Biogenic Amine Formation Based on Microbial Diversity in Fermented Foods: A Review
-
摘要: 传统发酵食品中微生物群落复杂,代谢途径多样,其中具有脱羧酶活性的微生物可代谢游离氨基酸形成潜在的危害因子—生物胺(biogenic amines,BAs)。BAs是一类具有生理活性的低分子碱性含氮化合物,主要由氨基酸脱羧酶脱羧产生。BAs根据其含氨量可分为单胺、二胺和多胺,根据其化学结构又可分为脂肪类胺、芳香类胺和杂环类胺,其主要形成途径包括微生物脱羧作用以及醛、酮氨基化和转胺作用。传统发酵食品中含有脱羧酶活性的乳酸菌、假单胞菌和肠杆菌等微生物是主要产胺菌。少量的BAs可以调节人体正常生理功能,但摄入过多则会导致中毒,甚至死亡。因此,传统发酵食品中的BAs问题一直备受关注。解析微生物多样性与BAs形成之间的关系,有利于探明发酵食品中BAs形成途径和机制,可以有效控制BAs的产生与积累,以期为提高传统发酵食品安全性及品质提供参考,保证食品安全。本文重点综述了发酵蔬菜、发酵豆制品、发酵乳制品、发酵肉制品以及发酵水产品等传统发酵食品中微生物多样性与BAs形成之间的相关性,明确了各种发酵食品中的主要产胺菌株,解析BAs形成机制,以期为提高传统发酵食品安全性及品质提供参考。Abstract: In traditional fermented foods, the microbial community is complex, and their metabolic pathways are diverse. Among them, microorganisms with decarboxylase activity can metabolize free amino acids to form potentially hazardous factors-biogenic amines (BAs). BAs are a class of low molecular weight basic nitrogen-containing compounds with physiological activities mainly generated by decarboxylation of amino acid decarboxylase. BAs can be divided into monoamines, diamines and polyamines according to their ammonia content, and can be divided into aliphatic amines, aromatic amines and heterocyclic amines according to their chemical structures. The main formation pathways of BAs include microbial decarboxylation, aldehyde and ketone amination and transamination. Microorganisms such as lactic acid bacteria, Pseudomonas and Enterobacter that contain decarboxylase activity in traditional fermented foods are the main amine-producing bacteria. A small number of BAs can regulate the normal physiological function of the human body, but excessive intake can lead to poisoning, and death may occur in severe cases. Therefore, the problem of BAs in traditional fermented foods has always been a significant consideration. Analyzing the relationship between microbial diversity and BAs formation is conducive to exploring the formation pathways and mechanisms of BAs in fermented foods, which can effectively control the production and accumulation of BAs and ensure food safety. This study summarize the correlation between microbial diversity and BAs formation in traditional fermented foods such as fermented vegetables, fermented soybean products, fermented dairy products, fermented meat products, and fermented aquatic products is also reviewed. The leading amine-producing strains in various fermented foods are described, and the formation mechanism of BAs is analyzed, which provide reference for improving the safety and quality of traditional fermented foods.
-
Keywords:
- fermented foods /
- microbial diversity /
- biogenic amine /
- formation mechanism /
- relevance
-
传统发酵食品历史悠久、种类繁多,因其丰富的营养和独特的风味深受人们喜爱,例如东北酸菜、黄豆酱、奶酪、鱼露和发酵香肠等。传统发酵食品基质成分复杂,参与发酵的微生物种类繁多,代谢途径多样,在产生特征风味的同时也存在多种潜在的危害因子,影响最终产品的质量特性与安全性[1−2]。其中,生物胺(BAs)是发酵食品中较为常见的一种危害因子。发酵食品中的BAs一部分来源于食品原料本身,另一部分来源于发酵过程中产生的BAs,并且其形成与微生物的代谢密切相关[3]。因此明确发酵食品中微生物多样性及其与BAs形成之间的关系,对提高传统发酵食品的安全性具有重要意义。
近年来,随着分子生物学和生物信息学的快速发展,关于传统发酵食品,如发酵蔬菜、发酵豆制品、发酵乳制品、发酵肉制品和发酵水产品等中微生物多样性的研究日趋增多,并且其与BAs之间关系也得到了广泛研究。张杰等[4]研究发现四川泡菜表面的微生物,肠杆菌、乳酸菌、酵母菌和霉菌等具有氨基酸脱羧酶活性能够产生BAs。罗璇等[5]研究发现发酵豆制品中假单胞菌具有产生腐胺、酪胺和尸胺的能力。Suvajdžić等[6]研究发现低温发酵香肠中乳酸菌、肠球菌和假单胞菌具有脱羧酶活性,是产生酪胺、腐胺、尸胺的主要微生物。白妞妞等[7]研究发现乳酸菌、肠杆菌和球菌是鱼露中主要产胺菌。这些研究对了解发酵食品中BAs形成途径及机理、以及对微生物产生BAs进行有效控制提供了基础[8]。因此,本文以上述典型传统发酵食品为对象,综述了各类发酵食品中微生物多样性与BAs形成的关系,旨在为有效控制BAs含量,提升传统发酵食品品质及安全性提供理论依据。
1. 发酵食品中BAs的概述
1.1 BAs的种类
BAs是一种低分子量的含氮有机化合物,主要是由氨基酸脱羧或醛酮的转氨作用形成[9]。根据其含氨量,可分为单胺、二胺和多胺。单胺包括组胺、酪胺和色胺,二胺包括尸胺和腐胺,多胺包括精胺和亚精胺。另外,根据BAs的化学结构,又可分为脂肪类胺(腐胺、尸胺、精胺和亚精胺)、芳香类胺(酪胺和苯乙胺)和杂环类胺(组胺和色胺)[10−11]。发酵食品中常见的八种BAs化学结构如图1所示。
1.2 BAs的来源及形成途径
发酵食品中的BAs源于食品原料以及发酵过程,其形成途径有两种(见图2):一是醛、酮通过氨基化和转胺作用产生;二是游离氨基酸通过脱羧反应产生[12],在发酵食品中,BAs主要通过第二种途径形成。该途径需要满足三个条件:一是具有氨基酸脱羧活性的微生物;二是发酵食品体系中含有充足的游离氨基酸;三是有适合微生物生长及脱羧酶活性的环境条件[13−14]。因此,富含蛋白质和游离氨基酸的发酵水产品、肉制品、乳制品及豆制品中BAs含量较高[15]。例如,腐乳(68.5~1084.0 mg/kg)[16]、酸鱼(97.82~161.2 mg/kg)[17]和香肠(335.76~1267.13 mg/kg)[18]等发酵制品中都含有大量的BAs。
1.3 BAs毒性及限量要求
通常摄入少量的BAs不会影响人体健康,BAs可被人体肠道内的氨基氧化酶(如单胺氧化酶,二胺氧化酶和组胺甲基转移酶)降解[19];然而,摄入含BAs较高的食物或人体解毒能力受到抑制或干扰时,BAs会对人健康造成严重的影响[20]。被欧洲食品安全局(EFSA)关注的BAs主要包括组胺和酪胺,高浓度会导致高血压、头痛、心悸和呕吐[21]。另外,BAs的毒性随个体敏感程度而异,其敏感程度随BAs积累而增加[22]。此外,BAs的毒性也有协同作用,如二胺和多胺同时存在时会抑制单胺降解,增加毒性,引发人体中毒[23]。
目前,国际上关于食品中BAs的限量并没有统一标准,各国分别根据本国的法律法规制定相应的标准,且大多数法律法规只对食品中组胺的含量进行限定。我国食品安全国家标准(高组胺类)组胺含量≤40 mg/100 g(GB 10136-2015动物性水产制品);盐渍鱼(不含高组胺鱼类)组胺含量≤20 mg/100 g(GB 10136-2015动物性水产制品)。美国对金枪鱼及相关鱼类组胺干预水平为50 mg/kg,对酪胺和苯乙胺的安全阈值上限分别为100~800 mg/kg和30 mg/kg[24]。欧盟食品微生物标准规定鱼类制品中组胺含量明确限定为100 mg/kg,但其他食物中的BAs限量只有推荐标准,无强制规定[25]。
2. 传统发酵食品中微生物多样性及其与BAs形成的关系
传统发酵食品多依赖于原辅料和环境中的微生物来实现其发酵,由于自然发酵工艺的开放性与粗放性,导致发酵产品中的微生物群落具有高度的多样性和复杂性[26]。传统发酵食品中以乳酸菌、葡萄球菌和链球菌为代表的细菌和以霉菌和酵母菌为代表的真菌是参与发酵的核心菌群,它们的代谢作用对发酵品质形成以及BAs的形成和控制都有着重要影响[27]。发酵食品中微生物主要通过调控碳水化合物代谢和氨基酸代谢过程来影响产品的品质,其中与BAs形成密切相关的代谢为氨基酸代谢[28]。腐胺可以在微生物的胍基丁酶或鸟氨酸脱羧酶途径下合成;亚精胺在亚精胺合酶下合成或羧基亚精胺在羧基精胺脱羧作用下生成;组胺可以在微生物的组氨酸脱羧酶途径下合成;尸胺可以在微生物的酪氨酸脱羧酶途径下合成;色胺可以在微生物的色胺酸脱羧酶途径下合成[28−30]。因此,明确传统发酵食品中微生物的组成,对有效控制产胺微生物的生长、减少BAs的积累,保证产品的品质和安全性至关重要[31]。表1总结了传统发酵食品中与BAs形成密切相关的微生物。
表 1 传统发酵食品中与生物胺形成有关的微生物Table 1. Microorganisms related to biogenic amine formation in fermented foods发酵食品 相关微生物 主要生物胺 发酵蔬菜 东北酸菜 乳球菌属(Lactobacillus)、假单胞菌属(Pseudomonas) 腐胺、组胺、酪胺、亚精胺、尸胺 [32] 榨菜 嗜盐菌属(Halophilic)、乳酸菌属(Lactobacillus) 酪胺、苯乙胺、组胺、腐胺、尸胺 [33] 韩国泡菜 魏斯氏菌属(Weissella)、明串珠菌属(Leuconostoc) 尸胺、腐胺、组胺、酪胺 [34] 四川工业泡菜 芽孢杆菌属(Bacillus) 尸胺、酪胺、组胺、腐胺 [35] 德国酸菜 乳酸菌属(Lactobacillus) 组胺、酪胺、腐胺、亚精胺、精胺、尸胺 [36] 发酵豆制品 韩国传统豆酱 芽孢杆菌属(Bacillus)、乳酸菌属(Lactobacillus)、
魏斯氏菌属(Weissella)组胺、酪胺 [37] 传统臭豆腐 四联球菌属(Tetragenococcus)乳酸菌属(Lactobacillus)、
明串珠菌属(Leuconostoc)、小细菌属(Microbacterium)腐胺、尸胺、亚精胺、色胺、苯乙胺、组胺、酪胺 [38] 东北农家酱 乳酸菌属(Lactobacillus) 腐胺、组胺、酪胺、苯乙胺、亚精胺 [39] 腐乳 肠球菌属(Enterococcus)、乳酸菌属(Lactobacillus)、明串珠菌属(Leuconostoc)、链球菌属(Streptococcus) 腐胺、亚精胺、精胺、色胺、酪胺 [40] 发酵乳制品 耗牛乳硬质干酪 假单胞菌属(Pseudomonas)、明串珠菌属(Leuconostoc) 腐胺、苯乙胺、酪胺、组胺、尸胺 [41] 意大利南部奶酪 嗜热链球菌属(Streptococcus thermophilus)、肠球菌属(Enterococcus)、肠杆菌属(Enterobacter) 尸胺、腐胺、组胺、酪胺 [42] 干酪 肠球菌属(Enterococcus)、乳酸菌属(Lactobacillus) 酪胺、组胺 [43] 佩科里诺奶酪 肠球菌属(Enterococcus)、肠杆菌属(Enterobacter) 组胺、酪胺 [44] 山羊奶酪 肠球菌属(Enterococcus)、肠杆菌属(Enterobacter)、
乳杆菌属(Lactobacilli)腐胺、色胺、酪胺 [45] 发酵肉制品 西班牙发酵香肠 乳酸菌属(Lactobacillus)、葡萄球菌属(Staphylococcus) 酪胺、苯乙胺,色胺,腐胺、尸胺 [46] 风干肠 乳杆菌属(Lactobacilli)、肠球菌属(Enterococcus) 酪胺、苯乙胺,色胺,腐胺、尸胺 [47] 发酵水产品 发酵酸鱼 肠杆菌属(Enterobacter)、克雷伯氏菌属(Klebsiella) 腐胺、尸胺、组胺 [48] 新疆熏马肠 葡萄球菌属(Staphylococcus)、克雷伯氏菌属(Klebsiella) 腐胺、色胺、组胺、苯乙胺 [49] 腌鱼 肠杆菌属(Enterobacter)、沙门氏菌属(Salmonella) 尸胺、腐胺、组胺 [50] 2.1 发酵蔬菜
发酵蔬菜主要包括酸菜、泡菜和榨菜等,相较于富含蛋白质的发酵食品,其BAs含量(40.57~692.82 mg/kg)相对较低[51]。东北酸菜是一种以中国卷心菜为原料的传统发酵蔬菜,Ye等[32]将植物乳杆菌SC-5接种到发酵酸菜中,通过Spearman相关性分析发现植物乳杆菌SC-5与酸菜中BAs的含量呈负相关,这可能是由于接种植物乳杆菌后干扰了酸菜中微生物多样性,使发酵过程中产胺微生物丰度降低,从而降低了BAs的含量。泡菜是一种以新鲜蔬菜为原料的传统发酵蔬菜的总称,Young等[51]在韩国萝卜泡菜中检测出了组胺、腐胺、尸胺和酪胺,并分离出了可产生酪胺的乳酸菌,通过16S rDNA测序确定该菌株为短链乳杆菌。Dabade等[52]研究发现泡菜在发酵过程中尸胺与乳酸菌呈正相关,腐胺与总需氧菌呈正相关,苯乙胺与肠球菌呈正相关。榨菜是一种以块茎芥菜为原料的传统发酵蔬菜,Zhang等[33]研究发现在榨菜发酵过程中乳酸菌丰度与酪胺、腐胺和组胺含量呈正相关,乳酸菌作为优势菌属可降解原料中的蛋白产生游离氨基酸,在氨基酸脱羧酶作用下促进BAs形成。除乳酸菌外,其他微生物也会影响发酵蔬菜中BAs的形成,如Kung等[53]研究发现中国台湾榨菜中的头状葡萄球菌、巴氏葡萄球菌、阴沟肠杆菌,光滑假丝酵母和褶皱假丝酵母与组胺形成密切相关。综上,乳酸菌是发酵蔬菜中的主要微生物,对BAs的形成及抑制具有菌株特异性。
2.2 发酵豆制品
传统发酵豆制品主要包括豆酱、腐乳、酱油和臭豆腐等,它们含有丰富的大豆多肽、大豆异黄酮、γ-氨基丁酸等有功能成分[54−55]。Yu等[39]以东北地区农家黄豆酱为研究对象,确定了四联球菌属,乳酸菌,乳杆菌属,魏斯氏菌属,肠球菌属,链球菌属和白串珠菌属是豆酱发酵过程中的优势菌属,其中肠球菌属,乳杆菌属和链球菌属与BAs呈正相关,在黄豆酱发酵过程中检测到乳酸菌和乳酸球菌存在氨基酸脱羧酶基因,说明这两种菌促进了发酵过程中BAs的积累。李东蕊[56]研究了豆瓣酱在发酵过程中BAs生成规律及微生物多样性,结果表明豆瓣酱总BAs和腐胺与芽孢杆菌属、乳杆菌属、魏斯氏菌属和阪崎肠杆菌属呈正相关;亚精胺和色胺与乳球菌和泛菌属呈正相关;精胺与曲霉菌属、明串珠菌属和葡萄球菌属呈正相关。Jeon等[57]研究发现组胺、酪胺和苯乙胺是Cheonggukjang(一种韩国豆酱)中的主要BAs,且芽孢杆菌和肠球菌与酪胺呈正相关。王维亚等[16]研究发现腐乳中的魏斯氏菌属、芽孢杆菌属和赖氨酸芽孢杆菌属与BAs呈正相关;不动杆菌属、丛毛单胞菌属和四联球菌属与BAs呈负相关。Kim等[58]采用宏基因组和宏转录组学方法,对韩国传统酱油发酵过程中产生BAs的微生物进行了研究,结果表明芽孢杆菌和肠球菌含有色氨酸脱羧酶基因,具有产生色胺的能力;四联球菌中含有赖氨酸脱羧酶和组氨酸脱羧酶基因,具有产生尸胺和组胺的能力;同时,根据酱油中产生BAs脱羧酶基因的相对丰度发现,芽孢杆菌和盐单胞菌与腐胺呈正相关。Gu等[59]研究发现普雷沃菌属、乳杆菌属、盐单胞菌属和克里斯滕森氏菌属是臭豆腐的主要菌属,酪胺、腐胺和尸胺是臭豆腐中的主要BAs,偏最小二乘法来分析表明稳杆菌属、漫游球菌属和肠球菌与组胺呈正相关,四联球菌属、芽孢杆菌、葡萄球菌和小细菌属与亚精胺和酪胺呈正相关。综上,四联球菌、乳杆菌、肠杆菌、芽孢杆菌和乳酸杆菌等为发酵豆制品中的主要产胺菌。
2.3 发酵乳制品
发酵乳制品主要包括奶酪、酸奶、开菲尔、奶酒等,关于BAs的研究多集中于奶酪。奶酪中高浓度的酪胺会导致人体中毒,也就是人们常说的“奶酪反应”[60]。Radka等研究发现荷兰干酪成熟过程中的耐久肠球菌、粪肠球菌、屎肠球菌、铅黄肠球菌、弯曲乳杆菌、乳酸乳杆菌和瑞士乳杆菌含有组胺脱羧酶基因,并且瑞士乳杆菌含有酪胺脱羧酶基因,说明干酪中组胺和酪胺主要由上述微生物产生。Guarcello等[61]研究发现意大利南部奶酪中尸胺与嗜中温乳球菌呈正相关,该乳球菌能够通过对赖氨酸脱羧产生尸胺。Pintado等[42]研究发现不同原料奶生产的葡萄牙奶酪中BAs含量与微生物数量呈正相关,肠球菌与苯乙胺呈正相关,乳球菌与尸胺、酪胺呈正相关;此外,其中的酵母菌具有较强的蛋白水解活性,为BAs的形成提供游离氨基酸,一定程度上促进了BAs的形成。腐胺是发酵乳制品中较为常见的BAs之一,它主要通过精氨酸脱羧生成胍丁胺,然后通过胍丁胺脱氨酶(AGDI)途径进一步脱氨基形成,许多乳酸菌(包括短乳杆菌、弯曲乳杆菌、乳酸乳球菌等)已被证实可通过AGDI途径产生并积累腐胺[62−63]。宋雪梅等[64]研究表明牦牛乳硬质干酪成熟过程中的主要BAs为腐胺、苯乙胺、酪胺、组胺和尸胺,优势菌属为链球菌属、明串珠菌属、乳杆菌属、拉乌尔菌属、不动杆菌属、假单胞菌属和肠杆菌属等,这些微生物在干酪成熟过程中产生大量游离氨基酸,可能会促进耗牛硬质干酪中BAs的形成。综上,酪胺和腐胺是干酪中的主要BAs,肠球菌、肠杆菌、乳球菌和乳杆菌是主要产胺菌。
2.4 发酵肉制品
发酵肉制品主要包括发酵香肠和腊肉,其蛋白质和游离氨基酸含量较高、微生物种类丰富,极易造成BAs的积累[65]。吴双慧等[28]研究发现羊肉发酵香肠中明串珠菌属、假交替单胞菌属、弧菌属、发光杆菌属和希瓦氏菌属与尸胺呈正相关;假交替单胞菌属和发光杆菌属与酪胺呈正相关;葡萄球菌属和链球菌属与色胺呈正相关。刘雨萱等[66]研究发现市售四川腊肉中葡萄球菌、微球菌数与肥肉中组胺、腐胺呈负相关;乳酸杆菌与肥肉中腐胺呈负相关;霉菌、酵母与瘦肉中总生物胺含量呈正相关,与肥肉中组胺、腐胺含量呈负相关。Santiyanont等[67]研究发现乳酸菌、乳球菌、片球菌和魏斯氏菌是泰国发酵猪肉制品(nham)中的主要菌属,魏斯氏菌与总BAs含量呈负相关,这可能是魏斯氏菌通过产生细菌素和有机酸等物质、或通过营养竞争抑制了产胺微生物生长,使BAs含量降低,Lebeert等[68]研究发现法国传统发酵干香肠中乳酸菌和肠球菌与酪胺呈正相关,葡萄球菌和肠杆菌与总BAs含量呈负相关。综上,乳酸菌、葡萄球菌、假单胞菌和魏斯氏菌是发酵肉制品中产胺的核心菌。
2.5 发酵水产品
以鱼露、虾酱等为代表的发酵水产品因其独特的风味和口感深受人们喜爱。因水产品原料易发生自溶、初始细菌含量较高,通常比其他发酵食品更容易造成BAs的积累,因此,关于发酵水产品中BAs的研究一直是人们关注的重点[69]。鱼露是我国传统发酵调味品之一,在鱼露发酵初始阶段假单胞菌属、变形杆菌属和普罗威登斯菌属与亚精胺和精胺含量呈负相关[70]。王悦齐等[71]研究发现鱼露发酵过程中盐厌氧菌属与腐胺呈正相关,在鱼露发酵后期盐单胞菌属与BAs呈负相关。虾酱是我国著名的传统发酵水产品,其中四球菌属、乳酸菌属、曲霉菌和未分类真菌属为优势微生物菌属,并且大部分菌属与BAs含量呈一定的相关性,如:乳球菌与尸胺、腐胺和酪胺呈正相关;革球菌与苯乙胺、组胺和酪胺呈正相关;八叠球菌和卡他莫拉菌与腐胺、尸胺、组胺和酪胺呈负相关[72]。Li等[73]研究发现发酵虾酱中四链球菌与色胺、组胺和酪胺呈正相关;乳酸菌与腐胺和尸胺呈正相关;盐厌氧菌属与腐胺、尸胺和组胺呈正相关,与苯乙胺呈负相关。Zhao等[74]研究发现腐胺、苯乙胺、精胺、尸胺、组胺和酪胺是罗非鱼发酵香肠中的主要BAs,其中,组胺、腐胺、酪胺、精胺和苯乙胺与片球菌呈正相关;腐胺、尸胺和组胺与肠杆菌属和柠檬酸杆菌属呈正相关;酪胺和腐胺与肠球菌呈正相关。综上,四链球菌、乳酸菌、假单胞菌、肠球菌和肠杆菌是发酵水产品中产胺的核心菌。
3. 结论
传统发酵食品是一个极其复杂的微生物体系,其中丰富的游离氨基酸以及复杂的微生物结构是其中BAs形成和积累的主要原因,并且环境-微生物、微生物-微生物间的相互作用对微生物组成及BAs形成影响甚大。因此,深入了解微生物多样性与BAs形成之间的关系,才能有效地实现产胺菌种确定及抑制、降胺菌种的筛选及应用。并且围绕降胺菌株展开相关研究,揭示基于胺氧化酶、脱氢氧化酶和多酮氧化酶等降胺酶的BAs降解机制,通过宏基因组技术明确BAs降解途径、挖掘对降解BAs起决定作用的基因,运用基因克隆、基因过表达等分子生物学技术,构建更加安全和高效的降胺菌株。
-
表 1 传统发酵食品中与生物胺形成有关的微生物
Table 1 Microorganisms related to biogenic amine formation in fermented foods
发酵食品 相关微生物 主要生物胺 发酵蔬菜 东北酸菜 乳球菌属(Lactobacillus)、假单胞菌属(Pseudomonas) 腐胺、组胺、酪胺、亚精胺、尸胺 [32] 榨菜 嗜盐菌属(Halophilic)、乳酸菌属(Lactobacillus) 酪胺、苯乙胺、组胺、腐胺、尸胺 [33] 韩国泡菜 魏斯氏菌属(Weissella)、明串珠菌属(Leuconostoc) 尸胺、腐胺、组胺、酪胺 [34] 四川工业泡菜 芽孢杆菌属(Bacillus) 尸胺、酪胺、组胺、腐胺 [35] 德国酸菜 乳酸菌属(Lactobacillus) 组胺、酪胺、腐胺、亚精胺、精胺、尸胺 [36] 发酵豆制品 韩国传统豆酱 芽孢杆菌属(Bacillus)、乳酸菌属(Lactobacillus)、
魏斯氏菌属(Weissella)组胺、酪胺 [37] 传统臭豆腐 四联球菌属(Tetragenococcus)乳酸菌属(Lactobacillus)、
明串珠菌属(Leuconostoc)、小细菌属(Microbacterium)腐胺、尸胺、亚精胺、色胺、苯乙胺、组胺、酪胺 [38] 东北农家酱 乳酸菌属(Lactobacillus) 腐胺、组胺、酪胺、苯乙胺、亚精胺 [39] 腐乳 肠球菌属(Enterococcus)、乳酸菌属(Lactobacillus)、明串珠菌属(Leuconostoc)、链球菌属(Streptococcus) 腐胺、亚精胺、精胺、色胺、酪胺 [40] 发酵乳制品 耗牛乳硬质干酪 假单胞菌属(Pseudomonas)、明串珠菌属(Leuconostoc) 腐胺、苯乙胺、酪胺、组胺、尸胺 [41] 意大利南部奶酪 嗜热链球菌属(Streptococcus thermophilus)、肠球菌属(Enterococcus)、肠杆菌属(Enterobacter) 尸胺、腐胺、组胺、酪胺 [42] 干酪 肠球菌属(Enterococcus)、乳酸菌属(Lactobacillus) 酪胺、组胺 [43] 佩科里诺奶酪 肠球菌属(Enterococcus)、肠杆菌属(Enterobacter) 组胺、酪胺 [44] 山羊奶酪 肠球菌属(Enterococcus)、肠杆菌属(Enterobacter)、
乳杆菌属(Lactobacilli)腐胺、色胺、酪胺 [45] 发酵肉制品 西班牙发酵香肠 乳酸菌属(Lactobacillus)、葡萄球菌属(Staphylococcus) 酪胺、苯乙胺,色胺,腐胺、尸胺 [46] 风干肠 乳杆菌属(Lactobacilli)、肠球菌属(Enterococcus) 酪胺、苯乙胺,色胺,腐胺、尸胺 [47] 发酵水产品 发酵酸鱼 肠杆菌属(Enterobacter)、克雷伯氏菌属(Klebsiella) 腐胺、尸胺、组胺 [48] 新疆熏马肠 葡萄球菌属(Staphylococcus)、克雷伯氏菌属(Klebsiella) 腐胺、色胺、组胺、苯乙胺 [49] 腌鱼 肠杆菌属(Enterobacter)、沙门氏菌属(Salmonella) 尸胺、腐胺、组胺 [50] -
[1] 王卫, 张佳敏, 赵志平, 等. 微生物发酵剂对四川风羊腿加工进程及产品特性的影响[J]. 肉类研究,2019,33(7):14−18. [WANG W, ZHANG J M, ZHAO Z P, et al. Effect of starter cultures on processing and quality characteristics of Sichuan goat ham[J]. Meat Research,2019,33(7):14−18. WANG W, ZHANG J M, ZHAO Z P, et al . Effect of starter cultures on processing and quality characteristics of Sichuan goat ham[J]. Meat Research,2019 ,33 (7 ):14 −18 .[2] ANAL A K, PERPETUINI G, PETCHKONGKAEW A, et al. Food safety risks in traditional fermented food from South-East Asia[J]. Food Control, 2020, 109: 106922.
[3] BENKERROUM N. Biogenic amines in dairy products:Origin, incidence, and control means[J]. Comprehensive Reviews in Food Science and Food Safety,2016,15(4):801−826. doi: 10.1111/1541-4337.12212
[4] 张杰, 赵志峰, 王佐军, 等. 四川泡菜菌相构成、风味与质量安全性研究进展[J]. 中国调味品,2021,46(10):178−182,197. [ZHANG J, ZHAO Z F, WANG Z J, et al. Research progress on microflora composition, flavor and quality safety of Sichuan pickles[J]. China Condiment,2021,46(10):178−182,197. ZHANG J, ZHAO Z F, WANG Z J, et al . Research progress on microflora composition, flavor and quality safety of Sichuan pickles[J]. China Condiment,2021 ,46 (10 ):178 −182,197 .[5] 罗璇, 程成, 张琦, 等. 发酵豆制品的理化性质与微生物群落对生物胺形成的影响[J/OL]. 食品科学:1−14[2023-04-02]. http://h-s.kns.cnki.net.neau.vpn358.com/kcms/detail/11.2206.TS.20221230.0759.001.html. [LUO X, CHENG C, ZHANG Q, et al. The effect of physicochemical properties and microbial community of fermented soybean products on the formation of biogenic amines[J/OL]. Food Science:1−14[2023-04-02]. http://h-s.kns.cnki.net.neau.vpn358.com/kcms/detail/11.2206.TS.20221230.0759.001.html. LUO X, CHENG C, ZHANG Q, et al. The effect of physicochemical properties and microbial community of fermented soybean products on the formation of biogenic amines[J/OL]. Food Science: 1−14[2023-04-02]. http://h-s.kns.cnki.net.neau.vpn358.com/kcms/detail/11.2206.TS.20221230.0759.001.html.
[6] SUVAJDŽIĆ B, TASIĆ T, TEODOROVIĆ V, et al. Biogenic amine content during the production and ripening of Sremski kulen, Serbian traditional dry fermented sausage[J]. Animal Science Journal,2020,91(1):e13466.
[7] 白妞妞, 白锴凯, 何建林, 等. 鱼露生物胺研究进展[J]. 食品与发酵工业,2020,46(24):271−277. [[BAI N N, BAI K K, HE J L, et al. Research progress on biogenic amines in fish sauce[J]. Food and Fermentation Industries,2020,46(24):271−277. [BAI N N, BAI K K, HE J L, et al . Research progress on biogenic amines in fish sauce[J]. Food and Fermentation Industries,2020 ,46 (24 ):271 −277 .[8] NOUT M J R. Fermented foods and food safety[J]. Food Research International,1994,27(3):291−298. doi: 10.1016/0963-9969(94)90097-3
[9] SANTOS M. Biogenic amines:their importance in foods[J]. International Journal of Food Microbiology,1996,29(2−3):213−231. doi: 10.1016/0168-1605(95)00032-1
[10] BRINK B T, DAMINK C T, JOOSTEN H, et al. Occurrence and formation of biologically active amines in foods[J]. International Journal of Food Microbiology,1990,11(1):73−84. doi: 10.1016/0168-1605(90)90040-C
[11] 牛天娇. 黄酒酿造中微生物菌群结构及对生物胺降解作用研究[D]. 哈尔滨:哈尔滨工业大学, 2020. [NIU T J. The microbial flora structure and degradation of biogenic amines during rice wine brewing[D]. Harbin:Harbin Institute of Technology, 2020. NIU T J. The microbial flora structure and degradation of biogenic amines during rice wine brewing[D]. Harbin: Harbin Institute of Technology, 2020.
[12] KIM M K, MAH J H, HWANG H J. Biogenic amine formation and bacterial contribution in fish, squid and shellfish[J]. Food Chemistry,2009,116(1):87−95. doi: 10.1016/j.foodchem.2009.02.010
[13] GARDINI F, ÖZOGUL Y, SUZZI G, et al. Technological factors affecting biogenic amine content in foods:A review[J]. Frontiers in Microbiology,2016,7:1218.
[14] 冯婷婷, 方芳, 杨娟, 等. 食品生物制造过程中生物胺的形成与消除[J]. 食品科学,2013,34(19):360−366. [FENG T T, FANG F, YANG J, et al. Formation and removal of biogenic amines in food bioprocessing[J]. Food Science,2013,34(19):360−366. doi: 10.7506/spkx1002-6630-201319074 FENG T T, FANG F, YANG J, et al . Formation and removal of biogenic amines in food bioprocessing[J]. Food Science,2013 ,34 (19 ):360 −366 . doi: 10.7506/spkx1002-6630-201319074[15] 何璇, 马堃, 哈斯, 等. 食品中生物胺形成与抑制的研究进展[J]. 食品与发酵工业,2021,47(18):294−300. [HE X, MA K, HA S, et al. Research progress on the formation and inhibition of biogenic amines in food[J]. Food and Fermentation Industries,2021,47(18):294−300. HE X, MA K, HA S, et al . Research progress on the formation and inhibition of biogenic amines in food[J]. Food and Fermentation Industries,2021 ,47 (18 ):294 −300 .[16] 王维亚, 刘玉婷, 万汉坤, 等. 腐乳中细菌群落结构与生物胺的相关性分析[J]. 食品工业科技,2022,43(22):181−188. [WANG W Y, LIU Y T, WAN H K, et al. Correlation analysis of bacterial community structure and biogenic amines in Sufu[J]. Science and Technology of Food Industry,2022,43(22):181−188. WANG W Y, LIU Y T, WAN H K, et al . Correlation analysis of bacterial community structure and biogenic amines in Sufu[J]. Science and Technology of Food Industry,2022 ,43 (22 ):181 −188 .[17] ZENG X F, XIA W S, JIANG Q X, et al. Chemical and microbial properties of Chinese traditional low-salt fermented whole fish product Suanyu[J]. Food Control,2013,30(2):590−595. doi: 10.1016/j.foodcont.2012.07.037
[18] 孙霞, 杨勇, 巩洋, 等. 市售四川香肠中生物胺含量比较分析[J]. 食品与发酵工业,2015,41(10):147−151. [SUN X, YANG Y, GONG Y, et al. Comparative analysis of biogenic amines content in Sichuan-style sausage[J]. Food and Fermentation Industries,2015,41(10):147−151. SUN X, YANG Y, GONG Y, et al . Comparative analysis of biogenic amines content in Sichuan-style sausage[J]. Food and Fermentation Industries,2015 ,41 (10 ):147 −151 .[19] DOEUN D, DAVAATSEREN M, CHUNG M. Biogenic amines in foods[J]. Food Science and Biotechnology,2017,26(6):1463−1474. doi: 10.1007/s10068-017-0239-3
[20] LADERO V, CALLES-ENRIQUEZ M, FERNANDEZ M, et al. Toxicological effects of dietary biogenic amines[J]. Current Nutrition and Food Science,2010,6(2):145−156. doi: 10.2174/157340110791233256
[21] RUIZ-CAPILLAS C, HERRERO A M. Impact of biogenic amines on food quality and safety[J]. Foods,2019,8(2):62. doi: 10.3390/foods8020062
[22] YAIR J H, KARINA A A, DEYANIRA O R, et al. Biogenic amines levels in food processing:Efforts for their control in food stuffs[J]. Food Research International, 2021: 110341.
[23] 刘景, 任婧, 孙克杰. 食品中生物胺的安全性研究进展[J]. 食品科学,2013,34(5):330−334. [LIU J, REN J, SUN K J. Research progress on safety of biogenic amines in food[J]. Food Science,2013,34(5):330−334. LIU J, REN J, SUN K J . Research progress on safety of biogenic amines in food[J]. Food Science,2013 ,34 (5 ):330 −334 .[24] U. S. Food and Drug Administration. CPG Sec. 540.525 Decomposition of histamines raw, frozen tuna and mahi-mahi, canned tuna, and related species. Revised compliance policy guide[EB/OL]. (2005-11-29) [2020-10-04]. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cpg-sec-540525-decomposition-and-histamine-raw-frozen-tuna-and-mahi-mahi-canned-tuna-and-related.
[25] HAZARDS E. Scientific opinion on risk-based control of biogenic amine formation in fermented foods[J]. EFSA Journal,2011,9(10):2393−2393. doi: 10.2903/j.efsa.2011.2393
[26] XU X X, WU B B, ZHAO W T, et al. Correlation between autochthonous microbial communities and key odorants during the fermentation of red pepper ( Capsicum annuum L.)[J]. Food Microbiology,2020,91:103510. doi: 10.1016/j.fm.2020.103510
[27] CHEN G M, HUANG Z R, WU L, et al. Microbial diversity and flavor of Chinese rice wine (Huangjiu):An overview of current research and future prospects[J]. Current Opinion in Food Science,2021,42(Suppl.3):37−50.
[28] 吴双慧, 牛茵, 何济坤, 等. 基于宏基因组技术分析自然发酵羊肉香肠中微生物多样性及生物胺的代谢[J/OL]. 食品科学:1−12[2023-02-09]. [WU S H, NIU Y, HE J K, et al. Analysis of microbial diversity and biogenic amine metabolism in naturally fermented mutton sausage based on metagenome technology[J/OL]. Food Science:1−12[2023-02-09]. WU S H, NIU Y, HE J K, et al. Analysis of microbial diversity and biogenic amine metabolism in naturally fermented mutton sausage based on metagenome technology[J/OL]. Food Science: 1−12[2023-02-09].
[29] 李苗云, 朱应举, 高晓平, 等. 肉品中微生物对生物胺的影响[J]. 安徽农业科学,2008(7):2928−2929. [LI M Y, ZHU Y J, GAO X P, et al. Effect of microorganisms on biogenic amines in meat products[J]. Anhui Agricultural Science,2008(7):2928−2929. LI M Y, ZHU Y J, GAO X P, et al . Effect of microorganisms on biogenic amines in meat products[J]. Anhui Agricultural Science,2008 (7 ):2928 −2929 .[30] RIVA B D L, MARCOBAL A, CARRASCOSA A V, et al. PCR detection of foodborne bacteria producing the biogenic amines histamine, tyramine, putrescine, and cadaverine[J]. Journal of Food Protection,2006,69(10):2509. doi: 10.4315/0362-028X-69.10.2509
[31] 陈镜如, 边鑫, 杨杨, 等. 中国传统发酵食品微生物多样性研究进展[J]. 中国调味品,2022,47(2):205−210. [CHEN J R, BIAN X, YANG Y, et al. Research progress on microbial diversity of traditional fermented food in China[J]. China Condiment,2022,47(2):205−210. CHEN J R, BIAN X, YANG Y, et al . Research progress on microbial diversity of traditional fermented food in China[J]. China Condiment,2022 ,47 (2 ):205 −210 .[32] YE H Q, LANG X S, JI Y Y, et al. The interaction between Lactobacillus plantarum SC-5 and its biogenic amine formation with different salt concentrations in Chinese Dongbei Suancai[J]. Food Research International,2021,150:110813.
[33] ZHANG C C, ZHANG J M, LIU D Q. Biochemical changes and microbial community dynamics during spontaneous fermentation of Zhacai, a traditional pickled mustard tuber from China[J]. International Journal of Food Microbiology,2021,347:109199. doi: 10.1016/j.ijfoodmicro.2021.109199
[34] JEONG D W, LEE J H. Antibiotic resistance, hemolysis and biogenic amine production assessments of Leuconostoc and Weissella isolates for kimchi starter development[J]. LWT-Food Science and Technology,2015,64(2):1078−1084. doi: 10.1016/j.lwt.2015.07.031
[35] 唐垚, 唐小曼, 明建英, 等. 四川泡菜产生物胺细菌的筛选及产胺能力验证[J]. 中国调味品,2019,44(7):81−84. [TANG Y, TANG X M, MING J Y, et al. Screening of amine-producing bacteria from Sichuan pickles and verification of amine-producing ability[J]. Chinese Condiment Journal,2019,44(7):81−84. TANG Y, TANG X M, MING J Y, et al . Screening of amine-producing bacteria from Sichuan pickles and verification of amine-producing ability[J]. Chinese Condiment Journal,2019 ,44 (7 ):81 −84 .[36] PENAS E, FRIAS J, SIDRO B, et al. Impact of fermentation conditions and refrigerated storage on microbial quality and biogenic amine content of sauerkraut[J]. Food Chemistry,2010,123(1):143−150. doi: 10.1016/j.foodchem.2010.04.021
[37] JEONG S J, RYU M S, YANG H J, et al. Bacterial distribution, biogenic amine contents, and functionalities of traditionally made doenjang, a long-term fermented soybean food, from different areas of Korea[J]. Microorganisms,2021,9(7):1348. doi: 10.3390/microorganisms9071348
[38] 谷静思. 传统发酵臭豆腐中微生物菌相结构解析及其与生物胺形成的关系[D]. 杭州:浙江大学, 2018:76−85. [GU J S. Biodiversity of chinese traditional stinky tofu microbiota and its biogenic amines metabolism[D]. Hangzhou:Zhejiang University, 2018:76−85. GU J S. Biodiversity of chinese traditional stinky tofu microbiota and its biogenic amines metabolism[D]. Hangzhou: Zhejiang University, 2018: 76−85.
[39] YU H, SUN B. Analysis of bacterial diversity and biogenic amines content during fermentation of farmhouse sauce from Northeast China[J]. Food Control,2020,108:106861.
[40] HU M, DONG J, TAN G L, et al. Metagenomic insights into the bacteria responsible for producing biogenic amines in sufu[J]. Food Microbiology,2021,98(8):103762.
[41] SCHIRONE M, TOFALO R, FASOLI G, et al. Biogenic amine content and microbiological profile of Pecorino di Farindola cheese[J]. Food Microbiology,2011,28(1):128−136. doi: 10.1016/j.fm.2010.09.005
[42] PINTADO A I E, PINHO O, FERREIRA I M P L V O, et al. Microbiological, biochemical and biogenic amine profiles of Terrincho cheese manufactured in several dairy farms[J]. International Dairy Journal,2007,18(6):631−640.
[43] BURDYCHOVA R, KOMPRDA T. Biogenic amine-forming microbial communities in cheese[J]. Fems Microbiology Letters,2007,276(2):149−155. doi: 10.1111/j.1574-6968.2007.00922.x
[44] CIAEEOCCHI A, SUZZI G. High content of biogenic amines in Pecorino cheeses[J]. Food Microbiology,2013,34(1):137−144. doi: 10.1016/j.fm.2012.11.022
[45] NOVELLA-PODÍGUEZ S, VECIANA-NOGUÉS M T, ROIG-SAGUÉS A X, et al. Influence of starter and nonstarter on the formation of biogenic amine in goat cheese during ripening[J]. Journal of Dairy Science,2002,85(10):2471−2478. doi: 10.3168/jds.S0022-0302(02)74329-4
[46] BOVER-CID S, HUGAS M, IZQUIERDO-PULIDO M, et al. Amino acid-decarboxylase activity of bacteria isolated from fermented pork sausages[J]. International Journal of Food Microbiology,2001,66(3):185−189. doi: 10.1016/S0168-1605(00)00526-2
[47] KOMPRDA T, SLADKOVA P, PETIROVA E, et al. Tyrosine-and histidine-decarboxylase positive lactic acid bacteria and enterococci in dry fermented sausages[J]. Meat Science,2010,86(3):870−877. doi: 10.1016/j.meatsci.2010.07.013
[48] MENG J, YANG Q, WAN W Y, et al. Physicochemical properties and adaptability of amine-producing Enterobacteriaceae isolated from traditional Chinese fermented fish (Suan yu)[J]. Food Chemistry,2022,369:130885. doi: 10.1016/j.foodchem.2021.130885
[49] 李蕊婷, 卢士玲, 李开雄, 等. 新疆熏马肠中产氨基酸脱羧酶优势细菌的分离及鉴定[J]. 现代食品科技,2014,30(9):85−91,172. [LI R T, LU S L, LI K X, et al. Separation and identification of dominant bacterial strains producing amino acid decarboxylase in Xinjiang smoked horsemeat sausage[J]. Modern Food Science & Technology,2014,30(9):85−91,172. LI R T, LU S L, LI K X, et al . Separation and identification of dominant bacterial strains producing amino acid decarboxylase in Xinjiang smoked horsemeat sausage[J]. Modern Food Science & Technology,2014 ,30 (9 ):85 −91,172 .[50] 张黎明, 章祎, 赵云松, 等. 腌鱼中产生物胺菌株的筛选、鉴定及其特性研究[J]. 中国食品学报,2021,21(7):291−299. [ZHANG L M, ZHANG Y, ZHANG Y S, et al. Screening, identification and characteristics of biogenic amines producing strains in salted fish[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(7):291−299. ZHANG L M, ZHANG Y, ZHANG Y S, et al . Screening, identification and characteristics of biogenic amines producing strains in salted fish[J]. Journal of Chinese Institute of Food Science and Technology,2021 ,21 (7 ):291 −299 .[51] YOUNG H J, JAE H L, YOUNG K P, et al. The occurrence of biogenic amines and determination of biogenic amine-producing lactic acid bacteria in Kkakdugi and Chonggak kimchi[J]. Foods,2019,8(2):73. doi: 10.3390/foods8020073
[52] DABADE D S, JACXSENS L, MICLOTTE L, et al. Survey of multiple biogenic amines and correlation to microbiological quality and free amino acids in foods[J]. Food Control, 2021, 120: 107497.
[53] KUNG H F, LEE Y H, TENG D F, et al. Histamine formation by histamine-forming bacteria and yeast in mustard pickle products in Taiwan[J]. Food Chemistry,2006,99(3):579−585. doi: 10.1016/j.foodchem.2005.08.025
[54] 张蒙冉, 李淑英, 高雅鑫, 等. 传统发酵豆制品研究进展[J]. 食品科技,2021,46(1):98−104. [ZHANG M R, LI S Y, GAO Y X, et al. Research progress of traditional fermented soybean products[J]. Food Science and Technology,2021,46(1):98−104. ZHANG M R, LI S Y, GAO Y X, et al . Research progress of traditional fermented soybean products[J]. Food Science and Technology,2021 ,46 (1 ):98 −104 .[55] 张颖, 乌日娜, 孙慧君, 等. 豆酱不同发酵阶段细菌群落多样性及动态变化分析[J]. 食品科学,2017,38(14):30−35. [ZHANG Y, WU R N, SUN H J, et al. Diversity and dynamic changes of the bacterial community during fermentation of soybean paste[J]. Food Science,2017,38(14):30−35. ZHANG Y, WU R N, SUN H J, et al . Diversity and dynamic changes of the bacterial community during fermentation of soybean paste[J]. Food Science,2017 ,38 (14 ):30 −35 .[56] 李东蕊. 豆瓣酱工业发酵过程中生物胺的生成规律及微生物多样性的研究[D]. 无锡:江南大学, 2020:36−45. [LI D R. Study on the formation regularity of biogenic amines and microbial diversity during the industrial fermentation of broad bean paste[D]. Wuxi:Jiangnan University, 2020:36−45. LI D R. Study on the formation regularity of biogenic amines and microbial diversity during the industrial fermentation of broad bean paste[D]. Wuxi: Jiangnan University, 2020: 36−45.
[57] JEON A R, LEE J H, MAH J H. Biogenic amine formation and bacterial contribution in Cheonggukjang, a Korean traditional fermented soybean food[J]. LWT,2018,92:282−289. doi: 10.1016/j.lwt.2018.02.047
[58] KIM K H, CHUN B H, KIM J, et al. Identification of biogenic amine-producing microbes during fermentation of ganjiang, a Korean traditional soy sauce, through metagenomic and meta transcriptomic analyses[J]. Food Control,2020,121(1):107681.
[59] GU J S, LIU T J, SADIQ F A, et al. Biogenic amines content and assessment of bacterial and fungal diversity in stinky tofu–A traditional fermented soy curd[J]. LWT,2018,88:26−34. doi: 10.1016/j.lwt.2017.08.085
[60] 牧其尔, 徐伟良, 李春冬, 等. 发酵乳制品风味物质种类、形成途径以及提取和检测方法的研究进展[J]. 中国酿造,2022,41(7):6−10. [MU Q E, XU W L, LI C D, et al. Research progress on the classification, formation pathways, extraction and detection methods of flavor substances in fermented dairy products[J]. China Brewing,2022,41(7):6−10. MU Q E, XU W L, LI C D, et al . Research progress on the classification, formation pathways, extraction and detection methods of flavor substances in fermented dairy products[J]. China Brewing,2022 ,41 (7 ):6 −10 .[61] GUARCELLO R, DIVICCARO A, BARBERA M, et al. A survey of the main technology, biochemical and microbiological features influencing the concentration of biogenic amines of twenty Apulian and Sicilian (Southern Italy) cheeses[J]. International Dairy Journal,2015,43:61−69. doi: 10.1016/j.idairyj.2014.11.007
[62] LADERO V, RATTRAY F P, MAYO B, et al. Sequencing and transcriptional analysis of the biosynthesis gene cluster of putrescine-producing Lactococcus lactis[J]. Applied and Environmental Microbiology,2011,77(18):6409−6418. doi: 10.1128/AEM.05507-11
[63] LADERO V, CAÑEDO E, PÉREZ M, et al. Multiplex qPCR for the detection and quantification of putrescine-producing lactic acid bacteria in dairy products[J]. Food Control,2012,27(2):307−313. doi: 10.1016/j.foodcont.2012.03.024
[64] 宋雪梅, 宋国顺, 梁琪, 等. 牦牛乳硬质干酪成熟过程中生物胺与细菌群落结构分析[J]. 食品科学,2021,42(23):27−33. [SONG X M, SONG G S, LIANG Q, et al. Analysis of biogenic amines and bacterial community composition during the ripening of hard cheese made from yak’s milk[J]. Food Science,2021,42(23):27−33. doi: 10.7506/spkx1002-6630-20201123-230 SONG X M, SONG G S, LIANG Q, et al . Analysis of biogenic amines and bacterial community composition during the ripening of hard cheese made from yak’s milk[J]. Food Science,2021 ,42 (23 ):27 −33 . doi: 10.7506/spkx1002-6630-20201123-230[65] 冉春霞, 陈光静. 我国传统发酵肉制品中生物胺的研究进展[J]. 食品与发酵工业,2017,43(3):285−294. [RAN C X. CHEN G J. Research progress of biogenic amines in Chinese traditional fermented meat products[J]. Food and Fermentation Industries,2017,43(3):285−294. RAN C X . CHEN G J. Research progress of biogenic amines in Chinese traditional fermented meat products[J]. Food and Fermentation Industries,2017 ,43 (3 ):285 −294 .[66] 刘雨萱, 任冠洁, 鲁家璇, 等. 市售四川腊肉中微生物群落结构及生物胺的相关性研究[J]. 食品与发酵工业,2022,48(16):163−168,174. [LIU Y X, REN G J, LU J X, et al. Microbial community structure and biogenic amine content in commercial Sichuan bacon[J]. Food and Fermentation Industries,2022,48(16):163−168,174. LIU Y X, REN G J, LU J X, et al . Microbial community structure and biogenic amine content in commercial Sichuan bacon[J]. Food and Fermentation Industries,2022 ,48 (16 ):163 −168,174 .[67] SANTIYANONT P, CHANTARASAKHA K, TEPKASIKUL P, et al. Dynamics of biogenic amines and bacterial communities in a Thai fermented pork product Nham[J]. Food Research International,2019,119:110−118. doi: 10.1016/j.foodres.2019.01.060
[68] LEBEERT I, LEROY S, GIAMMARINARO P, et al. Diversity of micro-organisms in environments and dry fermented sausages of French traditional small units[J]. Meat Science,2007,76(1):112−122. doi: 10.1016/j.meatsci.2006.10.019
[69] NAGARAJARAO R C. Recent advances in processing and packaging of fishery products:A review[J]. Aquatic Procedia,2016,7:201−213. doi: 10.1016/j.aqpro.2016.07.028
[70] 袁树昆. 不同盐度发酵鱼露风味及优势菌群与生物胺相关性研究[D]. 宁波:宁波大学, 2018:36−45. [YUAN S K. Study on the flavor of fermented anchovy sauce and relationship between biogenic amines and the dominant genera in different salt concentrations[D]. Ningbo:Ningbo University, 2018:36−45. YUAN S K. Study on the flavor of fermented anchovy sauce and relationship between biogenic amines and the dominant genera in different salt concentrations[D]. Ningbo: Ningbo University, 2018: 36−45.
[71] 王悦齐, 李春生, 杨贤庆, 等. 传统鱼露发酵过程中微生物菌群和游离氨基酸对生物胺代谢的影响[C]. 中国水产学会学术, 2018:137. [WANG Y Q, LI C S, YANG X Q, et al. Effect of bacterial community and free amino acids on the metabolism of biogenic amines during fermentation of Yu-lu, a Chinese fermented fish sauce[C]. China Society of Fisheries, 2018:137. WANG Y Q, LI C S, YANG X Q, et al. Effect of bacterial community and free amino acids on the metabolism of biogenic amines during fermentation of Yu-lu, a Chinese fermented fish sauce[C]. China Society of Fisheries, 2018: 137.
[72] SANG X, MA M X, HAO H S, et al. Evaluation of biogenic amines and microbial composition in the Chinese traditional fermented food grasshopper sub shrimp paste[J]. LWT- Food Science and Technology,2020,134:109979. doi: 10.1016/j.lwt.2020.109979
[73] LI W Y, LU H Q, HE Z H, et al. Quality characteristics and bacterial community of a Chinese salt-fermented shrimp paste[J]. LWT-Food Science and Technology,2020,136(2):110358.
[74] ZHAO Y, WANG Y Q, LI C S, et al. Novel insight into physicochemical and flavor formation in naturally fermented tilapia sausage based on microbial metabolic network[J]. Food Research International,2021,141:110122. doi: 10.1016/j.foodres.2021.110122