HUANG X Q, et al. Modulating the functionality of black wolfberry anthocyanins-based freshness indicators by adjusting the pH value of film-forming solution[J]. Food Bioscience,2023,53:102764. doi: 10.1016/j.fbio.2023.102764

    [30]

    ZHANG C J, CHI W R, ZHOU T, et al. Fabricating a visibly colorimetric film via self-releasing of anthocyanins from distributed mulberry pomace particles in hydrophilic sodium carboxymethyl starch-based matrix to monitor meat freshness[J]. International Journal of Biological Macromolecules,2023,246:125617. doi: 10.1016/j.ijbiomac.2023.125617

    [31]

    NARAYANAN G P, RADHAKRISHNAN P, BAIJU P. Fabrication Of Butterfly Pea Flower Anthocyanin-Incorporated Colorimetric Indicator Film Based On Gelatin/Pectin For Monitoring Fish Freshness[J]. Food Hydrocolloids for Health,2023,4:100159. doi: 10.1016/j.fhfh.2023.100159

    [32]

    QIU L Q, ZHANG M, HUANG M, et al. Fabrication of sodium alginate/apricot peel pectin films incorporated with rose anthocyanin-rich extract for monitoring grass carp (Ctenopharyngodon idellus) freshness[J]. Food Packaging and Shelf Life,2023,39:101150. doi: 10.1016/j.fpsl.2023.101150

    [33]

    WU Y L, LI C W. A double-layer smart film based on gellan gum/modified anthocyanin and sodium carboxymethyl cellulose/starch/Nisin for application in chicken breast[J]. International Journal of Biological Macromolecules,2023,232:123464. doi: 10.1016/j.ijbiomac.2023.123464

    [34]

    CHEN Q J, ZHANG P, YOU N, et al. Preparation and characterization of corn starch-based antimicrobial indicator films containing purple corncob anthocyanin and tangerine peel essential oil for monitoring pork freshness[J]. International Journal of Biological Macromolecules,2023,251:126320. doi: 10.1016/j.ijbiomac.2023.126320

    [35]

    YI F X, HOU F Y, ZHAN S Q, et al. Preparation, characterization and application of pH-responsive smart film based on chitosan/zein and red radish anthocyanin[J]. International Journal of Biological Macromolecules,2023,253:127037. doi: 10.1016/j.ijbiomac.2023.127037

    [36]

    JOHNSON J, COLLINS T, WALSH K, et al. Solvent extractions and spectrophotometric protocols for measuring the total anthocyanin, phenols and antioxidant content in plums[J]. Chemical Papers,2020,74(12):4481−4492. doi: 10.1007/s11696-020-01261-8

    [37]

    MUANGRAT R, WILLIAMS P T, SAENGCHAROENRAT P. Subcritical solvent extraction of total anthocyanins from dried purple waxy corn:Influence of process conditions[J]. Journal of Food Processing and Preservation,2017,41(6):e13252. doi: 10.1111/jfpp.13252

    [38]

    BELWAL T, HUANG H, LI L, et al. Optimization model for ultrasonic-assisted and scale-up extraction of anthocyanins from Pyrus communis ‘Starkrimson’fruit peel[J]. Food Chemistry,2019,297:124993. doi: 10.1016/j.foodchem.2019.124993

    [39]

    YANG Z D, ZHAI W W. Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS[J]. Innovative Food Science & Emerging Technologies,2010,11(3):470−476.

    [40]

    XUE H K, XU H, WANG X R, et al. Effects of microwave power on extraction kinetic of anthocyanin from blueberry powder considering absorption of microwave energy[J]. Journal of Food Quality,2018,2018:1−13.

    [41]

    DING F Y, WU R K, HUANG X W, et al. Anthocyanin loaded composite gelatin films crosslinked with oxidized alginate for monitoring spoilage of flesh foods[J]. Food Packaging and Shelf Life,2024,42:101255. doi: 10.1016/j.fpsl.2024.101255

    [42]

    FERREIRA L F, MINUZZI N M, Rodrigues R F, et al. Citric acid water-based solution for blueberry bagasse anthocyanins recovery:Optimization and comparisons with microwave-assisted extraction (MAE)[J]. LWT,2020,133:110064. doi: 10.1016/j.lwt.2020.110064

    [43]

    ELHADEF K, CHAARI M, AKERMI S, et al. pH-sensitive films based on carboxymethyl cellulose/date pits anthocyanins:A convenient colorimetric indicator for beef meat freshness tracking[J]. Food Bioscience,2024,57:103508. doi: 10.1016/j.fbio.2023.103508

    [44]

    MUANGRAT R, WILLIAMS P T, SAENGCHAROENRAT P. Subcritical solvent extraction of total anthocyanins from dried purple waxy corn:Influence of process conditions[J]. Journal of Food Processing and Preservation,2017,41(6):e13252. doi: 10.1111/jfpp.13252

    [45]

    WANG Y J, ZHAO L, ZHANG R Y, et al. Optimization of ultrasound‐assisted extraction by response surface methodology, antioxidant capacity, and tyrosinase inhibitory activity of anthocyanins from red rice bran[J]. Food Science & Nutrition,2020,8(2):921−932.

    [46]

    YIĞIT Ü, TURABI YOLAÇANER E, HAMZALIOĞLU A, et al. Optimization of microwave-assisted extraction of anthocyanins in red cabbage by response surface methodology[J]. Journal of Food Processing and Preservation,2022,46(1):e16120.

    [47]

    IDHAM Z, PUTRA N R, AZIZ A H A, et al. Improvement of extraction and stability of anthocyanins, the natural red pigment from roselle calyces using supercritical carbon dioxide extraction[J]. Journal of CO2 Utilization,2022,56:101839. doi: 10.1016/j.jcou.2021.101839

    [48]

    QIN G, HAN H, DING Y, et al. Optimization of extracting technology of anthocyanins from blueberry pomace by supercritical carbon dioxide. Appl[J]. Chem. Ind,2019,48:109−112.

    [49]

    COLLADO-GONZÁLEZ M, MONTALBÁN M G, PEÑA-GARCÍA J, et al. Chitosan as stabilizing agent for negatively charged nanoparticles[J]. Carbohydrate Polymers,2017,161:63−70. doi: 10.1016/j.carbpol.2016.12.043

    [50]

    ATAY H Y, ÇELIK E. Investigations of antibacterial activity of chitosan in the polymeric composite coatings[J]. Progress in Organic Coatings,2017,102:194−200. doi: 10.1016/j.porgcoat.2016.10.013

    [51] 乔世豪, 王强, 胡露丹, 等. 花青素在食品质量指示中的应用进展[J]. 包装工程,2022,43(17):49−58. [QIAO S H, WANG Q, HU L D, et al. Application progress of anthocyanins in food quality indication[J]. Packaging Engineering,2022,43(17):49−58.]

    QIAO S H, WANG Q, HU L D, et al. Application progress of anthocyanins in food quality indication[J]. Packaging Engineering, 2022, 43(17): 49−58.

    [52]

    YONG H M, WANG X C, ZHANG X, et al. Effects of anthocyanin-rich purple and black eggplant extracts on the physical, antioxidant and pH-sensitive properties of chitosan film[J]. Food Hydrocolloids,2019,94:93−104. doi: 10.1016/j.foodhyd.2019.03.012

    [53]

    ZHENG L M, LIU L M, YU J H, et al. Intelligent starch/chitosan-based film incorporated by anthocyanin-encapsulated amylopectin nanoparticles with high stability for food freshness monitoring[J]. Food Control,2023,151:109798. doi: 10.1016/j.foodcont.2023.109798

    [54]

    GOSWAMI B, MAHANTA D. Starch and its Derivatives:Properties and Applications[J]. Polysaccharides:Properties and Applications, 2021:253−281.

    [55]

    CHENG H, CHEN L, MCCLEMENTS D J, et al. Starch-based biodegradable packaging materials:A review of their preparation, characterization and diverse applications in the food industry[J]. Trends in Food Science & Technology,2021,114:70−82.

    [56]

    BASIAK E, LENART A, DEBEAUFORT F. Effect of starch type on the physico-chemical properties of edible films[J]. International Journal of Biological Macromolecules,2017,98:348−356. doi: 10.1016/j.ijbiomac.2017.01.122

    [57]

    ZHAO G H, LI Y, FANG C L, et al. Water resistance, mechanical properties and biodegradability of methylated-cornstarch/poly (vinyl alcohol) blend film[J]. Polymer Degradation and Stability,2006,91(4):703−711. doi: 10.1016/j.polymdegradstab.2005.06.008

    [58]

    LI B, BAO Y W, LI J X, et al. A sub-freshness monitoring chitosan/starch-based colorimetric film for improving color recognition accuracy via controlling the pH value of the film-forming solution[J]. Food Chemistry,2022,388:132975. doi: 10.1016/j.foodchem.2022.132975

    [59]

    LIU D F, CUI Z J, SHANG M, et al. A colorimetric film based on polyvinyl alcohol/sodium carboxymethyl cellulose incorporated with red cabbage anthocyanin for monitoring pork freshness[J]. Food Packaging and Shelf Life,2021,28:100641. doi: 10.1016/j.fpsl.2021.100641

    [60]

    ATTA O M, MANAN S, SHAHZAD A, et al. Biobased materials for active food packaging:A review[J]. Food Hydrocolloids,2022,125:107419. doi: 10.1016/j.foodhyd.2021.107419

    [61]

    YOON S D, PARK M H, BYUN H S. Mechanical and water barrier properties of starch/PVA composite films by adding nano-sized poly (methyl methacrylate-co-acrylamide) particles[J]. Carbohydrate Polymers,2012,87(1):676−686. doi: 10.1016/j.carbpol.2011.08.046

    [62]

    NAYAK A K, DAS B. Introduction to polymeric gels[M]//Polymeric gels. Woodhead Publishing, 2018:3−27.

    [63]

    WU X L, YAN X X, ZHANG J W, et al. Preparation and characterization of pH-sensitive intelligent packaging films based on cassava starch/polyvinyl alcohol matrices containing Aronia melanocarpa anthocyanins[J]. LWT,2024,194:115818. doi: 10.1016/j.lwt.2024.115818

    [64]

    MÜLLER J M, MONTE ALEGRE R. Alginate production by Pseudomonas mendocina in a stirred draft fermenter[J]. World Journal of Microbiology and Biotechnology,2007,23:691−695. doi: 10.1007/s11274-006-9285-3

    [65]

    ANUGRAH D S B, DARMALIM L V, SINANU J D, et al. Development of alginate-based film incorporated with anthocyanins of red cabbage and zinc oxide nanoparticles as freshness indicator for prawns[J]. International Journal of Biological Macromolecules,2023,251:126203. doi: 10.1016/j.ijbiomac.2023.126203

    [66]

    ZHAO M N, NUERJIANG M, BAI X, et al. Monitoring dynamic changes in chicken freshness at 4 ℃ and 25 ℃ using pH-sensitive intelligent films based on sodium alginate and purple sweet potato peel extracts[J]. International Journal of Biological Macromolecules,2022,216:361−373. doi: 10.1016/j.ijbiomac.2022.06.198

    [67]

    GE Y J, LI Y, BAI Y, et al. Intelligent gelatin/oxidized chitin nanocrystals nanocomposite films containing black rice bran anthocyanins for fish freshness monitorings[J]. International Journal of Biological Macromolecules,2020,155:1296−1306. doi: 10.1016/j.ijbiomac.2019.11.101

    [68]

    ZONG Z H, LIU M, CHEN H J, et al. Preparation and characterization of a novel intelligent starch/gelatin binary film containing purple sweet potato anthocyanins for Flammulina velutipes mushroom freshness monitoring[J]. Food Chemistry,2023,405:134839. doi: 10.1016/j.foodchem.2022.134839

    [69]

    ZHANG J J, ZOU X B, ZHAI X D, et al. Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness[J]. Food Chemistry,2019,272:306−312. doi: 10.1016/j.foodchem.2018.08.041

    [70]

    GUO Z L, HAN L, YU Q L, et al. Effect of a sea buckthorn pomace extract-esterified potato starch film on the quality and spoilage bacteria of beef jerky sold in supermarket[J]. Food Chemistry,2020,326:127001. doi: 10.1016/j.foodchem.2020.127001

    [71]

    WANG D B, WANG X X, SUN Z L, et al. A fast-response visual indicator film based on polyvinyl alcohol/methylcellulose/black wolfberry anthocyanin for monitoring chicken and shrimp freshness[J]. Food Packaging and Shelf Life,2022,34:100939. doi: 10.1016/j.fpsl.2022.100939

    [72]

    SHEN D B, ZHANG M, MUJUMDAR A S, et al. Consumer-oriented smart dynamic detection of fresh food quality:recent advances and future prospects[J]. Critical Reviews in Food Science and Nutrition,2024,64(30):11281−11301. doi: 10.1080/10408398.2023.2235703

    [73]

    LI R, WANG S C, FENG H Y, et al. An intelligent chitosan/gelatin film via improving the anthocyanin-induced color recognition accuracy for beef sub-freshness differentiation monitoring[J]. Food Hydrocolloids,2024,146:109219. doi: 10.1016/j.foodhyd.2023.109219

    [74]

    OLADZADABBASABADI N, NAFCHI A M, GHASEMLOU M, et al. Natural anthocyanins:Sources, extraction, characterization, and suitability for smart packaging[J]. Food Packaging and Shelf Life,2022,33:100872. doi: 10.1016/j.fpsl.2022.100872

    [75] 陈赛艳, 赵正禾, 胥小清, 等. 紫甘蓝花青素智能指示膜的制备及其在牛乳新鲜度监测中应用[J]. 农业工程学报,2022,38(24):228−236. [CHEN S Y, ZHAO Z H, XU X Q, et al. Preparation of intelligent indicator film based on purple cabbage anthocyanidin for monitoring milk freshness[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(24):228−236.] doi: 10.11975/j.issn.1002-6819.2022.24.025

    CHEN S Y, ZHAO Z H, XU X Q, et al. Preparation of intelligent indicator film based on purple cabbage anthocyanidin for monitoring milk freshness[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(24): 228−236. doi: 10.11975/j.issn.1002-6819.2022.24.025

    [76]

    ZHANG Q, LIN G, WANG H N, et al. Development of smart packaging film incorporated with sodium alginate-chitosan quaternary ammonium salt nanocomplexes encapsulating anthocyanins for monitoring milk freshness[J]. International Journal of Biological Macromolecules, 2024:130336.

    [77]

    YI F X, HOU F Y, ZHAN S Q, et al. Effect of nano-TiO2 particle size on the performance of chitosan/zein/red radish anthocyanin composite film for visual monitoring of mushroom freshness[J]. Postharvest Biology and Technology,2024,211:112809. doi: 10.1016/j.postharvbio.2024.112809

图(5)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-05
  • 网络出版日期:  2025-02-09

目录

/

返回文章
返回