Anti-inflammatory Effects of Proteolytic Peptides from Different Ginseng Concoctions on LPS-induced RAW264.7 Cells
-
摘要: 研究从人参炮制品生晒参、红参、黑参中筛选出具有抗炎作用的蛋白酶解肽并进行对比分析。采用低温浸提法从三种炮制品中提取人参不同炮制品蛋白,采用分步酶解法,利用碱性蛋白酶、中性蛋白酶和胃蛋白酶对三种人参蛋白进行酶解,得到BGP(黑参蛋白酶解肽)、RGP(红参蛋白酶解肽)、SGP(生晒参蛋白酶解肽)三种酶解产物;使用超滤膜进行分离,分别得到不同分子量的超滤组分。通过建立脂多糖(LPS)诱导的RAW264.7炎症模型确定了具有最强抗炎活性的组分。酶联免疫法测定活性组分对RAW264.7细胞分泌一氧化氮(NO)、肿瘤坏死因子-α(TNF-α)、白细胞介素-1β((IL-1β)、白细胞介素-6(IL-6)的影响。分析三种蛋白酶解肽的氨基酸组成及含量。采用多元统计分析筛选出人参三种炮制品的差异性氨基酸并探究其与抑制RAW264.7细胞分泌细胞因子之间的关系。结果表明,人参三种炮制品蛋白酶解肽小于1 kDa组分较其他组分相比,对RAW264.7细胞增殖的作用最强且在质量浓度为50~200 μg/mL时可显著抑制NO、TNF-α、IL-6、IL-1β的分泌(P<0.05)。质量浓度为200 μg/mL时,三种蛋白酶解肽给药组对细胞因子释放的抑制作用最强,且BGP-4对细胞因子释放的抑制作用高于RGP-4和SGP-4,具有显著差异(P<0.05)。三种蛋白酶解肽均含有17种氨基酸,但含量存在明显差异。其中,苯丙氨酸含量最高且为三种人参炮制品差异氨基酸与抑制炎症因子的分泌密切相关。本研究初步探讨了炮制对人参抗炎活性的影响,并筛选出不同炮制品的差异性氨基酸,为人参炮制品的加工提供了参考依据。Abstract: The purpose of this study was to conduct a screening and comparative analysis of proteolytic peptides with anti-inflammatory properties derived from three different ginseng concoctions: Sundried ginseng, red ginseng and black ginseng. Ginseng proteins were extracted from three different types of ginseng products using a low-temperature leaching method. Subsequently, the extracted proteins underwent enzymatic digestion using alkaline protease, neutral protease, and pepsin through a stepwise enzyme digestion method. This process yielded three distinct enzyme digestion products, namely BGP (black ginseng proteolytic peptide), RGP (red ginseng proteolytic peptide), and SGP (sundried ginseng proteolytic peptide). The samples were subjected to separation using ultrafiltration membranes, resulting in the acquisition of ultrafiltration fractions with distinct molecular weights. Subsequently, the ultrafiltration fractions were further separated utilizing ultrafiltration membranes to obtain fractions with varying molecular weights. The fraction exhibiting the most potent anti-inflammatory activity was determined through the application of a lipopolysaccharide (LPS)-induced RAW264.7 inflammation model. The impact of the active fractions on the secretion of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β ((IL-1β), and interleukin-6 (IL-6) by RAW264.7 cells was assessed using enzyme immunoassay. The amino acid composition and content of the three proteolytic peptides were examined. Multivariate statistical analysis was employed to identify the distinct amino acids in the three ginseng concoctions and investigate their correlation with the inhibition of cytokine secretion by RAW264.7 cells. The findings of the study indicated that the proteolytic peptide fraction with a molecular weight of less than 1 kDa in the three ginseng products exhibited the most pronounced impact on the proliferation of RAW264.7 cells compared to the other fractions. Additionally, this fraction significantly suppressed the secretion of NO, TNF-α, IL-6, and IL-1β at concentrations ranging from 50~200 μg/mL (P<0.05). Notably, at a concentration of 200 μg/mL, the three groups receiving proteolytic peptide administration demonstrated the most potent inhibitory effect on cytokine release. Furthermore, the inhibitory effect of BGP-4 on cytokine release surpassed that of RGP-4 and SGP-4, exhibiting a statistically significant difference (P<0.05). All three peptides consisted of 17 amino acids, however, their compositions exhibited significant variations. Notably, phenylalanine exhibited the highest content, and the differential amino acids present in the three ginseng concoctions were closely associated with the inhibition of inflammatory factor secretion. This study represents an initial exploration into the impact of concoctions on the anti-inflammatory properties of ginseng, identifying distinct amino acids among different concoctions. These findings offer a valuable reference for the formulation of ginseng concoctions.
-
炎症是生物体内外环境受到刺激后,对宿主组织或细胞的损伤或感染的一种自然生理和免疫反应[1−2]。巨噬细胞通过分泌大量促炎介质和促炎细胞因子在许多炎症性疾病的发病机制中起着关键作用[3−5]。巨噬细胞对细菌内毒素脂多糖(LPS)的识别触发一系列信号级联,诱导多种促炎介质和细胞因子的表达,如肿瘤坏死因子-α(TNF-α)、白细胞介素-1β(IL-1β)和白细胞介素-6(IL-6)等。目前,LPS诱导的RAW264.7巨噬细胞已经被广泛应用于与炎症有关的体外模型研究[6−7]。
人参是五加科人参属植物人参(Panax ginseng C.A.Mey.)的干燥根及根茎,是我国传统名贵中草药[8],富含皂苷类、多糖类、氨基酸及多肽等多种化学成分[9]。现代药理学研究表明,人参具有抗氧化、抗炎等保健功效[10]。生晒参、红参和黑参为人参的主要炮制品[11]。生晒参是由人参晒干或烘干而得;鲜人参蒸制一次晒干后得红参;黑参则是人参经“九蒸九晒”制成[12]。目前,国内对黑参的研究较少。有研究表明,对比生晒参和红参,黑参的抗炎、抗肿瘤等生物活性更强[13]。
越来越多的文献报道从食物中提取的食源性肽具有良好的抗炎活性,陈元蓉等[14]从小麦胚芽中分离得到4条抗炎活性肽,可降低LPS诱导的巨噬细胞中NO及促炎因子的分泌。于笛等[15]研究发现,绿豆寡肽能显著抑制促炎因子水平的上升,并缓解巨噬细胞由LPS引起的炎症。人参作为药食同源的名贵中药,从中提取的人参多肽已被证实具有抗炎活性。田建明等[16]研究发现人参糖肽通过干预、抑制TNF-α、IL-2等多种细胞因子的释放进而达到抗炎的作用。氨基酸是构成肽的基本单位,肽的活性与氨基酸的组成、序列和含量有关。据报道,疏水性氨基酸可以增强肽与脂类的相互作用,从而更容易进入靶细胞来发挥抗炎与免疫活性[17]。人参的抗炎活性可能会受到炮制过程中氨基酸成分和含量变化的影响。已有研究表明,人参在炮制过程中氨基酸含量明显降低[18]。但将生晒参、红参和黑参蛋白酶解肽的氨基酸组成及含量的变化与抗炎活性之间的关系进行对比分析的研究还鲜有报道。
本研究筛选出黑参蛋白酶解肽、红参蛋白酶解肽和生晒参蛋白酶解肽中对RAW264.7细胞增殖作用最强的活性组分,并确定了三者蛋白酶解活性肽中氨基酸的组成和含量以及细胞炎症因子的分泌量。结合多元统计分析,筛选出三者蛋白酶解活性肽中的特征差异氨基酸以及具有抗炎活性的氨基酸。初步探究了人参炮制过程中肽的氨基酸组成及含量变化与其抗炎活性的相关性,为三种原料参的利用提供理论依据。
1. 材料与方法
1.1 材料与仪器
人参 市售的五年制鲜人参(产地吉林);碱性蛋白酶(200 U/mg)、脂多糖(lipopolysaccharides,LPS) 上海源叶生物科技有限公司;中性蛋白酶(50 U/mg) 上海麦克林生化科技有限公司;胃蛋白酶(3000 U/mg) 北京鼎国昌盛生物技术有限责任公司;小鼠巨噬细胞(RAW264.7) 上海中乔新舟生物科技有限公司;DMEM高糖培养基、新生胎牛血清 美国Gibco公司;噻唑蓝(MTT) 美国Amresco公司;二甲基亚砜(DMSO) 天津市光复精细化工研究所;一氧化氮(NO)测定试剂盒 南京建成生物工程研究所;白细胞介素-1β(IL-1β)ELISA试剂盒 依科赛生物科技有限公司;白细胞介素-6(IL-6)试剂盒、肿瘤坏死因子-α(TNF-α)试剂盒 黄石研科生物科技有限公司;其余试剂均为分析纯。
10 kDa、3 kDa、1 kDa超滤膜包 密理博公司;HERAEUS HERAcell 150i二氧化碳培养箱 日本三洋公司;YZ-875型超净工作台 苏州净化设备厂;CX 23荧光倒置显微镜 日本奥林巴斯公司;Model680型酶标仪 日本TAKARA公司;L-8900型氨基酸自动分析仪 日本日立公司。
1.2 实验方法
1.2.1 人参三种炮制品粗蛋白的制备
取新鲜人参洗净,晒干,可得生晒参[19];人参于蒸锅中蒸制4 h后晒干可得红参[20];人参于蒸锅中蒸制4 h后晒干,同样操作反复进行九次,可得黑参[21]。取一定量生晒参、红参、黑参干制品,粉碎,过40目筛,得人参不同炮制品粉末。分别称取一定量的三种人参炮制品粉末,按1:8倍量加入蒸馏水,在20 ℃下分别浸提三次,每次12 h,提取液于3600 r/min离心30 min,取上清液过滤,三次滤液合并得人参三种炮制品粗蛋白溶液[22]。真空冷冻干燥得三种炮制品粗蛋白粉,于−20 ℃保存,备用。
1.2.2 人参三种炮制品粗蛋白分步酶解
选用碱性蛋白酶、中性蛋白酶和胃蛋白酶进行酶解[23]。将三种炮制品粗蛋白粉与蒸馏水混合均匀,料液比为1:12.5(g/mL),加热至95 ℃,保温30 min后冷却,使蛋白质完全变性。加入质量分数为12%的氢氧化钠水溶液调节pH至9.5,按5000 U/g加入一定量的碱性蛋白酶,53 ℃下酶解4 h,得到碱性溶液;使用质量分数为12%的盐酸水溶液调节pH至6.8,按1500 U/g加入一定量中性蛋白酶,53 ℃下酶解3 h,得到中性溶液;使用质量分数为12%的盐酸水溶液调节pH至3.7,按500 U/g加入胃蛋白酶,53 ℃下酶解4 h,得到酸性溶液。沸水浴灭酶30 min,冷却后得续滤液,分别得生晒参蛋白酶解肽水解液(SGP)、红参蛋白酶解肽水解液(RGP)和黑参蛋白酶解肽水解液(BGP)备用。
1.2.3 超滤膜分离
选用分子截流量为10、3和1 kDa的超滤膜,将水解液分为大于10、3~10、1~3 kDa、小于1 kDa四个组分。分别命名为BGP-1~4、RGP-1~4、SGP-1~4,冻干备用。
1.2.4 人参不同炮制品蛋白酶解肽对小鼠巨噬细胞增殖作用的影响
1.2.4.1 不同超滤组分对RAW264.7细胞的增殖作用
采用MTT法测定不同组分对细胞增殖率的影响。将冻存的RAW264.7细胞复苏,用含10%胎牛血清的DMEM高糖培养基于37 ℃、5% CO2饱和湿度的培养箱中培养,当细胞长满培养瓶80%~90%时进行传代培养,选取对数生长期细胞用于实验。以每孔4×103个细胞的密度接种于96孔板中,培养24 h后模型组与样品组加入150 μL的1 μg/mL LPS构建炎症模型,空白对照组不造模只加150 μL含10%胎牛血清的DMEM高糖培养基。培养24 h后,弃上清。空白对照组加入完全培养基150 μL,模型组加入150 μL的1 μg/mL LPS,样品组加入浓度为100 μg/mL的各个组分的人参炮制品蛋白酶解肽溶液150 μL,每组5个复孔,于37 ℃、5% CO2培养箱中继续培养24 h,每孔加入5 mg/mL的MTT 10 μL,4 h后弃去上清液,加入150 μL DMSO,置于酶标仪上振荡5 min,490 nm波长处检测,根据测得OD值,计算每组细胞增殖率。独立实验重复三次。
巨噬细胞增殖率(%)=(OD样品组−OD模型组)OD模型组×100 1.2.4.2 不同质量浓度BGP-4、RGP-4、SGP-4对RAW264.7细胞增殖率的影响
按1.2.4.1项下方法,样品组分别加入50、100、200 μg/mL的BGP-4、RGP-4、SGP-4溶液150 μL,37 ℃、5% CO2培养24 h,每孔加入5 mg/mL的MTT 10 μL,培养4 h后弃上清,加入150 μL DMSO,置于酶标仪上振荡5 min,490 nm波长处检测OD值,计算各组细胞增殖率。实验独立重复三次。
1.2.4.3 BGP-4、RGP-4、SGP-4对RAW264.7细胞NO分泌量及炎症因子释放的影响
参照1.2.4.1项下方法将细胞接种于96孔板中,置于37 ℃、5% CO2培养箱中培养24 h;模型组和样品组加入LPS处理,于培养箱中继续培养24 h。样品组加入50、100、200 μg/mL的样品溶液150 μL,每组5个复孔。于37 ℃、5% CO2条件下培养24 h后,取上清液,按照NO试剂盒说明书测定NO分泌量。根据试剂盒说明书使用ELISA试剂盒检测炎症因子TNF-α、IL-6、IL-1β的分泌量。实验独立重复三次。
1.2.5 三种蛋白酶解肽氨基酸组成分析
取小于1 kDa组分的黑参、红参、生晒参蛋白酶解肽冻干粉50 mg置于水解管中,加入15 mL 6 mol/L的盐酸,抽真空后110 ℃水解24 h,用氨基酸组成分析仪测定氨基酸组成及含量[24]。
1.3 数据处理
所有实验重复3次,SPSS 24.0对数据进行处理,实验数据以平均值±标准差(¯x±s)表示。组间比较采用ANOVA单因素方差分析,P<0.05,两组数据间差异显著,数据结果有统计学意义。利用Oringin软件进行绘图制作。通过SIMCA 14.1软件进行主成分分析(principal component analysis,PCA)、偏最小二乘法判别分析(partial least squares discriminant analysis,PLS-DA)和正交偏最小二乘法判别分析(orthogonal PLS-DA,OPLS-DA),计算预测变量重要性投影(variable importance in projection,VIP)。采用灰色关联度(grey relational degree analysis,GRA)的统计方法来筛选抑制巨噬细胞分泌细胞因子的氨基酸。
2. 结果与分析
2.1 不同超滤组分对RAW264.7细胞的增殖作用
由表1中测得A值可以看出,与空白组相比,LPS模型组能显著抑制RAW264.7细胞增殖(P<0.05),证明LPS模型造模成功;由各组细胞增殖率可以看出,与LPS模型组相比,各给药组均不同程度地促进受损伤的RAW264.7细胞增殖,其中BGP-4、RGP-4、SGP-4组分活性最强,增殖率分别为58.78%、35.14%、33.19%。因此选择BGP-4、RGP-4、SGP-4组分做进一步研究。
表 1 不同超滤组分的BGP、RGP、SGP对RAW264.7细胞的增殖作用Table 1. Proliferative effects of different ultrafiltration fractions of BGP, RGP and SGP on RAW264.7 cells组别 A值 增殖率(%) 空白组 1.094±0.120a − LPS模型组 0.478±0.025l − BGP-1 0.565±0.013j 18.21±0.028j BGP-2 0.646±0.008d 35.21±0.017c BGP-3 0.688±0.100c 44.07±0.020b BGP-4 0.759±0.015b 58.78±0.032a RGP-1 0.560±0.016j 17.29±0.034k RGP-2 0.592±0.004h 23.98±0.009h RGP-3 0.620±0.060f 29.84±0.125f RGP-4 0.646±0.023d 35.14±0.049d SGP-1 0.552±0.019k 15.48±0.039l SGP-2 0.586±0.004i 22.66±0.009i SGP-3 0.613±0.025g 28.24±0.053g SGP-4 0.636±0.010e 33.19±0.022e 注:同列不同小写字母表示差异显著,P<0.05;表2、表3同。 2.2 不同质量浓度BGP-4、RGP-4、SGP-4对RAW264.7细胞增殖率的影响
由表2中测得A值可知,LPS能够显著抑制RAW264.7细胞的增殖(P<0.05);在50~200 μg/mL质量浓度范围内,细胞的增殖率呈浓度依赖性,细胞增殖率随着浓度升高而增加。在50~200 μg/mL质量浓度范围内,BGP-4促进RAW264.7细胞增殖的能力最强(P<0.05),其次为RGP-4、SGP-4(P<0.05)。
表 2 不同质量浓度BGP-4、RGP-4、SGP-4对RAW264.7细胞增殖率的影响Table 2. Effect of different mass concentrations of BGP-4, RGP-4 and SGP-4 on the proliferation rate of RAW264.7 cells组别 A值 增殖率(%) 空白组 1.115±0.023a − LPS模型组 0.440±0.037k − BGP-4-50 0.657±0.015e 49.35±0.035d BGP-4-100 0.708±0.006d 60.78±0.014c BGP-4-200 0.761±0.014b 72.89±0.033a RGP-4-50 0.573±0.023i 30.12±0.053h RGP-4-100 0.604±0.019g 37.32±0.044f RGP-4-200 0.709±0.009c 61.01±0.021b SGP-4-50 0.536±0.006j 21.80±0.013i SGP-4-100 0.602±0.018h 36.79±0.042g SGP-4-200 0.634±0.011f 43.98±0.025e 2.3 BGP-4、RGP-4、SGP-4对RAW264.7细胞NO分泌量及炎症因子释放的影响
2.3.1 BGP-4、RGP-4、SGP-4对RAW264.7细胞NO分泌量的影响
一氧化氮(NO)是在细胞存活和死亡中起到关键作用的信号传导分子,并且对巨噬细胞显示出各种促炎作用。组织损伤的发病机制与炎性介质的释放密切相关。巨噬细胞通过分泌过量NO,进而介导对损伤的急性期反应。因此,NO抑制剂在治疗炎症疾病中具有极大潜力[25]。本研究采用LPS诱导的巨噬细胞炎症模型,检测人参三种炮制品蛋白酶解肽对LPS诱导的巨噬细胞NO分泌量的影响,分析三种蛋白酶解肽的抗炎活性。结果由图1可知,与空白组相比,LPS诱导的RAW264.7细胞NO分泌量显著升高(P<0.05),表明该模型成功。各组样品随着质量浓度的增加,NO分泌量呈逐渐下降的趋势。其中,BGP-4抑制RAW264.7细胞释放NO的能力显著最强(P<0.05),其次为RGP-4,SGP-4的抑制能力最弱。
2.3.2 BGP-4、RGP-4、SGP-4对RAW264.7细胞释放TNF-α水平的影响
TNF-α是由活化的单核-巨噬细胞和其他细胞产生的一种具有广泛生物学作用的炎症介质[26]。当机体内TNF-α的浓度较低时,可调节免疫应答,具有抗肿瘤、抗感染等多种生物功能。当TNF-α浓度过高时,作为重要的炎症递质,反而会介导炎症反应的病理生理过程[27]。图2表明与空白组相比,1 μg/mL LPS诱导后RAW264.7细胞内TNF-α水平显著增加(P<0.05);给药后各组细胞上清液中TNF-α浓度随着样品质量浓度的增加而下降。与RGP-4和SGP-4相比,BGP-4对LPS诱导的RAW264.7细胞释放TNF-α的量抑制作用显著最强(P<0.05)。
2.3.3 BGP-4、RGP-4、SGP-4对RAW264.7细胞释放IL-6水平的影响
IL-6作为一种促炎因子,是细胞因子家族中的核心成员,是由T细胞活化后分泌的一种重要免疫调节因子,可与TNF-α共同参与调节炎症反应。抑制IL-6的过度表达是减轻炎症的重要手段[28]。由图3可知,LPS模型组可显著诱导RAW264.7细胞分泌IL-6(P<0.05);与模型组相比,各给药组上清液中IL-6的分泌量均有所降低且呈浓度依赖性。当质量浓度为200 μg/mL时,IL-6的分泌量达到最低,显著低于其他浓度下的样品组(P<0.05)。三种蛋白酶解肽对细胞上清液中IL-6分泌的抑制顺序为BGP-4>RGP-4>SGP-4。
2.3.4 BGP-4、RGP-4、SGP-4对RAW264.7细胞释放IL-1β水平的影响
当炎症爆发时,细胞中的炎症信号通路被激活并释放多种促炎因子。IL-1β是促炎因子中重要的代表,它的分泌水平可以反映炎症反应的程度[29]。由图4可知,各给药组对RAW264.7细胞IL-1β分泌量的刺激作用与剂量有关。随着质量浓度的增加,IL-1β释放量不断降低。在200 μg/mL的质量浓度下,IL-1β的分泌量达到最低,抑制作用最强。其中,BGP-4抑制RAW264.7细胞释放IL-1β的能力最强(P<0.05),其次为RGP-4,SGP-4最弱。
结果表明,与红参蛋白酶解肽和生晒参蛋白酶解肽相比,黑参蛋白酶解肽对RAW264.7细胞NO分泌量及炎症因子释放的抑制作用更强,具有显著性差异(P<0.05)。这是由于炮制可提高中药疗效,改变药物的功能和临床疗效[30]。在加工过程中可能会导致人参中的有效成分如肽类物质发生一系列转化,使得人参三种炮制品生物活性的差异性[31]。黑参由于蒸制时间最长,在加热过程中可能产生更多种类的小分子活性肽,使其结构发生改变,导致其抗炎活性增加。
2.4 三种蛋白酶解肽氨基酸组成分析
氨基酸的组成及含量可以影响蛋白质的功能性质,一定程度上决定蛋白酶解肽的生理活性[32]。由表3可知,三种蛋白酶解肽的氨基酸组成基本一致,均含有17种氨基酸,但含量有所差异。BGP-4、RGP-4、SGP-4氨基酸总含量为52.619、56.754、64.042 g/100 g。其中,苯丙氨酸的含量是BGP-4、RGP-4、SGP-4氨基酸总含量中占比最高的,分别为17.073、15.384、14.704 g/100 g,且黑参蛋白酶解肽的苯丙氨酸含量高于红参蛋白酶解肽和生晒参蛋白酶解肽。研究表明,疏水性氨基酸更容易进入细胞发挥作用,有利于提高活性肽的抗炎活性[33]。由此推测,苯丙氨酸作为疏水性氨基酸,其含量的高低与人参不同炮制品蛋白酶解肽的抗炎效果有着一定联系。
表 3 BGP-4、RGP-4、SGP-4的氨基酸组成及含量Table 3. Amino acid composition and content of BGP-4, RGP-4 and SGP-4氨基酸名称 含量(g/100 g) BGP-4 RGP-4 SGP-4 天冬氨酸(Asp) 3.171±0.034e 2.221±0.045g 3.148±0.049g 苏氨酸(Thr) 0.845±0.009k 0.552±0.078l 1.132±0.032l 丝氨酸(Ser) 0.985±0.056i 0.655±0.049k 1.093±0.008m 谷氨酸(Glu) 7.152±0.021c 4.854±0.031e 5.413±0.120d 甘氨酸(Gly) 2.372±0.076f 1.406±0.066h 1.926±0.046i 丙氨酸(Ala) 1.963±0.044g 1.057±0.032j 2.393±0.015h 缬氨酸(Val) 1.417±0.022h 1.122±0.006i 1.621±0.013j 蛋氨酸(Met) 0.071±0.009q 0.133±0.013q 0.255±0.006p 异亮氨酸(Ile) 0.471±0.072n 0.354±0.009n 0.754±0.032n 亮氨酸(Leu) 0.872±0.018j 0.523±0.065m 1.275±0.034k 酪氨酸(Tyr) 0.221±0.042p 0.215±0.017p 0.203±0.027q 苯丙氨酸(Phe) 17.073±0.006a 15.384±0.027a 14.704±0.012a 赖氨酸(Lys) 4.112±0.035d 5.315±0.068d 4.936±0.018f 组氨酸(His) 0.742±0.065l 3.976±0.005f 7.343±0.009c 色氨酸(Trp) 0.404±0.012o 7.311±0.013c 5.107±0.026e 精氨酸(Arg) 10.253±0.047b 11.352±0.079b 12.385±0.064b 脯氨酸(Pro) 0.495±0.007m 0.324±0.003o 0.354±0.010o 总计 52.619±0.061 56.754±0.013 64.042±0.045 2.5 BGP-4、RGP-4、SGP-4的氨基酸多元统计分析
通过PCA(无监督)模式识别化学计量学对三种炮制品蛋白酶解肽所含氨基酸进行分析,结果见图5A。从图中可以看出,通过PCA法可以将三种炮制品蛋白酶解肽分开,三者间存在一定差异,推测可能是人参炮制过程中,由于蒸制时间不同会发生一系列较为复杂的化学成分转化,造成了氨基酸含量的变化。其次,进行了监督的OPLS-DA分析散点图(图5B)来发现三种炮制品蛋白酶解肽之间的差异氨基酸。此外还进行了置换检验(n=200),来评估判别模型是否对数据过度拟合。如图6所示,PLS-DA模型排列实验中左侧任意一次随机变量y变量所产生的R2值和Q2值均小于右侧的原始点,且Q2点的回归线与垂直轴(左侧)截距为负数(R2=0.255,Q2=−0.362),说明该模型没有过度拟合,表明模型有效[34]。分析得到的VIP值见表4,选取VIP>1,表示其差异性贡献率大于其他组分,得到三种炮制品蛋白酶解肽所含的差异氨基酸分别是His、Trp、Arg、Phe、Glu、Leu、Ala、Gly、Ile、Thr和Met。
表 4 BGP-4、RGP-4、SGP-4基于OPLS-DA分析的VIP值Table 4. VIP values of BGP-4, RGP-4, SGP-4 based on OPLS-DA analysis氨基酸种类 VIP值 His 1.0786 Trp 1.0762 Arg 1.0754 Phe 1.0723 Glu 1.0709 Leu 1.0501 Ala 1.0458 Gly 1.0344 Ile 1.0226 Thr 1.0126 Met 1.0116 Ser 0.9982 Asp 0.9303 Lys 0.9249 Val 0.8750 Tyr 0.8397 Pro 0.8216 通过PCA分析得到三种人参炮制品蛋白酶解肽中的特征差异氨基酸,但未能筛选出促进RAW264.7细胞活性的氨基酸。故本研究以NO和细胞因子(TNF-α、IL-6、IL-1β)释放量为活性指标,应用灰色关联度分析(GRA)筛选出抑制RAW264.7细胞分泌细胞炎症因子的氨基酸。使用EXCEL对实验数据进行灰色关联度分析,将BGP-4、RGP-4、SGP-4的氨基酸含量Xi(自变量)设为比较数列(子序列);RAW264.7分泌炎症因子的含量X0设为参考序列[35],将对应的数据输入到EXCEL表中,进行灰色关联分析。当关联度>0.7时,认为子序列与母序列之间存在一定关联性。结果表明(见表5),Asp、Ser、Val、Phe、Lys与抑制炎症因子含量水平相关。
表 5 BGP-4、RGP-4、SGP-4的氨基酸含量与抗炎指标的关联序和关联度Table 5. Sequence and correlation of amino acid content of BGP-4, RGP-4 and SGP-4 with anti-inflammatory indexes关联序 TNF-α含量 IL-6含量 NO含量 IL-1β含量 氨基酸种类 关联度 氨基酸种类 关联度 氨基酸种类 关联度 氨基酸种类 关联度 1 Ile 0.8673 Met 0.8607 Arg 0.8329 Lys 0.8107 2 Thr 0.8532 Ile 0.7917 Thr 0.7897 Phe 0.8101 3 Met 0.8441 Arg 0.7732 Lys 0.7747 Val 0.7968 4 Val 0.8361 Lys 0.7643 Ile 0.7696 Tyr 0.7887 5 Leu 0.8282 Thr 0.7568 Ala 0.7639 Ser 0.7742 6 Ala 0.8123 His 0.7543 Phe 0.7593 His 0.7733 7 Ser 0.8050 Ala 0.7456 Val 0.7590 Leu 0.7654 8 Asp 0.7914 Trp 0.7390 Asp 0.7458 Asp 0.7615 9 Phe 0.7856 Leu 0.7269 Ser 0.7443 Met 0.7571 10 Arg 0.7669 Val 0.7231 Met 0.6243 Ile 0.6973 11 Glu 0.7540 Tyr 0.7201 Leu 0.6209 Ala 0.6929 12 Gly 0.7367 Ser 0.7143 His 0.6063 Thr 0.6560 13 Lys 0.7281 Phe 0.7128 Tyr 0.5973 Arg 0.5967 14 Tyr 0.6353 Asp 0.7046 Glu 0.5523 Trp 0.5720 15 Pro 0.6047 Glu 0.6469 Pro 0.5374 Glu 0.5275 16 Trp 0.5973 Gly 0.5531 Gly 0.5289 Gly 0.5129 17 His 0.5937 Pro 0.5135 Trp 0.4914 Pro 0.5054 综合多元统计分析VIP>1和灰色关联度>0.7,筛选出三种人参炮制品蛋白酶解肽的特征性氨基酸为Phe。
苯丙氨酸在体内大部分经苯丙氨酸羟化酶催化作用氧化成酪氨酸,并与酪氨酸一起合成重要的神经递质和激素,参与机体糖代谢和脂肪代谢[36]。据文献报道,苯丙氨酸在两亲性α螺旋肽发挥抗菌、抗炎作用中具有非常重要的作用,可抑制炎症因子过度表达[37]。由此推测,苯丙氨酸含量的高低与人参炮制品蛋白酶解肽的抗炎作用有一定关系,这可能是三种炮制品蛋白酶解肽中黑参蛋白酶解肽体外抗炎活性最佳的原因之一。
3. 结论
本实验采用酶解法、超滤分离从人参三种炮制品中提取蛋白酶解肽。通过LPS诱导的RAW264.7炎症模型对三种蛋白酶解肽的抗炎活性进行对比分析发现,黑参蛋白酶解肽的抗炎活性强于红参蛋白酶解肽和生晒参蛋白酶解肽,能够显著抑制NO及炎症因子(TNF-α、IL-6、IL-1β)的分泌((P<0.05)。黑参蛋白酶解肽质量浓度为200 μg/mL时,促进RAW264.7细胞增殖的能力最强(P<0.05),增殖率为72.89%。综合多元统计分析(VIP>1)和灰色关联度分析(关联度>0.7)结果筛选出Phe为三种人参炮制品蛋白酶解肽的特征差异性成分。三种蛋白酶解肽的Phe含量顺序为:黑参蛋白酶解肽(17.07%)>红参蛋白酶解肽(15.38%)>生晒参蛋白酶解肽(14.70%)。黑参蛋白酶解肽所含Phe含量最高,这可能是在相同浓度下黑参蛋白酶解肽抗炎效果最好的原因之一。但黑参蛋白酶解肽中苯丙氨酸含量的增加与其抑制巨噬细胞分泌炎症因子能力增强的内在关系并不清楚,以及黑参中活性肽的抗炎机制还有待研究。未来黑参多肽的深入研究将是人参炮制品高效利用和科学开发的新领域。
-
表 1 不同超滤组分的BGP、RGP、SGP对RAW264.7细胞的增殖作用
Table 1 Proliferative effects of different ultrafiltration fractions of BGP, RGP and SGP on RAW264.7 cells
组别 A值 增殖率(%) 空白组 1.094±0.120a − LPS模型组 0.478±0.025l − BGP-1 0.565±0.013j 18.21±0.028j BGP-2 0.646±0.008d 35.21±0.017c BGP-3 0.688±0.100c 44.07±0.020b BGP-4 0.759±0.015b 58.78±0.032a RGP-1 0.560±0.016j 17.29±0.034k RGP-2 0.592±0.004h 23.98±0.009h RGP-3 0.620±0.060f 29.84±0.125f RGP-4 0.646±0.023d 35.14±0.049d SGP-1 0.552±0.019k 15.48±0.039l SGP-2 0.586±0.004i 22.66±0.009i SGP-3 0.613±0.025g 28.24±0.053g SGP-4 0.636±0.010e 33.19±0.022e 注:同列不同小写字母表示差异显著,P<0.05;表2、表3同。 表 2 不同质量浓度BGP-4、RGP-4、SGP-4对RAW264.7细胞增殖率的影响
Table 2 Effect of different mass concentrations of BGP-4, RGP-4 and SGP-4 on the proliferation rate of RAW264.7 cells
组别 A值 增殖率(%) 空白组 1.115±0.023a − LPS模型组 0.440±0.037k − BGP-4-50 0.657±0.015e 49.35±0.035d BGP-4-100 0.708±0.006d 60.78±0.014c BGP-4-200 0.761±0.014b 72.89±0.033a RGP-4-50 0.573±0.023i 30.12±0.053h RGP-4-100 0.604±0.019g 37.32±0.044f RGP-4-200 0.709±0.009c 61.01±0.021b SGP-4-50 0.536±0.006j 21.80±0.013i SGP-4-100 0.602±0.018h 36.79±0.042g SGP-4-200 0.634±0.011f 43.98±0.025e 表 3 BGP-4、RGP-4、SGP-4的氨基酸组成及含量
Table 3 Amino acid composition and content of BGP-4, RGP-4 and SGP-4
氨基酸名称 含量(g/100 g) BGP-4 RGP-4 SGP-4 天冬氨酸(Asp) 3.171±0.034e 2.221±0.045g 3.148±0.049g 苏氨酸(Thr) 0.845±0.009k 0.552±0.078l 1.132±0.032l 丝氨酸(Ser) 0.985±0.056i 0.655±0.049k 1.093±0.008m 谷氨酸(Glu) 7.152±0.021c 4.854±0.031e 5.413±0.120d 甘氨酸(Gly) 2.372±0.076f 1.406±0.066h 1.926±0.046i 丙氨酸(Ala) 1.963±0.044g 1.057±0.032j 2.393±0.015h 缬氨酸(Val) 1.417±0.022h 1.122±0.006i 1.621±0.013j 蛋氨酸(Met) 0.071±0.009q 0.133±0.013q 0.255±0.006p 异亮氨酸(Ile) 0.471±0.072n 0.354±0.009n 0.754±0.032n 亮氨酸(Leu) 0.872±0.018j 0.523±0.065m 1.275±0.034k 酪氨酸(Tyr) 0.221±0.042p 0.215±0.017p 0.203±0.027q 苯丙氨酸(Phe) 17.073±0.006a 15.384±0.027a 14.704±0.012a 赖氨酸(Lys) 4.112±0.035d 5.315±0.068d 4.936±0.018f 组氨酸(His) 0.742±0.065l 3.976±0.005f 7.343±0.009c 色氨酸(Trp) 0.404±0.012o 7.311±0.013c 5.107±0.026e 精氨酸(Arg) 10.253±0.047b 11.352±0.079b 12.385±0.064b 脯氨酸(Pro) 0.495±0.007m 0.324±0.003o 0.354±0.010o 总计 52.619±0.061 56.754±0.013 64.042±0.045 表 4 BGP-4、RGP-4、SGP-4基于OPLS-DA分析的VIP值
Table 4 VIP values of BGP-4, RGP-4, SGP-4 based on OPLS-DA analysis
氨基酸种类 VIP值 His 1.0786 Trp 1.0762 Arg 1.0754 Phe 1.0723 Glu 1.0709 Leu 1.0501 Ala 1.0458 Gly 1.0344 Ile 1.0226 Thr 1.0126 Met 1.0116 Ser 0.9982 Asp 0.9303 Lys 0.9249 Val 0.8750 Tyr 0.8397 Pro 0.8216 表 5 BGP-4、RGP-4、SGP-4的氨基酸含量与抗炎指标的关联序和关联度
Table 5 Sequence and correlation of amino acid content of BGP-4, RGP-4 and SGP-4 with anti-inflammatory indexes
关联序 TNF-α含量 IL-6含量 NO含量 IL-1β含量 氨基酸种类 关联度 氨基酸种类 关联度 氨基酸种类 关联度 氨基酸种类 关联度 1 Ile 0.8673 Met 0.8607 Arg 0.8329 Lys 0.8107 2 Thr 0.8532 Ile 0.7917 Thr 0.7897 Phe 0.8101 3 Met 0.8441 Arg 0.7732 Lys 0.7747 Val 0.7968 4 Val 0.8361 Lys 0.7643 Ile 0.7696 Tyr 0.7887 5 Leu 0.8282 Thr 0.7568 Ala 0.7639 Ser 0.7742 6 Ala 0.8123 His 0.7543 Phe 0.7593 His 0.7733 7 Ser 0.8050 Ala 0.7456 Val 0.7590 Leu 0.7654 8 Asp 0.7914 Trp 0.7390 Asp 0.7458 Asp 0.7615 9 Phe 0.7856 Leu 0.7269 Ser 0.7443 Met 0.7571 10 Arg 0.7669 Val 0.7231 Met 0.6243 Ile 0.6973 11 Glu 0.7540 Tyr 0.7201 Leu 0.6209 Ala 0.6929 12 Gly 0.7367 Ser 0.7143 His 0.6063 Thr 0.6560 13 Lys 0.7281 Phe 0.7128 Tyr 0.5973 Arg 0.5967 14 Tyr 0.6353 Asp 0.7046 Glu 0.5523 Trp 0.5720 15 Pro 0.6047 Glu 0.6469 Pro 0.5374 Glu 0.5275 16 Trp 0.5973 Gly 0.5531 Gly 0.5289 Gly 0.5129 17 His 0.5937 Pro 0.5135 Trp 0.4914 Pro 0.5054 -
[1] CHENG L, REN Y, LIN D, et al. The anti-inflammatory properties of Citrus wilsonii Tanaka extract in LPS-induced RAW 264.7 and primary mouse bone marrow-derived dendritic cells[J]. Molecules,2017,22(7):1213. doi: 10.3390/molecules22071213
[2] SUL O J, RA S W. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-κB in lung epithelial cells[J]. Molecules,2021,26(22):6949. doi: 10.3390/molecules26226949
[3] CAO Y, CHEN J, REN G, et al. Punicalagin prevents inflammation in LPS-induced RAW264.7 macrophages by inhibiting foxO3a/autophagy signaling pathway[J]. Nutrients,2019,11(11):2794. doi: 10.3390/nu11112794
[4] BARADARAN R V, KHAMMAR M T, RAKHSHANDEH H, et al. Crocin protects cardiomyocytes against LPS-induced inflammation[J]. Pharmacological Reports,2019,71(6):1228−1234. doi: 10.1016/j.pharep.2019.07.007
[5] ZHOU J, PENG Z, WANG J. Trelagliptin alleviates lipopolysaccharide (LPS)-induced inflammation and oxidative stress in acute lung injury mice[J]. Inflammation,2021,44(4):1507−1517. doi: 10.1007/s10753-021-01435-w
[6] FANG Y, YANG L, HE J. Plantanone C attenuates LPS-stimulated inflammation by inhibiting NF-κB/iNOS/COX-2/MAPKs/Akt pathways in RAW 264.7 macrophages[J]. Biomed Pharmacother,2021,143:112104. doi: 10.1016/j.biopha.2021.112104
[7] MENG M, HUO R, WANG Y, et al. Lentinan inhibits oxidative stress and alleviates LPS-induced inflammation and apoptosis of BMECs by activating the Nrf2 signaling pathway[J]. International Journal of Biological Macromolecules,2022,222(Pt B):2375−2391.
[8] 杨珊, 赵暖暖, 杨鑫, 等. 人参活性成分及药理作用研究进展[J]. 中医药导报,2023,29(1):105−107,116. [YANG S, ZHAO N N, YANG X, et al. Research progress on active ingredients and pharmacological effects of ginseng[J]. Chinese Medicine Herald,2023,29(1):105−107,116.] YANG S, ZHAO N N, YANG X, et al. Research progress on active ingredients and pharmacological effects of ginseng[J]. Chinese Medicine Herald, 2023, 29(1): 105−107,116.
[9] 高健, 吕邵娃. 人参化学成分及药理作用研究进展[J]. 中医药导报,2021,27(1):127−130,137. [GAO J, LÜ S W. Progress of research on chemical composition and pharmacological effects of ginseng[J]. Journal of Traditional Chinese Medicine,2021,27(1):127−130,137.] GAO J, LÜ S W. Progress of research on chemical composition and pharmacological effects of ginseng[J]. Journal of Traditional Chinese Medicine, 2021, 27(1): 127−130,137.
[10] 邢金月, 杨涵童, 韩莲花, 等. 人参及其药对的研究进展[J]. 中华中医药学刊,2022,40(5):176−179. [XING J Y, YANG H T, HAN L H, et al. Research progress of ginseng and its medicinal pairs[J]. Chinese Journal of Traditional Chinese Medicine,2022,40(5):176−179.] XING J Y, YANG H T, HAN L H, et al. Research progress of ginseng and its medicinal pairs[J]. Chinese Journal of Traditional Chinese Medicine, 2022, 40(5): 176−179.
[11] 林源, 董志颖, 黄宝康, 等. 人参历代炮制工艺与传承研究[J]. 亚太传统医药,2022,18(7):221−226. [LIN Y, DONG Z Y, HUANG B K, et al. Research on ginseng artisanal craft and transmission through the ages[J]. Asia-Pacific Traditional Medicine,2022,18(7):221−226.] LIN Y, DONG Z Y, HUANG B K, et al. Research on ginseng artisanal craft and transmission through the ages[J]. Asia-Pacific Traditional Medicine, 2022, 18(7): 221−226.
[12] 王宇萌, 马春艳, 窦德强. 生晒参、红参和黑参对气虚大鼠作用的比较[J]. 辽宁中医杂志,2021,48(11):195−198. [WANG Y M, MA C Y, DOU D Q. Comparison of the effects of raw sun ginseng, red ginseng and black ginseng on rats with qi deficiency[J]. Liaoning Journal of Traditional Chinese Medicine,2021,48(11):195−198.] WANG Y M, MA C Y, DOU D Q. Comparison of the effects of raw sun ginseng, red ginseng and black ginseng on rats with qi deficiency[J]. Liaoning Journal of Traditional Chinese Medicine, 2021, 48(11): 195−198.
[13] 韩红亮, 周修腾, THOMAS A G, 等. 黑人参的炮制方法、化学成分和药理作用的研究进展[J]. 中草药,2022,53(3):912−920. [HAN H L, ZHOU X T, THOMAS A G, et al. Research progress on the concoction method, chemical composition and pharmacological effects of black ginseng[J]. Chinese Herbal Medicine,2022,53(3):912−920.] HAN H L, ZHOU X T, THOMAS A G, et al. Research progress on the concoction method, chemical composition and pharmacological effects of black ginseng[J]. Chinese Herbal Medicine, 2022, 53(3): 912−920.
[14] 陈元蓉, 张宸, 杨高红, 等. 新型麦胚活性肽对脂多糖诱导RAW264.7细胞的抗炎作用[J]. 中国粮油学报,2022,37(12):126−134. [CHEN Y R, ZHANG C, YANG G H, et al. Anti-inflammatory effect of a novel wheat germ active peptide on lipopolysaccharide-induced RAW264.7 cells[J]. Chinese Journal of Grain and Oil,2022,37(12):126−134.] CHEN Y R, ZHANG C, YANG G H, et al. Anti-inflammatory effect of a novel wheat germ active peptide on lipopolysaccharide-induced RAW264.7 cells[J]. Chinese Journal of Grain and Oil, 2022, 37(12): 126−134.
[15] 于笛, 周伟, 郭增旺, 等. 绿豆寡肽对脂多糖诱导巨噬细胞RAW264.7的抗炎作用[J]. 中国食品学报,2020,20(8):41−48. [YU D, ZHOU W, GUO Z W, et al. Anti-inflammatory effect of mung bean oligopeptides on lipopolysaccharide-induced macrophage RAW264.7[J]. Chinese Journal of Food,2020,20(8):41−48.] YU D, ZHOU W, GUO Z W, et al. Anti-inflammatory effect of mung bean oligopeptides on lipopolysaccharide-induced macrophage RAW264.7[J]. Chinese Journal of Food, 2020, 20(8): 41−48.
[16] 田建明, 韦康, 陈英红, 等. 人参糖肽对大鼠的抗炎和镇痛作用[J]. 中国新药杂志,2018,27(14):1658−1662. [TIAN J M, WEI K, CHEN Y H, et al. Anti-inflammatory and analgesic effects of ginseng glycopeptides in rats[J]. Chinese Journal of New Drugs,2018,27(14):1658−1662.] TIAN J M, WEI K, CHEN Y H, et al. Anti-inflammatory and analgesic effects of ginseng glycopeptides in rats[J]. Chinese Journal of New Drugs, 2018, 27(14): 1658−1662.
[17] DAROIT D, BRANDELLI A. In vivo bioactivities of food protein-derived peptides-a current review[J]. Current Opinion in Food Science,2021,39:120−129. doi: 10.1016/j.cofs.2021.01.002
[18] 张淼, 秦昆明, 李伟东, 等. 人参炮制过程中化学成分变化及机制研究[J]. 中国中药杂志,2014,39(19):3701−3706. [ZHANG M, QIN K M, LI W D, et al. Chemical composition changes and mechanisms during ginseng processing[J]. Chinese Journal of Traditional Chinese Medicine,2014,39(19):3701−3706.] ZHANG M, QIN K M, LI W D, et al. Chemical composition changes and mechanisms during ginseng processing[J]. Chinese Journal of Traditional Chinese Medicine, 2014, 39(19): 3701−3706.
[19] 张娜, 黄鑫, 越皓, 等. 鲜人参贮藏时间对其加工炮制品皂苷类成分的影响[J]. 时珍国医国药,2021,32(3):592−596. [ZHANG N, HUANG X, YUE H, et al. The effect of storage time on saponin components in processed ginseng products[J]. Shizhen Traditional Chinese Medicine and Traditional Chinese Medicine,2021,32(3):592−596.] ZHANG N, HUANG X, YUE H, et al. The effect of storage time on saponin components in processed ginseng products[J]. Shizhen Traditional Chinese Medicine and Traditional Chinese Medicine, 2021, 32(3): 592−596.
[20] 周秋秋, 任谓明, 王艳红, 等. 红参的炮制、化学成分及药理活性研究进展[J]. 上海中医药杂志,2016,50(2):97−100. [ZHOU Q Q, REN W M, WANG Y H, et al. Research progress on the processing, chemical composition, and pharmacological activity of red ginseng[J]. Shanghai Journal of Traditional Chinese Medicine,2016,50(2):97−100.] ZHOU Q Q, REN W M, WANG Y H, et al. Research progress on the processing, chemical composition, and pharmacological activity of red ginseng[J]. Shanghai Journal of Traditional Chinese Medicine, 2016, 50(2): 97−100.
[21] 周君, 高亚杰, 徐亚琦, 等. 黑参的炮制、化学成分及药理活性研究进展[J]. 中兽医医药杂志,2018,37(3):29−31. [ZHOU J, GAO Y J, XU Y Q, et al. Research progress on the processing, chemical composition, and pharmacological activity of black ginseng[J]. Journal of Chinese Veterinary Medicine,2018,37(3):29−31.] ZHOU J, GAO Y J, XU Y Q, et al. Research progress on the processing, chemical composition, and pharmacological activity of black ginseng[J]. Journal of Chinese Veterinary Medicine, 2018, 37(3): 29−31.
[22] 北京林业大学. 一种膜法提取桑叶蛋白的工艺方法:中国, 202111186028.5[P]. 2021-12-07. [Beijing Forestry University. A process method for the extraction of mulberry leaf protein by membrane method:China, 202111186028.5[P]. 2021-12-07.] Beijing Forestry University. A process method for the extraction of mulberry leaf protein by membrane method: China, 202111186028.5[P]. 2021-12-07.
[23] 蔡庭守. 一种灵芝实体小分子肽的提取方法:中国, 201610192452.3[P]. 2016-06-01. [CAI T S. A method for extracting small molecular peptides from ganoderma lucidum bodies:China, 201610192452.3[P]. 2016-06-01.] CAI T S. A method for extracting small molecular peptides from ganoderma lucidum bodies: China, 201610192452.3[P]. 2016-06-01.
[24] 孙慧, 李晶峰, 赵子佳, 等. 传统加工方式对鹿茸氨基酸组成与促睾丸间质细胞分泌睾酮的影响[J]. 时珍国医国药,2017,28(11):2656−2658. [SUN H, LI J F, ZHAO Z J, et al. The effect of traditional processing methods on the amino acid composition of deer antler and the secretion of testosterone by testicular stromal cells[J]. Tokugawa National Medicine,2017,28(11):2656−2658.] SUN H, LI J F, ZHAO Z J, et al. The effect of traditional processing methods on the amino acid composition of deer antler and the secretion of testosterone by testicular stromal cells[J]. Tokugawa National Medicine, 2017, 28(11): 2656−2658.
[25] MA C T, LY T L, LE T H V, et al. Sesquiterpene derivatives from the agarwood of Aquilaria malaccensis and their anti-inflammatory effects on NO production of macrophage RAW 264.7 cells[J]. Phytochemistry,2021,183:112630. doi: 10.1016/j.phytochem.2020.112630
[26] WANG C, SCHULLER L G B, et al. Platycodin D and D3 isolated from the root of platycodon grandiflorum modulate the production of nitric oxide and secretion of TNF-alpha in activated RAW 264.7 cells[J]. International Immunopharmacology,2004,4(8):1039−1049. doi: 10.1016/j.intimp.2004.04.005
[27] 李娜, 于光志, 张葆青, 等. 祛湿通络方对肺炎支原体感染的RAW264.7细胞TNF-α、IL-6表达的影响[J]. 天津中医药大学学报,2020,39(5):564−569. [LI N, YU G Z, ZHANG B Q, et al. Effects of dampness-eliminating formula on the expression of TNF-α and IL-6 in RAW264.7 cells infected with mycoplasma pneumoniae[J]. Journal of Tianjin University of Traditional Chinese Medicine,2020,39(5):564−569.] LI N, YU G Z, ZHANG B Q, et al. Effects of dampness-eliminating formula on the expression of TNF-α and IL-6 in RAW264.7 cells infected with mycoplasma pneumoniae[J]. Journal of Tianjin University of Traditional Chinese Medicine, 2020, 39(5): 564−569.
[28] ZHAO H, WU L, YAN G, et al. Inflammation and tumor progression:Signaling pathways and targeted intervention[J]. Signal Transduction and Targeted Therapy,2021,6(1):263. doi: 10.1038/s41392-021-00658-5
[29] 郑振霄, 朱凯, 戴志远. 南极磷虾油对脂多糖诱导RAW264.7细胞炎症反应的抑制作用[J]. 中国食品学报,2023,23(1):23−31. [ZHENG Z X, ZHU K, DAI Z Y. Inhibitory effect of Antarctic krill oil on lipopolysaccharide-induced inflammatory response in RAW264.7 cells[J]. Chinese Journal of Food,2023,23(1):23−31.] ZHENG Z X, ZHU K, DAI Z Y. Inhibitory effect of Antarctic krill oil on lipopolysaccharide-induced inflammatory response in RAW264.7 cells[J]. Chinese Journal of Food, 2023, 23(1): 23−31.
[30] 徐雅莉, 李毛加, 马琦, 等. 甘草炮制的历史沿革考证[J]. 中国中药杂志,2020,45(8):1859−1865. [XU Y L, LI M J, MA Q, et al. Historical evidence on the concoction of licorice[J]. Chinese Journal of Traditional Chinese Medicine,2020,45(8):1859−1865.] XU Y L, LI M J, MA Q, et al. Historical evidence on the concoction of licorice[J]. Chinese Journal of Traditional Chinese Medicine, 2020, 45(8): 1859−1865.
[31] ZHONG R X, LONG F, LIN D S, et al. Online detection for notoginseng ingredients in macroporous resin purification process using near infrared technology in combination with partial least squares[J]. Chemistry-an Asian Journal,2014,26(3):921−925. doi: 10.14233/ajchem.2014.16313
[32] 郭德斌, 邱丽聪, 李军, 等. 3种鸭内脏基本成分及其酶解液体外抗氧化活性对比分析[J]. 食品安全质量检测学报,2022,13(10):3141−3147. [GUO D B, QIU L C, LI J, et al. Comparative analysis of the basic components of three species of duck offal and their enzymatic liquid exo-antioxidant activity[J]. Journal of Food Safety and Quality Testing,2022,13(10):3141−3147.] doi: 10.3969/j.issn.2095-0381.2022.10.spaqzljcjs202210011 GUO D B, QIU L C, LI J, et al. Comparative analysis of the basic components of three species of duck offal and their enzymatic liquid exo-antioxidant activity[J]. Journal of Food Safety and Quality Testing, 2022, 13(10): 3141−3147. doi: 10.3969/j.issn.2095-0381.2022.10.spaqzljcjs202210011
[33] 于弋涵, 杜伟宁, 胡秋辉, 等. 酶法水解猴头菇多肽的生物活性[J]. 食品科学,2021,42(21):119−127. [YU Y H, DU W N, HU Q H, et al. Bioactivity of enzymatically hydrolyzed polypeptides from monkey head mushroom[J]. Food Science,2021,42(21):119−127.] YU Y H, DU W N, HU Q H, et al. Bioactivity of enzymatically hydrolyzed polypeptides from monkey head mushroom[J]. Food Science, 2021, 42(21): 119−127.
[34] 黄玉, 余欢迎, 熊俊伟, 等. UHPLC-Q-TOF-MS技术结合多元统计分析研究菟丝子盐炙前后化学成分变化[J]. 中国新药杂志,2022,31(15):1542−1552. [HUANG Y, YU H Y, XIONG J W, et al. UHPLC-Q-TOF-MS technique combined with multivariate statistical analysis to study the changes in chemical composition of Cuscuta sinensis before and after salt roasting[J]. Chinese Journal of New Drugs,2022,31(15):1542−1552.] HUANG Y, YU H Y, XIONG J W, et al. UHPLC-Q-TOF-MS technique combined with multivariate statistical analysis to study the changes in chemical composition of Cuscuta sinensis before and after salt roasting[J]. Chinese Journal of New Drugs, 2022, 31(15): 1542−1552.
[35] 王柳璎, 郭焕佳, 姬生国. 基于熵权法和灰色关联度法的铁皮石斛质量评价[J]. 中成药,2023,45(2):483−487. [WANG L Y, GUO H J, JI S G, et al. Quality evaluation of dendrobium ferruginum based on entropy weight method and gray correlation degree method[J]. Chinese Patent Medicine,2023,45(2):483−487.] doi: 10.3969/j.issn.1001-1528.2023.02.024 WANG L Y, GUO H J, JI S G, et al. Quality evaluation of dendrobium ferruginum based on entropy weight method and gray correlation degree method[J]. Chinese Patent Medicine, 2023, 45(2): 483−487. doi: 10.3969/j.issn.1001-1528.2023.02.024
[36] 韩加敏, 董霞, 王小平, 等. GC-TOFMS方法对彭水盐肤木蜂蜜指纹图谱的初步分析[J]. 蜜蜂杂志,2019,39(2):13−16. [HAN J M, DONG X, WANG X P, et al. Preliminary analysis of the fingerprint profile of Pangshui saltbush honey by GC-TOFMS method[J]. Honey Bee Journal,2019,39(2):13−16.] doi: 10.3969/j.issn.1003-9139.2019.02.005 HAN J M, DONG X, WANG X P, et al. Preliminary analysis of the fingerprint profile of Pangshui saltbush honey by GC-TOFMS method[J]. Honey Bee Journal, 2019, 39(2): 13−16. doi: 10.3969/j.issn.1003-9139.2019.02.005
[37] 高久香, 王义鹏, 于海宁. 青环海蛇抗菌肽Hc-CATH的分子设计及药效毒理优化[J]. 生物工程学报,2021,37(7):2534−2542. [GAO J X, WANG Y P, YU H N. Molecular design and pharmacotoxicological optimization of the antibacterial peptide Hc-CATH from the green ringed sea snake[J]. Journal of Biological Engineering,2021,37(7):2534−2542.] GAO J X, WANG Y P, YU H N. Molecular design and pharmacotoxicological optimization of the antibacterial peptide Hc-CATH from the green ringed sea snake[J]. Journal of Biological Engineering, 2021, 37(7): 2534−2542.