Processing math: 100%
  • EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

铁皮石斛多糖的结构表征与抗氧化活性研究

李学玲, 白芩凡, 孙体杰, 陈丽萍, 张奇, 李素丽, 许苑南

李学玲,白芩凡,孙体杰,等. 铁皮石斛多糖的结构表征与抗氧化活性研究[J]. 食品工业科技,2024,45(19):32−39. doi: 10.13386/j.issn1002-0306.2023090300.
引用本文: 李学玲,白芩凡,孙体杰,等. 铁皮石斛多糖的结构表征与抗氧化活性研究[J]. 食品工业科技,2024,45(19):32−39. doi: 10.13386/j.issn1002-0306.2023090300.
LI Xueling, BAI Qinfan, SUN Tijie, et al. Structural Characterization and Antioxidant Activity of Dendrobium officinale Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(19): 32−39. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090300.
Citation: LI Xueling, BAI Qinfan, SUN Tijie, et al. Structural Characterization and Antioxidant Activity of Dendrobium officinale Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(19): 32−39. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090300.

铁皮石斛多糖的结构表征与抗氧化活性研究

基金项目: 普洱学院青年学术与技术带头人培养项目(QNRC21-04);云南省教育厅科学研究基金立项项目(2024J1097);普洱学院校级科研立项项目(PEXYXJYB202301)。
详细信息
    作者简介:

    李学玲(1984−),女,硕士,讲师,研究方向:民族医药与地方特色食品的资源与活性研究,E-mail:lixueling_1006@163.com

    通讯作者:

    许苑南(1993−),女,硕士,研究实习员,研究方向:中药药理应用与研究,E-mail:1538473882@qq.com

  • 中图分类号: TS207.3

Structural Characterization and Antioxidant Activity of Dendrobium officinale Polysaccharides

  • 摘要: 为深入研究铁皮石斛多糖的抗氧化活性,以铁皮石斛为原料,提取纯化铁皮石斛多糖并表征其初步结构,从铁皮石斛多糖自由基清除能力和对低密度脂蛋白(Low Density Lipoprotein,LDL)体外氧化抑制效果两个方面评价其抗氧化活性。结果表明,铁皮石斛多糖总糖含量90.17%±3.90%,蛋白质含量0.14%±0.05%,灰分含量4.47%±1.42%以及糖醛酸含量2.53%±1.02%,相对分子量23970 Da,单糖组成主要为甘露糖和葡萄糖。铁皮石斛多糖具有一定的自由基清除能力,可以抑制LDL氧化修饰体系中共轭二烯的产生,3.00 mg·mL−1时铁皮石斛多糖对铜离子诱导的LDL氧化产生的硫代巴比妥酸反应产物(Thiobarbituric Acid Reactive Substances,TBARS)抑制率为57.46%±0.56%。本研究可为开发因LDL氧化导致的动脉粥样硬化(Arteriosclerosis,AS)等疾病药物提供理论支撑。
    Abstract: To study the antioxidant activity of polysaccharides from Dendrobium officinale, the polysaccharide was extracted and purified from Dendrobium officinale, and its preliminary structure was characterized. Free radical scavenging activity and inhibition of low density lipoprotein (LDL) in vitro oxidation of Dendrobium officinale polysaccharides were evaluated. The results showed that the total sugar content of the obtained Dendrobium officinale polysaccharide was 90.17%±3.90%, the protein content was 0.14%±0.05%, the ash content was 4.47%±1.42% and the glucuronic acid content was 2.53%±1.02%, the relative molecular weight was 23970 Da and the monosaccharides were mainly mannose and glucose in this test. Dendrobium officinale polysaccharide had certain free radical scavenging capacity. It could inhibit the production of conjugated diene in the oxidative modification system of LDL. The inhibition rate of thiobarbituric acid reactive substances (TBARS) by copper ion reached 57.46%±0.56% when the polysaccharide concentration was 3.00 mg·mL−1. This study could provide theoretical support for the development of drugs for diseases such as arteriosclerosis due to LDL oxidation.
  • 低密度脂蛋白(Low Density Lipoprotein,LDL)由蛋白质、胆固醇和磷脂等复合而成,血液中胆固醇浓度过高或当机体受到酒精、药物等打击时体内会发生氧化应激反应,LDL极易发生系列氧化反应生成共轭二烯、过氧化氢和丙二醛(Malondialdehyde,MDA)等脂质过氧化物[1],沉积于动脉内壁、产生血凝块、促使动脉壁形成动脉粥样斑块,导致动脉粥样硬化的发生[2]。而动脉粥样硬化会出现一系列病变或不良症状,是许多心脑血管疾病发生的主要原因。因此,预防动脉粥样硬化性心脑血管疾病的关键是抑制LDL氧化反应的发生。目前主要通过测定共轭二烯的形成和硫代巴比妥酸反应物(Thiobarbituric Acid Reactive Substance,TBARS)的量来评价LDL氧化的程度[3]

    铁皮石斛(Dendrobium officinale Kimura et Migo),兰科石斛属药食同源植物,主要含有苷类、石斛碱、酚类、多糖和氨基酸等成分,其中多糖是铁皮石斛的主要活性成分[4],单糖组成主要为葡萄糖、半乳糖、阿拉伯糖和甘露糖[57],具有显著的润肺止咳、止痛退热效果,能有效治疗糖尿病和劳累过度,清虚热解烦渴[8],民间有“救命仙草”一称。铁皮石斛除药用之外还广泛用于食品、保健品、化妆品的开发。目前国内外对铁皮石斛的抗氧化、抗肿瘤、抗疲劳、增强机体免疫力和改善糖尿病的药理活性有广泛研究。研究发现铁皮石斛能显著改善慢性肝炎患者的抗氧化指标,可延缓皮肤衰老,具有显著的抗氧化作用[911];石斛多糖能抑制结肠癌、胃癌、食管癌细胞的生长,可通过调节、抑制炎症因子表达等方式来预防癌症发生[1214];WANG等[15]、张静等[16]、苑洁等[17]研究发现石斛多糖能有效调节环磷酰胺所致免疫低下小鼠血清中的各项指标,提高小鼠机体免疫力;周海涛等[18]、唐汉庆等[19]、侯燕等[20]发现铁皮石斛能促进蛋白质合成,改善体内糖原储存,减少氨基酸和蛋白质分解,调节能量代谢速率,改善疲劳;王云威等[21]和胡宗礼等[22]发现铁皮石斛能降低Ⅱ型糖尿病患者和四氧嘧啶糖尿病大鼠的血糖值,改善糖尿病患者的症状。石斛多糖具有一定的抗氧化作用[2325],但能否抑制LDL氧化目前尚未见文献报道。因此,本研究在参考文献的基础上[2629],提取纯化铁皮石斛中的多糖,测定其组分含量、分子量、单糖组成和体外抗氧化活性并根据分析共轭二烯的形成和TBARS产生的抑制研究铁皮石斛多糖对LDL氧化的影响,为石斛多糖对动脉粥样硬化等疾病的预防与治疗药物的研发提供一定的试验参考。

    石斛 云南普洱高山石斛种植基地提供,经鉴定为铁皮石斛(Dendrobium officinale Kimura et Migo)的茎,除杂晒干,粉碎,过60目筛,密封避光低温保存备用;新鲜猪血血浆 普洱市屠宰场;乙酸、铁氰化钾、维生素C(Vitamin C,VC)、三氯乙酸、硫酸亚铁 分析纯,天津市大茂化学试剂厂;水杨酸、氢氧化钠 分析纯,天津市风船化学试剂科技有限公司;盐酸 分析纯,云南杨林工业开发区汕滇药业有限公司;葡萄糖、岩藻糖、鼠李糖、阿拉伯糖、半乳糖、木糖、甘露糖、果糖、核糖、半乳糖醛酸、葡萄糖醛酸、甘露糖醛酸、古罗糖醛酸、普鲁兰糖、2,6-二叔丁基-4-甲基苯酚(Butylated Hydroxytoluene,BHT)、1,1-二苯基-2-三硝基苯肼(1,1-Diphenyl-2-Picrylhydrazyl,DPPH) 标准品,纯度>98%,成都植标化纯生物技术有限公司;低密度脂蛋白(LDL)标准品 上海源叶生物科技有限公司。

    PR224ZH/E电子天平 奥豪斯仪器(常州)有限公司;UV-2600紫外-可见分光光度计、LC-20AT高效凝胶渗透色谱仪 岛津国际贸易有限公司;Thermo ICS 5000+离子色谱系统、Reacti-thermo氮气吹扫仪 美国赛默飞世尔科技公司;HH-S28s恒温水浴锅 常州市金坛大地自动化仪器厂;SC-3616低速离心机 安徽中科中住科学仪器有限公司。

    参照CHEN等[30]和陆娟等[31]的方法。称取一定量的铁皮石斛,按料液比1:30加水,70 ℃超声30 min,抽滤,提取3次并合并滤液,3000 r/min离心,浓缩上清液,得铁皮石斛粗多糖。将粗多糖溶液按0.5%添加活性炭,70 ℃恒温振荡60 min,过滤,收集滤液;加入多糖溶液体积1/4的Sevag试剂,重复振荡过滤多次至两相界面没有变性蛋白,8000~14000透析袋(孔径0.20~0.25 nm)去离子水透析24 h,加4倍体积95%乙醇沉淀,4 ℃冷藏过夜,3000 r/min离心3 min分离得白色絮状物,乙醇洗涤2~3次,冷冻干燥得铁皮石斛多糖纯品。参考文献[32],采用考马斯亮蓝、食品中总灰分测定方法、间羟基联苯比色法和苯酚-硫酸法分别测定多糖的蛋白质含量、灰分含量、糖醛酚含量和总糖含量。

    配制1.00 mg/mL多糖溶液,200~1000 nm全波长扫描,分析铁皮石斛多糖的吸收情况并对其纯度进行初步判定。再称取200 mg经105 ℃干燥至恒重的KBr,加2 mg干燥样品,红外灯下于玛瑙研钵中研磨均匀,压片机压成薄片,4000~500 cm−1扫描,根据各吸收峰的归属表征多糖结构。

    参考文献[32],配制5 mg/mL的样品溶液,12000 r/min离心10 min,0.22 µm微孔滤膜过滤,35 ℃以0.6 mL/min流速洗脱。以不同相对分子质量的Pullulan多糖(Mw 642000、334000、49400、22000、6300 Da)为标准品,以lgMw对保留时间t做标准曲线,计算样品的分子量大小。

    参照陈丽叶等[33]的方法,称取0.50 g多糖样品,加1 mL 2 mol/L三氟乙酸溶液,121 ℃加热2 h,通氮气吹干,甲醇重复清洗2~3次,再吹干,加无菌水溶解得多糖供试液。以葡萄糖、岩藻糖、鼠李糖、阿拉伯糖、半乳糖、木糖、甘露糖、果糖、核糖、半乳糖醛酸、葡萄糖醛酸、甘露糖醛酸、古罗糖醛酸为标准品,采用Thermo ICS5000离子色谱系统Dionex™ CarboPac™ PA20(150 mm×3.0 mm,10 μm)液相色谱柱;进样量5 μL;流动相A(H2O),流动相B(0.10 mol/L NaOH),流动相C(0.10 mol/L NaOH,0.2 mol/L NaAc),流速0.5 mL/min;柱温30 ℃;洗脱梯度:0 min A相/B相/C相(95:5:0,V/V),26 min A相/B相/C相(85:5:10,V/V),42 min A相/B相/C相(85:5:10,V/V),42.1 min A相/B相/C相(60:0:40,V/V),52 min A相/B相/C相(60:40:0,V/V),52.1 min A相/B相/C相(95:5:0,V/V),60 min A相/B相/C相(95:5:0,V/V),分析多糖样品供试液的单糖组成。

    参照李学玲等[34]的测定方法,调整浓度梯度测定铁皮石斛多糖的DPPH·清除率、·OH清除率和总还原能力。

    准确量取0、0.40、0.80、1.20、1.60、2.00、2.50、3.00和4.00 mg/mL的多糖样液1.00 mL,加0.10 mmol/L DPPH溶液3.00 mL,混匀,静置30 min,517 nm处测吸光度。以VC为阳性对照,按式(1)计算DPPH·清除率。

    DPPH(%)=(1A1A2A0)×100 (1)

    式中,A1为样品溶液与DPPH的吸光度;A2为无水乙醇代替DPPH的吸光度;A0为无水乙醇代替样品溶液的吸光度。

    分别取0、0.40、0.80、1.20、1.60、2.00、2.50、3.00和4.00 mg/mL的多糖样液1.00 mL,加2.00 mL 9 mmol/L FeSO4溶液和5.00 mL 6 mmol/L水杨酸-乙醇溶液,摇匀,加1.00 mL 9 mmol/L H2O2溶液,35 ℃反应30 min,510 nm处测吸光度。以VC为阳性对照,按式(2)计算不同浓度·OH清除率。

    OH(%)=(1A1A2A0)×100 (2)

    式中,A1为样品混合液吸光度;A2为蒸馏水代替H2O2溶液吸光度;A0为蒸馏水代替样品混合液吸光度。

    分别取0、0.40、0.80、1.20、1.60、2.00、2.50、3.00和4.00 mg/mL的多糖样液1.00 mL,加2.50 mL 1%铁氰化钾溶液、2.50 mL 10%三氯乙酸和2.50 mL 0.20 mol/L的磷酸盐缓冲液(pH6.6),混匀,从中取2.00 mL溶液,加0.1% FeCl3溶液6.00 mL,定容至10.00 mL,混匀,反应10 min,700 nm处测吸光度。以VC为阳性对照,吸光度大小即能反映溶液的抗氧化能力。

    在硫代巴比妥酸反应物反应体系中,对LDL氧化修饰抑制作用评价时,硫酸铜添加量的不同会引起实验结果的差异,因此应先依据试验结果得出最适硫酸铜浓度[3]

    试验设定CuSO4浓度依次为0.10、0.25、0.50、1.00、2.00、3.00、6.00、8.00和12.00 mmol/L,LDL浓度依次为0.50、1.00、2.00、4.00 mg/mL。分别取50.00 μL不同浓度多糖样液,加400.00 μL LDL溶液和50.00 μL CuSO4溶液,测定4个不同浓度LDL溶液在9个不同浓度CuSO4溶液下的吸光度A532,确定LDL和硫酸铜的合适添加量。

    分别取50.00 μL以CH3OH为溶剂配制所得的不同浓度多糖样液,加400.00 μL确定浓度LDL溶液和50.00 μL确定浓度CuSO4溶液,37 ℃水浴24 h后加25.00 μL 1% EDTA-2Na、1.00 mL15%三氯乙酸和1.00 mL 0.67%硫代巴比妥酸混匀显色,沸水浴30 min,532 nm处测吸光度记为A1,以CH3OH取代样液测促氧化组吸光度A2,以BHT为阳性对照。按式(3)计算TBARS抑制率。

    TBARS(%)=(A2A1)A2×100 (3)

    参照陈丽叶等[33]的方法测定铁皮石斛多糖对共轭二烯产生的延缓作用。将LDL和多糖溶液(0.20、0.40、0.60、0.80和1.00 mg/mL)37 ℃孵育5 min,加2.00 mmol/L CuSO4。234 nm处每间隔40 min测一次吸光值。以H2O代替CuSO4、CH3OH代替样品测空白组吸光值;以CH3OH代替样品测促氧组吸光值;以BHT为阳性对照。通过不同时间不同多糖浓度吸光值的变化分析铁皮石斛多糖对LDL氧化产物共轭二烯的影响。

    本文实验数据平行测定3次,结果处理采用Origin 9.0软件统计计算并作图。

    实验检测了铁皮石斛多糖中蛋白质、灰分、糖醛酸和总糖组分含量,得葡萄糖标准曲线的线性回归方程为:y=0.01409x+0.04732,R2=0.99956;蛋白质标准曲线的线性回归方程为:y=0.81021x−4.78571,R2=0.99974;半乳糖醛酸标准曲线的线性回归方程为:y=0.00438x+0.00375,R2=0.99909。3个化合物在测定范围内线性关系良好。多次脱蛋白后,铁皮石斛多糖蛋白质含量为0.14%±0.05%,说明铁皮石斛多糖中的蛋白质很难完全去除,可能与多糖发生共价反应[35];灰分含量4.47%±1.42%,说明铁皮石斛多糖中含有矿物质;糖醛酸含量为2.53%±1.02%;总糖含量达90.17%±3.90%。

    200~1000 nm对提取所得铁皮石斛多糖样液全波长扫描,扫描图谱如图1所示。

    图  1  铁皮石斛多糖紫外扫描图谱
    Figure  1.  Ultraviolet scanning atlas of Dendrobium officinale polysaccharides

    图1可知粗多糖样品在280 nm处有一小的吸收峰,但纯化后的多糖在260和280 nm处均无吸收,表明样品中基本不含蛋白质和核酸,纯度较高。

    铁皮石斛多糖的红外光谱图如图2所示。由图2可知,3390 cm−1为O-H的伸缩振动吸收峰;2920 cm−1和1377 cm−1分别为C-H键的伸缩振动和变形振动;1741 cm−1和1645 cm−1处为酮基(C=O)和醛基(C=O)的不对称伸缩振动吸收峰;在1250 cm−1和1030 cm−1处的吸收峰为C-O键的伸缩振动[36];在950 cm−1和810 cm−1处的吸收峰表明存在吡喃糖残基,873 cm−1的特征吸收表明存在甘露糖残基[37],符合糖类的结构特征。

    图  2  铁皮石斛多糖红外光谱图
    Figure  2.  Infrared spectrogram of Dendrobium officinale polysaccharides

    图3所示,HPGPC洗脱出的Pullulan糖吸收峰出峰时间主要集中在13~16 min之间。以Pullulan糖标lgMw对保留时间tR作图得校正曲线方程为:y=−0.7025396x+14.94813,R2=0.9952。除杂纯化的多糖经高效液相渗透色谱显示只有一个单峰,根据保留时间计算得铁皮石斛多糖分子量为23970 Da。

    图  3  Pullulan糖标HPGPC洗脱曲线和铁皮石斛多糖色谱图
    Figure  3.  HPGPC elution curve of Pullulan and chromatogram of polysaccharide from Dendrobium officinale

    通过色谱分析,得各单糖混标离子色谱图和样品供试液离子色谱图如图4a图4b所示,结果表明,铁皮石斛多糖由甘露糖(75.01wt%)、葡萄糖(21.25wt%)、半乳糖(1.70wt%)、阿拉伯糖(0.69wt%)、葡萄糖醛酸(0.17wt%)和甘露糖醛酸(0.25wt%)组成,其中以甘露糖和葡萄糖为主,与于小芳[38]和宾宇波等[39]的研究一致。

    图  4  单糖标准品混合溶液(a)与样品(b)色谱图
    注:1.岩藻糖(Fucose);2.阿拉伯糖(Arabinose);3.鼠李糖(Rhamnose);4.半乳糖(Galactose);5.葡萄糖(Glucose);6.木糖(Xylose);7.甘露糖(Mannose);8.果糖(Fructose);9.核糖(Ribose);10.半乳糖醛酸(Galacturonic Acid);11.葡萄糖醛酸(Glucuronic Acid);12.甘露糖醛酸(Mannuronic Acid);13.古罗糖醛酸(Guluronic Acid)。
    Figure  4.  Chromatograms of monosaccharide mixed standard solution (a) and sample (b)

    铁皮石斛多糖对DPPH·的清除能力如图5所示。由图5可知,阳性对照VC在浓度为0.40 mg/mL时,对DPPH·的清除能力达94.24%。铁皮石斛多糖对DPPH·的半数清除浓度EC50为3.02 mg/mL。在分析浓度范围内,DPPH·的清除能力与石斛多糖的浓度量效关系明显,多糖浓度越大,自由基清除能力越强,多糖浓度为4.00 mg/mL时DPPH·清除率达58.28%,高于流苏石斛多糖4.00 mg/mL时的DPPH·清除率(40.96%)[40]

    图  5  铁皮石斛多糖对DPPH·的清除能力
    Figure  5.  DPPH· scavenging ability of Dendrobium officinale polysaccharides

    铁皮石斛多糖对·OH的清除能力如图6所示。由图6可知,阳性对照VC在实验浓度为0.40 mg/mL时,对·OH的清除能力达93.24%。铁皮石斛多糖对·OH的半数清除浓度EC50为3.05 mg/mL,与对DPPH·的EC50基本一致。在0.00~4.00 mg/mL浓度范围内,石斛多糖对·OH的清除能力随着浓度的增大而增强,最大清除率为55.98%,与流苏石斛多糖4.00 mg/mL时的·OH清除率(58.64%)基本一致[40]

    图  6  铁皮石斛多糖对·OH的清除能力
    Figure  6.  ·OH scavenging ability of Dendrobium officinale polysaccharides

    铁皮石斛多糖的总还原能力测定结果如图7所示。由图7可知,在分析浓度范围内,VC组和石斛多糖的还原能力和浓度的线性关系明显。多糖浓度越大,吸光度逐渐增强,多糖浓度为4.00 mg/mL时的多糖吸光度略低于阳性对照VC,体现良好的抗氧化活性。

    图  7  铁皮石斛多糖的还原能力
    Figure  7.  Reducing ability of Dendrobium officinale polysaccharides

    LDL和CuSO4添加量结果如图8所示,0.10~2.00 mmol/L CuSO4浓度范围内,当CuSO4的浓度固定时,吸光度随LDL浓度的增加而增大;0.10~12.00 mmol/L CuSO4浓度范围内,当LDL浓度固定在0.50、1.00和2.00 mg/mL浓度下,吸光度值在不同CuSO4浓度下呈现上下轻微波动状态;当LDL浓度固定在4.00 mg/mL时,吸光度值在CuSO4浓度为0.10~2.00 mmol/L范围内随着其浓度的增加逐渐增大,在2.00~12.00 mmol/L范围内,其吸光度值明显降低。因此,确定后续硫代巴比妥酸反应物评价体系中CuSO4浓度为2.00 mmol/L,LDL浓度则采用4.00 mg/mL。

    图  8  铁皮石斛多糖对LDL氧化易感性的抑制作用
    Figure  8.  Inhibitory effect of Dendrobium officinale polysaccharides on susceptibility to LDL oxidation

    在LDL发生氧化过程中会产生丙二醛(Malondialdehyde,MDA),MDA含量与氧化程度呈正相关。因此MDA的测定被广泛用作脂质氧化应激评估的指标。MDA在较高温度及酸性环境中可与TBA发生反应,形成红色的MDA-TBA络合物,此物质在532 nm处有最大吸收,据此可以通过TBARS检测MDA的水平,评价LDL氧化的程度[41]

    本实验测定了铁皮石斛多糖对LDL脂质过氧化产物TBARS生成的影响,结果如图9所示。由图可以看出,不同浓度铁皮石斛多糖对TBARS抑制作用显著。随着多糖浓度的增加,铁皮石斛多糖对LDL氧化产物TBARS的抑制作用增强,呈现良好的浓度依赖效应,在多糖浓度为3.00 mg/mL时,对TBARS生成的抑制率最大,为57.46%±0.56%,与阳性对照BHT的抑制率74.46%存在一定差距。表明铁皮石斛多糖一定程度上可以抑制CuSO4诱导LDL氧化时TBARS的产生。

    图  9  多糖对CuSO4诱导LDL氧化时TBARS抑制率的影响
    Figure  9.  Effect of polysaccharides on TBARS inhibition rate during LDL oxidation induced by CuSO4

    LDL中含有大量的不饱和脂肪酸,氧化修饰过程中,氧自由基与脂蛋白中ApoB100或亚油酸、花生四烯酸、胆固醇酯等脂质发生反应,启动脂质过氧化链式反应,生成的中间产物共轭二烯在234 nm波长处有最大吸收峰,因此,可利用紫外分光光度计检测随反应时间的延长共轭二烯生成量的变化,以评价LDL氧化修饰程度[42]

    图10可以看出,空白组、促氧组和多糖组的吸光值在分析时间范围内均随时间增加整体呈上升趋势,反应280 min后,空白组、促氧组和多糖组(0.20、0.40、0.60、0.80与1.00 mg/mL)的吸光值分别为0.074、0.259、0.164、0.160、0.158、0.155、0.149,即加入多糖后的LDL氧化中间产物共轭二烯随多糖添加量的增加而逐渐降低,即1.00 mg/mL铁皮石斛多糖样液对共轭二烯的抑制效果最强。空白组和多糖组的吸光度变化虽有波动但整体均低于促氧组,表明铁皮石斛多糖能有效延缓CuSO4诱导LDL氧化过程中共轭二烯的形成,进而降低LDL氧化速率,从而延缓动脉粥样硬化的形成。

    图  10  不同浓度多糖对共轭二烯形成的影响
    Figure  10.  Effect of polysaccharides at different concentrations on conjugated diene foemation

    本研究利用水提醇沉、Sevag脱蛋白和透析法获得主要由甘露糖和葡萄糖组成的铁皮石斛多糖,单糖比率为3.5:1,高效凝胶渗透色谱法检测得分子量为23970 Da。多糖的生物活性与理化性质、分子量、单糖组成、糖苷键种类、取代基的种类及取代程度和结构等息息相关,但本研究未对糖苷键种类、构型、连接顺序以及多糖的高级结构等进行分析,此部分具有进一步深入研究的价值;铁皮石斛多糖具有一定的DPPH·和·OH清除作用,随着多糖浓度的增加总还原能力亦呈增长趋势,表明铁皮石斛多糖具有良好的体外氧化能力。在抗LDL氧化程度方面,发现随着多糖浓度的增加LDL氧化程度降低,铁皮石斛多糖的抗LDL氧化能力与多糖浓度具有明显量效关系,可延缓LDL氧化修饰体系中具有共轭二烯结构的脂质过氧化物形成;多糖浓度为3.00 mg/mL时对TBARS生成的抑制率可达57.46%±0.56%,进一步说明铁皮石斛多糖具有一定抗氧化作用,能够抑制LDL的氧化修饰,在动脉粥样硬化和心血管疾病药物的研发中具有一定的参考价值。

  • 图  1   铁皮石斛多糖紫外扫描图谱

    Figure  1.   Ultraviolet scanning atlas of Dendrobium officinale polysaccharides

    图  2   铁皮石斛多糖红外光谱图

    Figure  2.   Infrared spectrogram of Dendrobium officinale polysaccharides

    图  3   Pullulan糖标HPGPC洗脱曲线和铁皮石斛多糖色谱图

    Figure  3.   HPGPC elution curve of Pullulan and chromatogram of polysaccharide from Dendrobium officinale

    图  4   单糖标准品混合溶液(a)与样品(b)色谱图

    注:1.岩藻糖(Fucose);2.阿拉伯糖(Arabinose);3.鼠李糖(Rhamnose);4.半乳糖(Galactose);5.葡萄糖(Glucose);6.木糖(Xylose);7.甘露糖(Mannose);8.果糖(Fructose);9.核糖(Ribose);10.半乳糖醛酸(Galacturonic Acid);11.葡萄糖醛酸(Glucuronic Acid);12.甘露糖醛酸(Mannuronic Acid);13.古罗糖醛酸(Guluronic Acid)。

    Figure  4.   Chromatograms of monosaccharide mixed standard solution (a) and sample (b)

    图  5   铁皮石斛多糖对DPPH·的清除能力

    Figure  5.   DPPH· scavenging ability of Dendrobium officinale polysaccharides

    图  6   铁皮石斛多糖对·OH的清除能力

    Figure  6.   ·OH scavenging ability of Dendrobium officinale polysaccharides

    图  7   铁皮石斛多糖的还原能力

    Figure  7.   Reducing ability of Dendrobium officinale polysaccharides

    图  8   铁皮石斛多糖对LDL氧化易感性的抑制作用

    Figure  8.   Inhibitory effect of Dendrobium officinale polysaccharides on susceptibility to LDL oxidation

    图  9   多糖对CuSO4诱导LDL氧化时TBARS抑制率的影响

    Figure  9.   Effect of polysaccharides on TBARS inhibition rate during LDL oxidation induced by CuSO4

    图  10   不同浓度多糖对共轭二烯形成的影响

    Figure  10.   Effect of polysaccharides at different concentrations on conjugated diene foemation

  • [1]

    ABDELHADY F K, HEGAZI A G, WOLLENWEBER E. Effect of egyptian propolis on the susceptibility of LDL to oxidative modification and its antiviral activity with special emphasis on chemical composition[J]. Zeitschrift für Naturforschung C,2015,6299(10):645−655.

    [2]

    HIROFUMI A. Oxidative modification of lipoproteins[J]. Subcellular Biochemistry,2014,77(1):3−14.

    [3] 赵锦. 丁香抗氧化活性物质提取及其抗LDL氧化修饰[D]. 天津:天津科技大学, 2014. [ZHAO Jin. The extraction of antioxidants from clove and their anti-LDL oxidation activity[D]. Tianjin:Tianjin University of Science & Technology. 2014.]

    ZHAO Jin. The extraction of antioxidants from clove and their anti-LDL oxidation activity[D]. Tianjin: Tianjin University of Science & Technology. 2014.

    [4]

    MIN Z S, YING S, HUANG F J. An efficient mixed enzymesassisted mechanical bioextraction of polysaccharides from Dendrobium officinale and determination of monosaccharides by HPLC-Q-TOF/MS[J]. International Journal of Biological Macromolecules,2023,227(11):986−1000.

    [5]

    WANG Y H. Traditional uses, chemical constituents, pharmacological activities, and toxicological effects of Dendrobium leaves:A review[J]. Journal of Ethnopharmacology,2021,270(9):113851.

    [6] 杨永升, 庄曾渊, 王津津, 等. 石斛散对体外培养人视网膜细胞作用[J]. 眼科新进展,2009,29(6):405−408. [YANG Yongsheng, ZHUANG Zengyuan, WANG Jinjin, et al. Effects of shihusan on human retinal cells cultured in vitro[J]. Recent Advances in Ophthalmology,2009,29(6):405−408.]

    YANG Yongsheng, ZHUANG Zengyuan, WANG Jinjin, et al. Effects of shihusan on human retinal cells cultured in vitro[J]. Recent Advances in Ophthalmology, 2009, 29(6): 405−408.

    [7] 何铁光, 杨丽涛, 李杨瑞, 等. 铁皮石斛原球茎多糖DCPP1a-1对氧自由基和脂质过氧化的影响[J]. 天然产物研究与开发,2007,19(3):410−414. [HE Tieguang, YANG Litao, LI Yangrui, et al. Effects of the polysaccharides DCPPla-1 from suspension-cultured protocorms of Dendrobium candidumon oxygen radical and lipid peroxidatio[J]. Natural Product Research and Development,2007,19(3):410−414.] doi: 10.3969/j.issn.1001-6880.2007.03.012

    HE Tieguang, YANG Litao, LI Yangrui, et al. Effects of the polysaccharides DCPPla-1 from suspension-cultured protocorms of Dendrobium candidumon oxygen radical and lipid peroxidatio[J]. Natural Product Research and Development, 2007, 19(3): 410−414. doi: 10.3969/j.issn.1001-6880.2007.03.012

    [8] 鲍素华. 铁皮石斛多糖体外抗氧化活性的研究[D]. 合肥:合肥工业大学, 2009. [BAO Suhua. Studies on antioxidant activity of polysaccharides from Dendrobium candidum in vitro[D]. Hefei:Hefei University of Technology, 2009.]

    BAO Suhua. Studies on antioxidant activity of polysaccharides from Dendrobium candidum in vitro[D]. Hefei: Hefei University of Technology, 2009.

    [9]

    WEI W, FENG L, NIE S P, et al. Structure characterization and immunomodulating effects of polysaccharides isolated from Dendrobium officinale[J]. Agric Food Chem,2016,81(S01):S1−S381.

    [10]

    YONG T Z, SHI Q Y, DONG D W, et al. Fermented Dendrobium officinale polysaccharides protect UVA-induced photoaging of human skin fibroblasts[J]. Food Science Nutrition,2022,10(4):1275−1288. doi: 10.1002/fsn3.2763

    [11] 赵苑伶, 张雪, 陈林珍, 等. 铁皮石斛多糖的分离纯化及抗衰老活性研究[J]. 世界中医药,2022,17(17):2410−2415. [ZHAO Yuanling, ZHANG Xue, CHEN Linzhen, et al. Separation, purification, and antiaging activity of caulis Dendrobii officinalis polysaccharides[J]. World Chinese Medicine,2022,17(17):2410−2415.]

    ZHAO Yuanling, ZHANG Xue, CHEN Linzhen, et al. Separation, purification, and antiaging activity of caulis Dendrobii officinalis polysaccharides[J]. World Chinese Medicine, 2022, 17(17): 2410−2415.

    [12] 尚贞子. 霍山石斛营养成分动态积累规律及其多糖抗肿瘤活性研究[D]. 合肥:合肥工业大学, 2019. [SHANG Zhenzi. Study on the dynamic accumulation of nutrients in Dendrobium huoshanense and the antitumor activity of its polysaccharides[D]. Hefei:Hefei University of Technology, 2019.]

    SHANG Zhenzi. Study on the dynamic accumulation of nutrients in Dendrobium huoshanense and the antitumor activity of its polysaccharides[D]. Hefei: Hefei University of Technology, 2019.

    [13] 庞晨, 张秀玲. 铁皮石斛抑制上皮源性恶性肿瘤的研究进展[J]. 实用肿瘤学杂志,2020,34(4):362−367. [PANG Chen, ZHANG Xiuling. Research progress in inhibitory epithelium-derived malignant tumors by Dendrobium officinale[J]. Practical Oncology Journal,2020,34(4):362−367.] doi: 10.11904/j.issn.1002-3070.2020.04.013

    PANG Chen, ZHANG Xiuling. Research progress in inhibitory epithelium-derived malignant tumors by Dendrobium officinale[J]. Practical Oncology Journal, 2020, 34(4): 362−367. doi: 10.11904/j.issn.1002-3070.2020.04.013

    [14]

    SHENG C T, ZHI Y R, ZE R Y, et al. Effects of different molecular weight polysaccharides from Dendrobium officinale kimuraamp; Migo on human colorectal cancer and transcriptome analysis of differentially expressed genes[J]. Frontiers in Pharmacology,2021,3(12):704486.

    [15]

    WANG C, XU L, GUO X, et al. Optimization of the extraction process of polysaccharides from Dendrobium officinale and evaluation of the in vivo immunmodulatory activity[J]. Journal of Food Processing and Preservation,2018,42(5):13598. doi: 10.1111/jfpp.13598

    [16] 张静, 朱雅琴, 祝宇龙. 铁皮石斛及其冻干粉对免疫抑制小鼠的免疫调节作用差异研究[J]. 安徽农业科学,2019,47(24):180−181,249. [ZHANG Jing, ZHU Yaqin, ZHU Yulong. Study on the difference of immunomodulatory effects of Dendrobium officinale and its lyophilized power on immunosuppressed mice[J]. Journal of Anhui Agricultural Sciences,2019,47(24):180−181,249.] doi: 10.3969/j.issn.0517-6611.2019.24.054

    ZHANG Jing, ZHU Yaqin, ZHU Yulong. Study on the difference of immunomodulatory effects of Dendrobium officinale and its lyophilized power on immunosuppressed mice[J]. Journal of Anhui Agricultural Sciences, 2019, 47(24): 180−181,249. doi: 10.3969/j.issn.0517-6611.2019.24.054

    [17] 苑洁, 刘佳, 王雨, 等. 贵州鲜铁皮石斛粉对小鼠免疫功能的影响[J]. 微量元素与健康研究,2020,37(6):3−6. [YUAN Jie, LIU Jia, WANG Yu, et al. Effects of fresh Dendrobium candidum powder from Guizhou on immune function in mice[J]. Studies of Trace Elements and Health,2020,37(6):3−6.]

    YUAN Jie, LIU Jia, WANG Yu, et al. Effects of fresh Dendrobium candidum powder from Guizhou on immune function in mice[J]. Studies of Trace Elements and Health, 2020, 37(6): 3−6.

    [18] 周海涛, 曹建民, 林强, 等. 铁皮石斛对运动训练大鼠物质代谢及抗运动疲劳能力的影响[J]. 中国药学杂志,2013,48(19):1684−1688. [ZHOU Haitao, CAO Jianmin, LIN Qiang, et al. Effect of Dendrobium officinale kimuraet migo on substance metabolism and exercise capacity in rats after exercise training[J]. Chinese Pharmaceutical Journal,2013,48(19):1684−1688.]

    ZHOU Haitao, CAO Jianmin, LIN Qiang, et al. Effect of Dendrobium officinale kimuraet migo on substance metabolism and exercise capacity in rats after exercise training[J]. Chinese Pharmaceutical Journal, 2013, 48(19): 1684−1688.

    [19] 唐汉庆, 陈桦, 韦祎, 等. 铁皮石斛对运动疲劳小鼠能量代谢和CNTF mRNA表达的影响[J]. 中国实验方剂学杂志,2014,20(15):164−167. [TANG Hanqing, CHEN Hua, WEI Yi, et al. Effects of Dendrobium officinale on energy metabolism and expression of CNTF mRNA in athletic fatigue mice[J]. Chinese Journal of Experimental Traditional Medical Formulae,2014,20(15):164−167.]

    TANG Hanqing, CHEN Hua, WEI Yi, et al. Effects of Dendrobium officinale on energy metabolism and expression of CNTF mRNA in athletic fatigue mice[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2014, 20(15): 164−167.

    [20] 侯燕, 费文婷, 王玉杰, 等. 霍山石斛对肾阴虚小鼠抗疲劳及能量代谢的影响[J]. 北京中医药大学学报,2018,41(12):995−1001. [HOU Yan, FEI Wenting, WANG Yujie, et al. Effects of Dendrobium huoshanense on fatigue and energy metabolism in mice with kidneyyin deficiency[J]. Journal of Beijing University of Traditional Chinese Medicine,2018,41(12):995−1001.] doi: 10.3969/j.issn.1006-2157.2018.12.005

    HOU Yan, FEI Wenting, WANG Yujie, et al. Effects of Dendrobium huoshanense on fatigue and energy metabolism in mice with kidneyyin deficiency[J]. Journal of Beijing University of Traditional Chinese Medicine, 2018, 41(12): 995−1001. doi: 10.3969/j.issn.1006-2157.2018.12.005

    [21] 王云威, 王景雪. 铁皮石斛多糖对2型糖尿病小鼠降糖降脂的作用[J]. 食品科学,2020,41(21):127−132. [WANG Yunwei, WANG Jingxue. Hypoglycemic and lipid-lowering effects of polysaccharides from Dendrobium officinale stems in type2 diabetic mice[J]. Food Science,2020,41(21):127−132.] doi: 10.7506/spkx1002-6630-20191101-001

    WANG Yunwei, WANG Jingxue. Hypoglycemic and lipid-lowering effects of polysaccharides from Dendrobium officinale stems in type2 diabetic mice[J]. Food Science, 2020, 41(21): 127−132. doi: 10.7506/spkx1002-6630-20191101-001

    [22] 胡宗礼, 何文倩, 王青华, 等. 丹霞铁皮石斛的降血糖实验研究[J]. 智慧健康,2019,5(23):40−41,52. [HU Zongli, HE Wenqian, WANG Qinghua, et al. Experimental study on hypoglycemic effect of Dendrobium Candidum[J]. Smart Healthcare,2019,5(23):40−41,52.]

    HU Zongli, HE Wenqian, WANG Qinghua, et al. Experimental study on hypoglycemic effect of Dendrobium Candidum[J]. Smart Healthcare, 2019, 5(23): 40−41,52.

    [23] 黄琼, 何燕萍. 铁皮石斛叶多糖提取工艺优化及其抗氧化活性[J]. 中国食品添加剂,2022,33(9):48−53. [HUANG Qiong, HE Yanping. Optimization of extraction process of polysaccharides from Dendrobium officinale leaves and its antioxidant activity[J]. China Food Additives,2022,33(9):48−53.]

    HUANG Qiong, HE Yanping. Optimization of extraction process of polysaccharides from Dendrobium officinale leaves and its antioxidant activity[J]. China Food Additives, 2022, 33(9): 48−53.

    [24] 丁勇, 徐玉巧, 杨宗玲, 等. 铁皮石斛苹果复合饮料加工工艺及其抗氧化性研究[J]. 保鲜与加工,2021,21(1):93−98. [DING Yong, XU Yuqiao, YANG Zongling, et al. Study on the processing technology of compound beverage of Dendrobium officinale and apple and its antioxidant activity[J]. Storage and Process,2021,21(1):93−98.] doi: 10.3969/j.issn.1009-6221.2021.01.015

    DING Yong, XU Yuqiao, YANG Zongling, et al. Study on the processing technology of compound beverage of Dendrobium officinale and apple and its antioxidant activity[J]. Storage and Process, 2021, 21(1): 93−98. doi: 10.3969/j.issn.1009-6221.2021.01.015

    [25] 杨晓娜, 陈自宏, 谢雯颖, 等. 铁皮石斛花色苷提取及其抗氧化活性分析[J]. 食品工业,2021,42(1):141−146. [YANG Xiaona, CHEN Zihong, XIE Wenying, et al. Microwave-assisted extraction and oxidation resistance of anthocyanins from Dendrobium officinale[J]. The Food Industry,2021,42(1):141−146.]

    YANG Xiaona, CHEN Zihong, XIE Wenying, et al. Microwave-assisted extraction and oxidation resistance of anthocyanins from Dendrobium officinale[J]. The Food Industry, 2021, 42(1): 141−146.

    [26] 张霞, 白月明, 谢雪勤, 等. 铁皮石斛多糖分离纯化及其药理活性研究进展[J]. 食品工业科技,2022,43(24):412−422. [ZHANG Xia, BAI Yueming, XIE Xueqin, et al. Research progress on isolation, purification and pharmacological activities of Dendrobium officinale polysaccharide[J]. Science and Technology of Food Industry,2022,43(24):412−422.]

    ZHANG Xia, BAI Yueming, XIE Xueqin, et al. Research progress on isolation, purification and pharmacological activities of Dendrobium officinale polysaccharide[J]. Science and Technology of Food Industry, 2022, 43(24): 412−422.

    [27] 李国涛, 杨浩, 伏秦超. 铁皮石斛多糖活性炭脱色研究[J]. 农技服务,2017,34(5):31−33. [LI Guotao, YANG Hao, FU Qinchao. Decolorization of Dendrobium candidum polysaccharide by activated carbon[J]. Agricultural Technology Service,2017,34(5):31−33.] doi: 10.3969/j.issn.1004-8421.2017.05.018

    LI Guotao, YANG Hao, FU Qinchao. Decolorization of Dendrobium candidum polysaccharide by activated carbon[J]. Agricultural Technology Service, 2017, 34(5): 31−33. doi: 10.3969/j.issn.1004-8421.2017.05.018

    [28] 王彦平, 娄芳慧, 陈月英, 等. 苯酚-硫酸法测定紫山药多糖含量的条件优化[J]. 食品研究与开发,2021,42(4):170−174. [WANG Yanping, LOU Fanghui, CHEN Yueying, et al. Optimization of analytical conditions for the determination of polysaccharides contents in purple yam by phenolsulfuric acid method[J]. Food Research and Development,2021,42(4):170−174.] doi: 10.12161/j.issn.1005-6521.2021.04.029

    WANG Yanping, LOU Fanghui, CHEN Yueying, et al. Optimization of analytical conditions for the determination of polysaccharides contents in purple yam by phenolsulfuric acid method[J]. Food Research and Development, 2021, 42(4): 170−174. doi: 10.12161/j.issn.1005-6521.2021.04.029

    [29] 蒋大程, 高珊, 高海伦, 等. 考马斯亮蓝法测定蛋白质含量中的细节问题[J]. 实验科学与技术,2018,16(4):143−147. [JIANG Dacheng, GAO Shan, GAO Hailun, et al. The Details of protein content determination by coomassie brilliant blue staining[J]. Experiment Science and Technology,2018,16(4):143−147.] doi: 10.3969/j.issn.1672-4550.2018.04.035

    JIANG Dacheng, GAO Shan, GAO Hailun, et al. The Details of protein content determination by coomassie brilliant blue staining[J]. Experiment Science and Technology, 2018, 16(4): 143−147. doi: 10.3969/j.issn.1672-4550.2018.04.035

    [30]

    CHEN L, HUANG G L. Extraction, characterization and antioxidant activities of pumpkin polysaccharide[J]. International Journal of Biological Macromolecules,2018,118:770−774. doi: 10.1016/j.ijbiomac.2018.06.148

    [31] 陆娟, 周慧, 王贵生, 等. 一株胞外多糖产生菌的筛选鉴定及其多糖成分研究[J]. 天然产物研究与开发,2020,32(9):1484−1490,1528. [LU Juan, ZHOU Hui, WANG Guisheng, et al. Screening and identification of an exopolysaccharide-producing strain and the investigation of its polysaccharide[J]. Natural Product Research and Development,2020,32(9):1484−1490,1528.]

    LU Juan, ZHOU Hui, WANG Guisheng, et al. Screening and identification of an exopolysaccharide-producing strain and the investigation of its polysaccharide[J]. Natural Product Research and Development, 2020, 32(9): 1484−1490,1528.

    [32]

    LIU X X, GU L B, ZHANG G J, et al. Structural characterization and antioxidant activity of polysaccharides extracted from Chinese yam by a cellulase-assisted method[J]. Process Biochemistry,2022,121(10):178−187.

    [33] 陈丽叶, 常希光, 冯晓光, 等. 山药多糖的体外抗氧化活性[J]. 食品科学,2021,42(19):122−128. [CHEN Liye, CHANG Xiguang, FENG Xiaoguang, et al. In vitro antioxidant activity of Chinese yam polysaccharides[J]. Food Science,2021,42(19):122−128.] doi: 10.7506/spkx1002-6630-20201107-073

    CHEN Liye, CHANG Xiguang, FENG Xiaoguang, et al. In vitro antioxidant activity of Chinese yam polysaccharides[J]. Food Science, 2021, 42(19): 122−128. doi: 10.7506/spkx1002-6630-20201107-073

    [34] 李学玲, 龙婷, 杨莉, 等. 超声辅助酶法提取咖啡果皮白藜芦醇工艺优化及其体外抗氧化活性[J]. 食品研究与开发,2023,44(24):71−77. [LI Xueling, LONG Ting, YANG Li, et al. Optimization of ultrasound-assisted enzymatic method extraction and antioxidant activity of resveratrol from coffee bean peels[J]. Food Research and Development,2023,44(24):71−77.] doi: 10.12161/j.issn.1005-6521.2023.24.010

    LI Xueling, LONG Ting, YANG Li, et al. Optimization of ultrasound-assisted enzymatic method extraction and antioxidant activity of resveratrol from coffee bean peels[J]. Food Research and Development, 2023, 44(24): 71−77. doi: 10.12161/j.issn.1005-6521.2023.24.010

    [35] 张瑞平, 任昭辉, 张皓楠, 等. 香加皮多糖的分离纯化、单糖组成及其抗氧化活性研究[J]. 食品工业科技,2023,44(13):71−78. [ZHANG Ruiping, REN Zhaohui, ZHANG Haonan, et al. Isolation, purification, monosaccharide composition and antioxidant activity of polysaccharides from Cortex periplocae[J]. Science and Technology of Food Industry,2023,44(13):71−78.]

    ZHANG Ruiping, REN Zhaohui, ZHANG Haonan, et al. Isolation, purification, monosaccharide composition and antioxidant activity of polysaccharides from Cortex periplocae[J]. Science and Technology of Food Industry, 2023, 44(13): 71−78.

    [36] 崔海洋, 何雨欣, 罗付禹, 等. 通关藤多糖结构表征及生物活性研究[J]. 中国食品添加剂,2024,35(2):26−31. [CUI Haiyang, HE Yuxin, LUO Fuyu, et al. Structure characterization and biological activity of polysaccharides from Marsdenia tenacissima[J]. China Food Additives,2024,35(2):26−31.]

    CUI Haiyang, HE Yuxin, LUO Fuyu, et al. Structure characterization and biological activity of polysaccharides from Marsdenia tenacissima[J]. China Food Additives, 2024, 35(2): 26−31.

    [37] 刘鹏, 李静静, 乔彦良, 等. 黄芩多糖的提取及结构表征[J]. 中国畜牧兽医,2023,50(6):2518−2530. [LIU Peng, LI Jingjing, QIAO Yanliang, et al. Extraction and structure characterization of Scutellaria baicalensis polysaccharide[J]. China Animal Husb- andry & Veterinary Medicine,2023,50(6):2518−2530.]

    LIU Peng, LI Jingjing, QIAO Yanliang, et al. Extraction and structure characterization of Scutellaria baicalensis polysaccharide[J]. China Animal Husb- andry & Veterinary Medicine, 2023, 50(6): 2518−2530.

    [38] 于小芳. 不同产地、不同年限铁皮石斛多糖中单糖组成的HPLC分析[J]. 临床研究,2022,30(5):36−39. [YU Xiaofang. HPLC Analysis of monosaccharide composition in polysaccharides from Dendrobium officinale with different origins and years[J]. Clinical Research,2022,30(5):36−39.] doi: 10.12385/j.issn.2096-1278(2022)05-0036-04

    YU Xiaofang. HPLC Analysis of monosaccharide composition in polysaccharides from Dendrobium officinale with different origins and years[J]. Clinical Research, 2022, 30(5): 36−39. doi: 10.12385/j.issn.2096-1278(2022)05-0036-04

    [39] 宾宇波, 王亚芸, 安欣, 等. 铁皮石斛多糖分离纯化及单糖组成测定[J]. 食品工业科技,2014,35(4):122−125. [BIN Yubo, WANG Yayun, AN Xin, et al. Dendrobium polysaccharide purification and determination of monosaccharide composition[J]. Science and Technology of Food Industry,2014,35(4):122−125.]

    BIN Yubo, WANG Yayun, AN Xin, et al. Dendrobium polysaccharide purification and determination of monosaccharide composition[J]. Science and Technology of Food Industry, 2014, 35(4): 122−125.

    [40] 万代林. 流苏石斛多糖的化学结构鉴定及体外抗氧化活性研究[D]. 合肥:合肥工业大学, 2019. [WAN Dailin. Research on chemical structural identification and in vitro antioxidative activity evaluation of polysaccharides from Dendrobium fimbriatum Hook[D]. Hefe:Hefeii University of Technology, 2019.]

    WAN Dailin. Research on chemical structural identification and in vitro antioxidative activity evaluation of polysaccharides from Dendrobium fimbriatum Hook[D]. Hefe: Hefeii University of Technology, 2019.

    [41]

    STANISLAV K. Diversity of lipid function in atherogenesis:A focus on endothelial mechanobiology[J]. International Journal of Molecular Sciences,2021,22(21):11545. doi: 10.3390/ijms222111545

    [42]

    QIN S C. LDL and HDL oxidative modification and atherosclerosis[J]. Advances in Experimental Medicine and Biology,2020,127(6):157−169.

  • 其他相关附件

图(10)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-26
  • 网络出版日期:  2024-08-18
  • 刊出日期:  2024-09-30

目录

/

返回文章
返回