• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

剁椒萝卜后熟期微生物多样性与风味品质分析

安莲霞, 苏伟, 母应春, 尹学东

安莲霞,苏伟,母应春,等. 剁椒萝卜后熟期微生物多样性与风味品质分析[J]. 食品工业科技,2023,44(19):128−139. doi: 10.13386/j.issn1002-0306.2022120232.
引用本文: 安莲霞,苏伟,母应春,等. 剁椒萝卜后熟期微生物多样性与风味品质分析[J]. 食品工业科技,2023,44(19):128−139. doi: 10.13386/j.issn1002-0306.2022120232.
AN Lianxia, SU Wei, MU Yingchun, et al. Analysis of Microbial Diversity and Flavor Quality of Chopped Pepper Radish in Post-ripening[J]. Science and Technology of Food Industry, 2023, 44(19): 128−139. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120232.
Citation: AN Lianxia, SU Wei, MU Yingchun, et al. Analysis of Microbial Diversity and Flavor Quality of Chopped Pepper Radish in Post-ripening[J]. Science and Technology of Food Industry, 2023, 44(19): 128−139. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120232.

剁椒萝卜后熟期微生物多样性与风味品质分析

基金项目: 贵州省辣椒发酵制品工程技术研究中心(黔科合平台人才 [2020]2102);贵州省辣椒产业技术体系(GZSLJCYTX-2022)。
详细信息
    作者简介:

    安莲霞(1996−),女,硕士研究生,研究方向:食品科学,E-mail:2939607417@qq.com

    通讯作者:

    苏伟(1974−),男,博士,教授,研究方向:食品生物技术,E-mail: suwei1886@163.com

  • 中图分类号: TS255.54

Analysis of Microbial Diversity and Flavor Quality of Chopped Pepper Radish in Post-ripening

  • 摘要: 了解剁椒萝卜后熟期微生物群落和挥发性成分的变化对于揭示发酵辣椒独特风味的形成尤为重要。本研究采用高通量测序(High Throughput Sequencing,HTS)和顶空固相微萃取气相色谱质谱联用技术(Headspace Solid Phase Microextraction Gas Chromatography-Mass Spectrometry,HS-SPME-GC-MS)对剁椒萝卜后熟期微生物群落和挥发性化合物进行了分析,并建立了它们之间的相关性。结果表明:共筛选出21个优势细菌属和11个优势真菌属(平均相对丰度大于1%)。感官分析表明剁椒萝卜经后熟处理后风味和滋味显著提高(P<0.05)。剁椒萝卜中共检测出有74种挥发性风味化合物,以醇类和酯类为主。相关性分析表明11个核心微生物属(|cor|>0.7且P<0.05)与29种重要差异挥发性风味物质显著相关,其中片球菌属、乳球菌属和青霉属分别与11、6和5种风味物质呈显著相关。研究结果反映了剁椒萝卜后熟期代谢物变化规律,为剁椒萝卜品质提升提供了数据支撑。
    Abstract: Comprehending the changes in the microbial community and volatile substances throughout the post-ripening stage of chopped pepper radish is particularly important for revealing the formation of the distinctive flavor of fermented peppers. The microbial communities and volatile compounds of chopped pepper radish in the post-ripening stage were examined in this work using high-throughput sequencing (HTS) and headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), as well as their underlying correlations. Results indicated that 11 dominant fungal genera and 21 dominant bacterial genera (average relative abundance more than 1%) were filtered out. Sensory analysis showed that the flavor and taste of chopped pepper radish were significantly improved after post-ripening (P<0.05). A total of 74 volatile flavor compounds, mainly alcohols and esters, were detected in chopped pepper radish. According to correlation analysis, 29 volatile flavor substances and 11 core microbial genera (|cor|>0.7 and P<0.05) were significantly related to one another. Pediococcus, Lactococcus, and Penicillium were significantly related to 11, 6, and 5 flavor substances, respectively. The findings in this study demonstrated how metabolites changed as chopped pepper radish underwent the post-ripening process and offered evidence to support efforts to raise the quality of chopped pepper radish.
  • 剁椒为湘黔地区特色发酵型辣椒制品,是将新鲜辣椒、生姜、大蒜和食盐混合后经剁碎、密封高温发酵等工艺制成,具有清爽入味、酸辣可口的特点,深受消费者喜爱。辣椒是其主要蔬菜,富含多酚、黄酮等抗氧化成分,可预防肥胖、糖尿病等疾病[1-2]。但发酵型辣椒存在原料单一、营养不足、品种少等问题,难以满足当代饮食需求[3]。因此,添加营养丰富的天然物质丰富剁椒制品已成为研究热点。萝卜作为世界公认的保健蔬菜,富含人体必需维生素、矿物质及其特有的莱菔素,具有润肺除燥、止咳化痰等功效,在我国民间素有“小人参”的美誉[4-5]。将萝卜与辣椒开发成新型剁椒制品不仅可丰富产品,还可增加剁椒风味品质。

    风味是评价剁椒质量的关键指标之一,而原料和微生物组成是影响其风味品质主要因素。其中微生物发酵所产生的各种代谢产物,如氨基酸、有机酸和活性代谢产物等不仅可以改变剁椒风味,还可以提高产品质量。近年来,高通量测序技术作为新一代测序技术广泛用于挖掘微生物与发酵辣椒(如传统豆瓣酱、剁椒和辣椒酱等)风味和感官特征之间的潜在机制,并已取得一定进展[6]。Deng等[7]鉴定出毛霉、芽孢杆菌、乳杆菌为豆瓣酱贮藏过程中关键风味成分的潜在核心微生物。Ma等[8]采用高通量技术分析发现有11个属是发酵剁椒的核心功能微生物,而枝孢菌和汉森菌分别与9种和6种挥发物的形成显著相关。Meilun等[9]筛选并验证了与发酵辣椒酱的关键香气化合物密切相关的核心微生物,发现乳酸杆菌属、链格孢菌属和哈萨克斯坦菌属是发酵辣椒酱中的优势菌属,并通过相关性分析确定接合酵母和Kazachstania为关键气味相关核心属,也证实双孢酵母和K. humilis比植物乳杆菌更有益于关键香气化合物(如乙酸盐、芳樟醇和苯基乙醇)的产生。关于发酵剁椒风味的文献非常丰富,主要集中在不同盐浓度或接种不同发酵剂的辣椒中挥发性成分的表征。罗凤莲等[10]鉴定出三个发酵剁椒样品主要化合物是苯甲醛、芳樟醇、水杨酸甲酯、α-羟甲基茶烯、辛酸乙酯和1-石竹烯。史婷等[11]探究不同发酵剂对剁椒风味影响,发现发酵乳杆菌、嗜酸乳杆菌、植物乳杆菌3株菌混合发酵可显著增加香气成分的种类和含量,可有效改善剁辣椒的口感与风味。而关于剁椒萝卜后熟期微生物和挥发性风味变化相关研究未见报道。此外,研究表明剁椒发酵时间不足会导致生味余留[12],将极大影响剁椒风味品质,故将剁椒在一定温度下贮藏从而加速至完全成熟极为重要。

    本研究采用高通量测序和顶空固相微萃取气相色谱质谱联用技术研究剁椒萝卜后熟期微生物区系和挥发性风味变化,并基于皮尔逊相关性系数评估后熟期挥发性风味和微生物群落之间相关性。本研究将有助于全面了解剁椒萝卜微生物菌群与风味物质之间的关系,并有助于工业剁椒风味改良和品质提升。

    玻璃罐装剁椒萝卜 由贵州省遵义市贵三红食品有限公司提供;环己酮(>99.5%,色谱纯) 上海阿拉丁生化科技股份有限公司;OMEGA-soil DNA Kit DNA抽提试剂盒 美国Omega Bio-Tek;AxyPrep DNA Gel Extraction Kit 美国Axygen Biosciences;2%琼脂糖凝胶 西班牙biowest;FastPfu聚合酶 中国 TransGen;AxyPrep DNA凝胶提取试剂盒 美国 Axygen;其他试剂均为分析纯。

    ABI GeneAmp® 9700 PCR仪 美国ABI公司;Nanodrop 2000超微量分光光度计 美国Thermo Fisher Scientific公司;Thermo Fisher Scientific台式高速冷冻离心机 德国Sigma公司;Illumina MiSeq MISEQ测序仪 美国Illumina公司;FA1004N电子分析天平 上海精密科学仪器有限公司;Trace1300-TSQ8000 GC-MS联用仪 美国赛默飞公司;SoilStik pH计 美国Spectrum公司;Calorie Answer CA-HM 北京盈盛恒泰科技有限责任公司。

    剁椒萝卜生产工艺:新鲜辣椒→清洗→混料(萝卜干、食盐、大蒜、生姜)→剁碎→装罐→封口发酵→杀菌→成品。随机取同一批次经巴氏杀菌后、且未拆封的剁椒萝卜产品,于37 ℃条件下贮藏模拟后熟。在后熟第0、3、7和14 d随机各取3罐样品混合后分别标记为D0、D3、D7和D14。无菌条件取样10 g,用于DNA提取和高通量测序,余下样品储存−80 ℃条件下,备用。

    pH参照GB 5009.237-2016《食品安全国家标准 食品pH值的测定》测定;总酸参照GB/T 12456-2021《食品中总酸的测定》中直接滴定法测定,结果以乳酸计。使用卡路里分析仪对能量进行测定。所有实验均重复测定三次。

    邀请10名经专业感官培训后的人士组成评定小组,分别从产品色泽、脆度、风味、滋味进行综合感官评价,采用100分评分制。感官评分标准如表1所示。

    表  1  剁椒萝卜感官评价标准
    Table  1.  Sensory evaluation standard of chopped pepper radish
    项目评价标准满分
    色泽辣椒、萝卜干红白相间,色泽鲜艳明亮(16~20)分
    色泽一般,较均匀(11~15)分
    色泽灰暗,不均匀(6~10)分
    20
    脆度辣椒很脆,萝卜干有脆度(16~20)分
    辣椒、有脆度,萝卜干稍有脆度(11~15)分
    辣椒、稍有脆度,萝卜干富有嚼劲(6~10)分
    20
    风味风味自然、保持辣椒、萝卜干原有味道(21~30)分
    风味不突出,辣椒、萝卜干原味过重或过轻(11~20)分
    风味较差,辣椒、萝卜干原味不自然(0~10)分
    30
    滋味鲜辣爽口,酸咸适宜(21~30)分
    酸咸适中(11~20)分
    过酸或过咸(0~10)分
    30
    下载: 导出CSV 
    | 显示表格

    根据OMEGA-soil DNA Kit试剂盒说明书抽提剁椒萝卜样本总DNA,用NanoDrop 2000检测DNA浓度和纯度。后进行PCR扩增,扩增体系:4 μL 5×FastPfu 缓冲液,2 μL 2.5 mmol/L dNTPs,0.8 μL引物(5 μmol/L),0.4 μL FastPfu聚合酶,10 ng DNA模板,ddH2O补足至20 μL。细菌V3-V4可变区扩增引物为338F(5'-ACTCCTACGGGAGGCAGCAG-3')和806R(5'-GGACTACHVGGGTWTCTAAT-3'),而真菌以ITS1F(5'-CTTGGTCATTTAGAGGAAGTAA-3')和ITS2R(5'-GCTGCGTTCTTCATCGATGC-3')为扩增引物,扩增程序:95 ℃预变性3 min,27个循环(95 ℃变性30 s,55 ℃退火30 s, 72 ℃延伸30 s),最后72 ℃延伸10 min,4 ℃保存。使用2%琼脂糖凝胶回收PCR产物,利用AxyPrep DNA Gel Extraction Kit纯化,Tris-HCl洗脱,2%琼脂糖电泳检测。根据Illumina MiSeq nova6000(Illumina,San Diego,USA)操作系统规程将纯化后的扩增片段构建PE 2×300文库,之后在Illumina公司Miseq PE300平台测序。

    原始序列使用QIIME2 DADA2插件进行质控、去噪、拼接、并去除嵌合体,形成分类操作单元(Operational Taxonomic Unit,OTU)[13]。接着运用QIIME2 feature-classifier插件将OTUs与GREENGENES(细菌,13.8版本)、Unite(真菌)分类学数据库按照99%相似度聚类进行比对,再用QIIME2 feature-table插件剔除所有污染性线粒体和叶绿体序列,获得物种分类信息表[14]

    准确称量2.5 g样品于顶空瓶中,依次加入7.5 mL饱和食盐水、20 μL环己酮(20 μg/mL),并用PTFE硅胶隔膜密封。采用顶空固相微萃取(HS-SPME)进行香气成分富集,在70 ℃下平衡15 min,经萃取头顶空吸附40 min,在进样口240 ℃下解吸5 min,随后在GC-MS上机测定。

    GC条件:DB-5MS毛细管柱(30 m×0.25 mm,0.25 μm),载气氦气(纯度:99.999%),流速1 mL/min,不分流模式,进样口温度240 ℃。升温程序:40 ℃保持5 min,以5 ℃/min上升到150 ℃,保持3 min,然后以5 ℃/min上升至240 ℃,保持5 min。

    MS条件:电子轰击(EI)离子源,电离能为70 eV,传输线温度240 ℃,离子源温度250 ℃,全扫描范围35~550 A/m,速率1 scan/s。

    定性定量分析:原始数据与NIST(https://webbook.nist.gov/chemistry/)谱库比对鉴定,仅保留匹配度(SI)大于700化合物。定量分析采用内标法,按下式计算:

    Ci=Cis×Ai×VAis×m

    式中:Ci为任一组分质量浓度(µg/kg);Cis为内标质量浓度(µg/mL);Ai为任一组分色谱峰面积;Ais为内标色谱峰面积;V为内标体积(µL);m为样品质量(g)。

    所有数据均重复三次实验,结果以平均值±标准差(mean±SD)表示。SPSS Statistics 26用于方差分析和邓肯检验,确定P<0.05为差异显著。使用origin 96绘图,SIMCA 14.1构建PCA、OPLS-DA模型。使用QIIME2 core-diversity、QIIME2 Bray Curtis插件分别计算特征序列水平Alpha多样性指数和Beta多样性指数,并用NMDS图可视化。通过R(V 3.6.1)软件的“corrplot”包计算Pearson相关性系数,Cytoscape V 3.8.2软件用于相关性网络可视化。

    酸味是发酵蔬菜显著滋味特征之一,而总酸和pH是衡量乳酸发酵食品所含酸味物质的关键指标。如图1A所示,剁椒萝卜在后熟阶段中pH显著下降(P<0.05),从5.68±0.02逐渐降低到5.39±0.02;总酸含量显著上升(P<0.05)(图1B),到D14时达到6.08±0.03 g/kg,其变化趋势与罗凤莲等[10]研究结果一致。图1C中,剁椒萝卜不同后熟阶段能量显著提升(P<0.05)。由图1D可知,不同后熟阶段剁椒萝卜感官评分变化显著并呈现一定规律,其中D14风味和滋味的感官评分显著高于D7、D3和D0,而色泽和脆度在四个阶段变化不显著(P>0.05),说明后熟处理能在一定程度上提高剁椒萝卜风味品质。

    图  1  剁椒萝卜不同后熟阶段pH(A)、总酸(B)、能量(C)和感官评价雷达图(D)
    注:图中上标小写字母不同表示差异显著(P<0.05),含相同字母表示差异不显著(P>0.05)。
    Figure  1.  The pH (A), total acid (B), energy (C) and sensory evaluation radar chart (D) at different post-ripening stages of chopped pepper radish

    从所有样本中分别获得了569771条高质量细菌序列和438219条高质量真菌序列,说明所有剁椒萝卜样本均检测到数据集中主要物种[15]。随着测序深度增加,细菌和真菌稀释曲线(Rarefaction Curve)(图2A、C)趋向平稳,表明测序数据可用于后续分析。α-多样性分析表明(表2),剁椒萝卜细菌多样性指数随着后熟时间延长而增加,并在D14达到最大值,表明后熟处理后细菌丰富度增加;但在D7阶段有所下降,可能是D7样品在烘箱中受热不均、取样时酒精消杀作用等外部因素导致。而真菌中D3最高,其他后熟时间变化不显著。此外,所有样本中细菌的Observed-OTUs指数均高于真菌,说明较真菌相比,细菌丰富度和多样性更高。

    图  2  细菌(A、B)和真菌(C、D)稀释曲线和香农指数曲线
    Figure  2.  Bacteria (A, B) and fungi (C, D) rarefaction curves and Shannon curves
    表  2  剁椒萝卜α-多样性指数
    Table  2.  The α-diversity indicators of chopped pepper radish
    微生物种类多样性指数样品名称
    D0D3D7D14
    细菌Chao1102.56±6ab134.93±14.1ab81.52±30.65c169.6±47.05a
    Faith_pd8.95±0.22a11.17±1.14a8.68±2.28a12.05±1.99a
    Observed_otus102±6ab135±14ab81±31c169±47a
    Shannon5.75±0b5.07±0.26c5.2±0.34bc6.34±0.22a
    Simpson0.97±0a0.89±0.02b0.95±0.01a0.97±0a
    真菌Chao190.33±11.9a116.33±30.62a74.33±20.98a115.33±24.14a
    Faith_pd18.7±1.4a21.7±3.42a15.94±4.33a21.76±2.38a
    Observed_otus90±12a116±31a74±21a115±24a
    Shannon2.95±0.11ab3.35±0.38a2.51±0.25b2.88±0.26ab
    Simpson0.64±0.02a0.73±0.09a0.61±0.05a0.62±0.06a
    注:同行数据上标小写字母不同表示差异显著(P<0.05),含相同字母表示差异不显著(P>0.05)。
    下载: 导出CSV 
    | 显示表格

    图3所示,细菌和真菌胁迫系数分别为0.0745和0.0001,表明剁椒萝卜不同后熟阶段微生物差异显著。细菌方面,D0、D3和D14样本有聚集,说明它们之间的细菌群落结构相似(图3A),而真菌中D0和D14样本相对集中。此外真菌和细菌中的D7样本均与其他样本分离,表明其群落结构与其他时间点有差异。

    图  3  剁椒萝卜后熟阶段细菌(A)和真菌(B)群落NMDS
    Figure  3.  Bacterial (A) and fungal (B) community NMDS in the post-ripening stage of chopped pepper radish

    分类学分析有助于探明剁椒萝卜后熟期微生物群落组成。从细菌门水平来看(图4A),除去未分类细菌后,共检测出16个细菌门,其中有4个优势细菌门(平均相对丰度大于1%),依次是变形杆菌门(60.89%)、厚壁菌门(26.57%)、放线菌门(6.14%)、拟杆菌门(4.89%),这与其他发酵辣椒结果一致[16-17]。随着后熟时间延长,变形杆菌门相对丰度呈现先减后增趋势,在D14(74.57%)最高,厚壁菌门则与之相反。此外,放线菌门和拟杆菌门也是剁椒萝卜后熟阶段中主要细菌门,相对丰度范围分别是2.84%~8.83%、2.83%~9.70%。真菌门水平上,鉴定出子囊菌门、担子菌门2个优势真菌门(如图4B)。其中子囊菌门在整个后熟期占绝对主导地位,相对丰度均占96%以上,而担子菌门相对丰度仅有2.63%。

    图  4  剁椒萝卜细菌门水平(A)和真菌门水平(B)上的相对丰度百分比堆积图
    Figure  4.  The relative abundance percentage stacking map at the bacterial phylum level (A) and fungal phylum level (B) of chopped pepper radish

    属水平上除去未分类的细菌属和真菌属后,在剁椒萝卜后熟期分别检测出204个细菌属和112个真菌属。优势细菌属(平均相对丰度>1%)有欧文氏菌属(11.50%)、片球菌属(8.09%)、罗尔斯顿菌属(9.67%)、假单胞菌属(6.70%)、黄单胞菌属(6.09%)、肠杆菌属(5.85%)、双歧杆菌属(4.04%)和未指明肠杆菌科(6.20%)等21个细菌属,累计相对丰度占细菌总丰度的82.52%。如图5A所示,欧文氏菌属作为剁椒萝卜后熟期丰度最高细菌属,出现先减后增趋势,可能是温度升高导致[18],其可利用蔗糖、甘露糖及核糖产酸,从而导致总酸上升。此外,也有研究表明欧文氏菌属可分离出一种选择性酶(Erwinias Paraginase),可将氨基酸天冬酰胺水解为天冬氨酸和氨,是治疗急性淋巴细胞白血病(ALL)的主要成分,并于2011年11月获得美国食品和药物管理局(FDA)的批准[19-20]。片球菌属、乳球菌属、肠杆菌属和未指明肠杆菌科也是发酵蔬菜中常见细菌属[21]。片球菌属主要是以葡萄糖、甘露糖、果糖为底物通过同型乳酸发酵产酸,可导致pH下降[22],为D3的优势菌属。罗尔斯通顿属一直存在后熟阶段中,但其平均相对丰度则从D0的11%下降到D7的7%,猜测温度对其生长有一定阻碍作用。假单胞菌属从D0的8%下降到D3的5%,随后变化平稳。本文还发现随着发酵的进行,丰度较低的属存在显著差异,如明串珠菌属、肠杆菌属及双歧杆菌属等。

    图  5  剁椒萝卜细菌(A)和真菌(B)属水平丰度变化
    Figure  5.  Changes in genus abundance of bacteria (A) and fungi (B) in chopped pepper radish

    真菌属水平上平均相对丰度大于1%有11个(如图5B),累计相对丰度占真菌属总丰度的94.59%。包括炭疽菌属(67.62%)、青霉菌属(7.37%)、链格孢属(3.18%)、汉逊氏酵母属(1.37%)、单孢酿酒酵母属(2.43%)等。剁椒萝卜后熟过程中优势真菌属为炭疽菌属(56.04%~81.58%)、青霉菌属(4.55%~11.80%)。其中炭疽菌属在真菌属中占绝对主导地位,是世界上最重要的植物病原真菌属之一[23]。而青霉属、汉逊氏酵母属和单孢酿酒酵母属随着后熟时间而减少。剁椒萝卜中链格孢属相对丰度较少,这与Wu等[24]研究结果不同,可能是剁椒萝卜经巴氏杀菌处理原因,也有可能是产品种类等不同导致。

    表3可知,不同后熟阶段剁椒萝卜中共检测出74种挥发性风味物质,可分为烯烃类(9种)、醇类(11种)、醛类(9种)、酯类(11种)、烷烃类(8种)、酸类(6种)、芳香烃类(5种)、酮类(4种)、酚类(2种)、萜烯类(1种)、硫醚类(1种)及其他类(7种)。将所得化合物进行主成分分析,其得分图(图6A)显示总方差为69.6%(PC1,50%;PC2,19.6%),X变量图模型拟合值(R2)为0.695,预测值(Q2)为0.145,说明PCA模型的拟合度良好但其预测能力较差。为尽可能地提高样本间差异,以增强拟合度和可预测性,采用有监督的OPLS-DA模型来消除X变量与Y变量的不相关变化或X变量与Y正交的变异性[25]。相比于PCA模型,OPLS-DA模型的拟合值(R2=0.775)和预测值(Q2=0.645)都有提高(图6B),说明OPLS-DA模型的拟合度和预测能力较好。除了D0-2和D7-2两平行分布异常外(可能是样品平行间重复性不好),其他样品的挥发性风味物质图谱在PCA和OPLS-DA评分图都有一定规律。PCA模型中,挥发性风味物质以逆时针从第一象限向第四象限移动,而在OPLS-DA模型中随着后熟时间段以顺时针从第四象限向第一象限移动,值得注意的是,有监督的OPLS-DA模型图中,不同后熟阶段风味物质分布在不同象限,说明不同后熟时间段挥发性风味物质含量差异显著(P<0.05)。

    表  3  不同后熟阶段挥发性化合物种类和含量
    Table  3.  Types and contents of volatile compounds at different post-ripening stages
    序号保留时间(min)化合物名称含量(μg/kg)
    D0D3D7D14
    烯烃类22.64±4.489.55±2.9720.81±14.0442.26±17.36
    A113.83β-蒎烯1.45±0.34a0.20±0.14a0.92±0.20a0.85±1.20a
    A214.043-乙基-1,4-己二烯1.77±0.33a0.55±0.27a1.39±0.92a0.56±0.24a
    A315.09β-罗勒烯0.40±0.28abND0.27±0.21ab0.51±0.07a
    A428.37α-姜黄烯5.44±0.75ab2.24±0.70b5.34±3.53ab10.49±3.77a
    A528.79姜烯7.40±1.99ab3.30±1.30b7.69±5.45ab17.47±7.68a
    A629.21β-红没药烯1.65±0.45ab0.54±0.24b1.56±1.27ab3.62±1.70a
    A729.55Δ-杜松烯0.26±0.12aND0.11±0.08a0.30±0.21a
    A829.75Β- 倍半水芹烯3.9±1.30ab1.51±0.52b3.40±2.44ab8.04±3.40a
    A934.07(+)-喇叭烯0.36±0.21abND0.14±0.05bc0.42±0.08a
    酮类13.82±1.626.49±1.568.75±2.9312.5±1.36
    B110.52-甲基环戊酮3.52±0.14a3.21±0.44a3.26±0.50a3.22±0.59a
    B223.272-十一酮1.85±0.52aND1.19±0.51a1.54±0.38a
    B327.38香叶基丙酮3.08±0.44a1.45±0.40b1.17±0.97b2.97±0.32a
    B428.28β-紫罗酮5.37±0.73a1.83±0.80b3.13±1.23ab4.77±1.26a
    醛类60.16±40.1520.73±2.4118.86±2.4121.81±2.10
    C114.36正辛醛0.42±0.30a0.40±0.13aNDND
    C214.56(E,E)-2,4-庚二烯醛2.39±0.17a0.58±0.38b1.80±0.77ab0.82±0.58b
    C316.152-辛烯醛1.50±0.23a0.61±0.22b0.98±0.24ab1.07±0.20ab
    C420.79癸醛3.94±0.30a3.94±0.16a3.82±0.10a3.85±0.40a
    C521.72(Z)-3,7-二甲基辛-2,6-二烯醛19.68±16.69a4.03±0.52b2.30±1.72b4.20±0.44b
    C622.42(E)-2-癸烯醛1.06±0.30a0.78±0.25a0.80±0.15a1.35±0.48a
    C722.57香叶醛26.77±23.22a5.51±0.88b4.15±0.61b5.5±0.82b
    C823.7十一醛1.71±0.09a1.79±0.28a1.41±1.01a1.62±0.25a
    C926.42月桂醛2.12±0.39a2.22±0.49a2.82±0.26a2.39±0.19a
    酚类6.90±0.618.85±2.627.25±2.108.96±3.15
    D113.42苯酚1.36±0.09b1.29±0.14b1.80±0.29a1.57±0.06ab
    D229.082,4-二叔丁基酚5.53±0.70a7.57±2.70a5.45±1.85a7.38±3.18a
    酯类122.74±48.3365.49±15.7878.03±4.66106.81±24.61
    E114.15正己酸乙酯ND0.42±0.09a0.24±0.18a0.28±0.04a
    E215.691-甲基己酯乙酸酯0.35±0.06aNDND0.03±0.05b
    E320.26乙酸苏合香酯5.99±0.36a7.03±0.46a6.01±1.23a6.39±0.62a
    E420.36水杨酸甲酯0.86±0.07a0.28±0.21b0.79±0.31aND
    E521.53螺内酯3.13±0.60a3.17±0.56a2.62±0.65a2.56±0.57a
    E623.07乙酸冰片酯64.18±37.39a46.07±15.18a41.39±3.50a42.86±12.72a
    E724.13乙酸桃金娘烯酯4.66±3.76a3.40±2.25a2.31±0.19a2.48±0.89a
    E825.57乙酸香叶酯42.06±9.74ab4.44±3.94c23.72±7.70bc50.52±16.13a
    E929.87二氢猕猴桃内酯1.34±0.04a0.54±0.31b0.81±0.42ab1.41±0.29a
    E1031.38异戊酸香叶酯0.15±0.10a0.04±0.01a0.04±0.01a0.18±0.08a
    E1142.13棕榈酸乙酯0.02±0.03a0.11±0.03a0.09±0.06a0.11±0.10a
    醇类159.68±22.9461.62±29.68149.76±34.82166.22±5.15
    F115.17异辛醇58.43±10.06b38.6±27.54c77.64±18.24a71.75±10.49a
    F220.064-萜烯醇2.56±1.38a0.23±0.17b0.92±0.33ab2.29±0.75a
    F320.5α-松油醇19.66±3.35a6.69±1.23b13.88±3.13a16.2±1.06a
    F421.39香茅醇8.02±1.36a1.47±1.11c4.88±1.29b6.84±1.10ab
    F522.08香叶醇59.19±3.50a11.42±3.55b45.39±10.73a58.53±6.46a
    F624.81醋酸香茅醇5.17±1.67aND3.09±0.68a4.18±1.35a
    F725.222-丁基辛醇0.28±0.40a0.30±0.21a0.26±0.18a0.60±0.43a
    F827.461-七三十醇0.29±0.14b0.62±0.15a0.25±0.04bc0.03±0.01c
    F928.14月桂醇2.38±1.13a1.46±0.19a1.98±0.61a1.69±0.26a
    F1031.01反式-橙花叔醇1.54±0.84a0.40±0.13b0.65±0.33b1.76±0.76a
    F1133.98β-桉叶醇2.18±1.27a0.43±0.31b0.82±0.22ab2.36±0.53a
    烷烃类6.50±2.568.48±1.848.92±1.316.29±0.56
    G116.042,6,10-三甲基十四烷0.10±0.02b0.11±0.02b0.14±0.10aND
    G220.62十二烷1.87±1.37a1.94±0.24a2.67±0.60a2.07±0.03a
    G322.762,6,11-三甲基十二烷1.73±0.32a1.48±0.11a1.12±0.80a0.89±0.76a
    G424.064,6-二甲基十二烷NDND0.81±0.23a0.33±0.25b
    G526.18十四烷2.43±1.14a2.40±0.57a2.37±0.12a2.42±0.14a
    G628.96正十五烷ND1.26±1.25a1.17±0.86aND
    G732.33正十六烷0.04±0.03b0.46±0.26a0.14±0.11ab0.14±0.10ab
    G835.27正十七烷0.34±0.13a0.83±0.38a0.44±0.18a0.43±0.18a
    酸类140.08±21.5722.02±1.07133.45±12.01111.80±9.20
    H13.68邻氟苯甲酸0.10±0.07b0.21±0.06b1.03±0.47a0.34±0.08b
    H218.88山梨酸116.73±20.52a0.28±0.10c104.71±7.87ab86.68±9.5b
    H319.28异辛酸11.08±0.98c15.56±0.91bc22.28±4.03a19.71±0.49ab
    H423.868-甲基壬-6-烯酸1.43±0.09a1.18±0.15a1.38±0.38a0.97±0.20a
    H525.13脱氢乙酸10.51±1.57a4.47±0.41b3.82±0.53b3.93±0.28b
    H641.38棕榈酸0.23±0.04ab0.33±0.07a0.23±0.05ab0.17±0.03b
    芳香烃类1.11±0.311.12±0.150.23±0.220.70±0.53
    I18.97乙基苯0.21±0.04a0.14±0.03ab0.03±0.04b0.09±0.11ab
    I29.37对二甲苯0.34±0.14ab0.66±0.2a0.19±0.16b0.37±0.22ab
    I39.36邻二甲苯0.24±0.21a0.28±0.24aNDND
    I410.09苯乙烯0.06±0.01a0.04±0.02ab0.01±0.01b0.04±0.03ab
    I514.99邻-异丙基苯0.25±0.18aNDND0.20±0.17a
    萜烯类2.03±1.550.39±0.140.66±0.162.38±1.82
    J112.32莰烯2.03±1.55a0.39±0.14a0.66±0.16a2.38±1.82a
    硫醚类38.63±8.787.31±6.0415.26±7.536.13±4.59
    K116.83二烯丙基二硫38.63±8.78a7.31±6.04b15.26±7.53b6.13±4.59b
    其他类16.34±4.424.95±1.708.37±2.7011.44±2.32
    L119.81冰片12.31±2.56a3.35±0.59c7.64±1.76b9.35±1.23ab
    L221.19格拉非宁0.56±0.78a0.17±0.24a0.34±0.48a0.42±0.59a
    L323.24吲嗪ND0.72±0.16aNDND
    L426.54顺式拉法辛2.64±0.53a0.54±0.47bNDND
    L526.89石竹素0.13±0.09b0.17±0.24b0.39±0.46ab0.88±0.25a
    L632.73(Z)-β-倍半萜水合物0.51±0.28aNDND0.55±0.17a
    L734.66反式倍半水合物0.19±0.18aNDND0.24±0.08a
    注:同一行字母不同表示具有显著差异(P<0.05),ND表示未检测出该物质。
    下载: 导出CSV 
    | 显示表格
    图  6  剁椒萝卜后熟阶段挥发性风味物质PCA(A)和OPLS-DA(B)得分图
    Figure  6.  The PCA (A) and OPLS-DA (B) scores of the volatile flavor substances at the post-ripening stage of chopped pepper radish

    醇类物质含量占比最高(37.17%±0.07%),为剁椒萝卜主要香气物质,这与杨洋等[26]的研究结果一致。异辛醇、α-松油醇、香叶醇、香茅醇、醋酸香茅醇、β-桉叶醇为含量较高醇类物质,均在D3降到最低,随后增加,可能是温度升高加快酯化反应所致[27]。异辛醇有温和、甜美和略带花香的玫瑰色气味,具有相当强的韧性[28]α-松油醇呈海桐花清香和紫丁香、铃兰的香气;香茅醇具有玫瑰香气,常用以增甜鲜花香;香叶醇有新鲜盛开玫瑰的香甜风味;β-桉叶醇具有一股清凉的气息[29]

    其次是具有水果香和甜味的酯类物质(26.78%±0.03%),主要由醇和酸的酯化反应产生。经后熟处理后,含量较高的乙酸冰片酯、乙酸香叶酯、乙酸桃金娘烯酯、二氢猕猴桃内酯、乙酸苏合香酯、螺内酯、异戊酸香叶酯等赋予了剁椒萝卜花香和甜香[30]。己酸乙酯、棕榈酸乙酯是区分新鲜辣椒和发酵辣椒的主要酯类物质[31],后熟处理后含量均有所增加。

    剁椒萝卜大部分醛类物质(8.46%±0.04%)含量显著减少,如香叶醛、(Z)-3,7-二甲基辛-2,6-二烯醛、癸醛、2-辛烯醛等,醛脱氢酶可以将醛氧化成羧酸或还原为相应的醇[32]。其中癸醛的香气青辛微甜,有似甜橙油与柠檬油以及玫瑰香后韵,是剁椒等发酵辣椒关键香气成分[33]

    烯烃类化合物是辣椒中具有香味辅助作用的重要挥发性物质,除了单萜和少量的倍半萜外,大部分烯烃类物质还呈现一定的苦味。其中β-罗勒烯、α-姜黄烯、姜烯、β-红没药烯、Δ-杜松烯、Β-倍半水芹烯、(+)-喇叭烯含量显著增加,可通过酸性和酶水解从糖苷中释放并赋予剁椒萝卜特殊香味[34],如β-罗勒烯具有辛鲜花香草香味。

    剁椒萝卜所含的酸类物质中山梨酸和脱氢乙酸含量占比大,但为人工添加防腐剂,暂不做讨论。烷烃类含量随后熟时间变化不显著,且阈值较高,对剁椒萝卜风味贡献不大。2-甲基环戊酮、β-紫罗酮等酮类物质含量变化较小,β-紫罗兰酮具有温暖的木香味,且含量相对较高。剁椒萝卜中还检测到乙基苯、对二甲苯、邻二甲苯、苯酚等芳香物质,与石华治等研究结果一致[33]。此外,还有含硫、冰片、石竹素等化合物与其他挥发性物质共同赋予剁椒萝卜丰富的发酵风味。

    为进一步分析剁椒萝卜后熟期差异显著挥发性风味物质,以OPLS-DA模型中VIP值(VIP>1)为准可有效地鉴别出重要差异挥发性风味物质(Important Differences Volatile Flavor Compounds,IDVFCs)。所有样品中共获得36种IDVFCs(表4)。基于Pearson相关系数构建剁椒萝卜样品中优势菌属与IDVFCs间相关性网络(图7),从1152个两两相关性系数中筛选出41个具有强相关关系(|cor|>0.7且P<0.05),其中11个属为核心微生物属,与29种IDVFCs显著相关。图中直线越粗(细)表明相关性程度强(弱),乳球菌属与乙酸香叶酯、反式倍半水合物、β-桉叶醇、反式-橙椒花醇、(+)-喇叭烯和(Z)β-倍半萜水合物呈极强正相关(cor>0.8),而片球菌属与山梨酸、香叶醇、香茅醇、2-十一酮、α-松油醇等呈现强负相关。反式-橙椒花醇、(+)-喇叭烯和(Z)β-倍半萜水合物也与拟杆菌属、罗尔斯通菌属和肠杆菌属呈强正相关。同样,山梨酸、醋酸香茅醇、香叶醇与假单胞菌属呈正相关,片球菌属与棕榈酸、吲嗪和正十六烷呈正相关。此外魏斯氏菌属对烯烃类风味化合物有促进作用。真菌方面,青霉属和汉逊酵母属与顺式拉法辛、二烯丙基二硫及1-甲基己酯乙酸酯呈现正相关,而与异辛酸呈现负相关。总的来说,这些风味物质呈现出一定的愉快风味,丰富了剁椒萝卜风味口感。片球菌属、乳球菌属和青霉属分别与11、6和5种风味物质形成显著相关,为剁椒萝卜后熟阶段中潜在挥发性风味化合物贡献微生物。

    表  4  重要差异挥发性风味物质
    Table  4.  Important differences volatile flavor compounds
    序号保留时间(min)SICas #化合物VIP值
    BF113.42837108-95-2Phenol苯酚1.21471
    C120.591098-55-5α-Terpineolα-松油醇1.07023
    C221.39861106-22-9Citronellol香茅醇1.07195
    C322.08913106-24-1Geraniol香叶醇1.10751
    C424.81852150-84-56-Octen-1-ol, 3,7-dimethyl-, acetate醋酸香茅醇1.04992
    C531.0182940716-66-3Nerolidol反式-橙花叔醇1.11096
    C633.98830473-15-4beta-Eudesmolβ-桉叶醇1.03234
    FX18.97757100-41-4Ethylbenzene乙基苯1.06938
    FX210.09896100-42-5Styrene苯乙烯1.08217
    LM116.838172179-57-9Diallyl disulphide二烯丙基二硫1.19662
    Q114.568374313-03-52,4-Heptadienal,(E,E)-(E,E)-2,4-庚二烯醛1.22639
    Q216.157942548-87-02-Octenal,(E)-2-辛烯醛1.0479
    QT119.81920507-70-0endo-Borneol冰片1.05961
    QT223.24745274-40-8Indolizine吲嗪1.13567
    QT326.54836123954-93-8cis-Raphasatin顺式拉法辛1.25886
    QT426.897481139-30-6Caryophyllene oxide石竹素1.0057
    QT532.7376158319-05-4(Z)-β-Sesquisabinene hydrate(Z)-β-倍半萜水合物1.13322
    QT634.66719145512-84-1trans-Sesquisabinene hydrate反式倍半水合物1.0466
    S13.68877445-29-4Benzoic acid, 2-fluoro-邻氟苯甲酸1.28545
    S218.88933110-44-1Sorbic acid山梨酸1.16366
    S319.28873149-57-52-ethyl-Hexanoic acid,异辛酸1.2996
    S423.8676621382-25-28-Methyl-6-nonenoic acid8-甲基壬-6-烯酸1.00441
    S525.13771520-45-6Dehydroacetic acid脱氢乙酸1.20737
    S641.3878657-10-3Palmitic acid棕榈酸1.05647
    T123.27839112-12-92-Undecanone2-十一酮1.04268
    WT124.0675861141-72-8Dodecane, 4,6-dimethyl-4,6-二甲基十二烷1.32313
    WT232.33798544-76-3Hexadecane正十六烷1.00789
    XT128.37838644-30-4α-Curcumeneα-姜黄烯1.12478
    XT228.79874495-60-3(-)-Zingiberene姜烯1.14878
    XT329.21818495-61-4β-Bisaboleneβ-红没药烯1.12009
    XT429.7586720307-83-9β-SesquiphellandreneΒ- 倍半水芹烯1.13644
    XT534.0773021747-46-6(+)-Trumpetene(+)-喇叭烯1.0678
    Z114.15734123-66-0Hexanoic acid, ethyl ester正己酸乙酯1.02979
    Z215.697345921-82-42-Heptanol, acetate1-甲基己酯乙酸酯1.21263
    Z320.36720119-36-8Methyl salicylate水杨酸甲酯1.34987
    Z425.5791416409-44-22,6-Octadien-1-ol, 3,7-dimethyl-, acetate乙酸香叶酯1.09102
    下载: 导出CSV 
    | 显示表格
    图  7  优势菌属与差异代谢物相关性分析
    Figure  7.  Correlation analysis of dominant bacteria with differential metabolites

    采用分子感官与微生物组相结合的方法解析剁椒萝卜后熟期挥发性风味物质与微生物间变化,感官分析表明剁椒萝卜经后熟处理后风味更丰富。剁椒萝卜中共获得21个优势细菌属,以欧文氏菌属、罗尔斯通菌属及片球菌属为主;共筛选出11个真菌属,以炭疽菌属、青霉属及链格孢属为主。不同后熟阶段剁椒萝卜中共检测出有74种挥发性风味物质,其中有36 种IDVFCs(VIP>1),酯类和醇类为剁椒萝卜主要香气物质,其含量随着后熟时间延长显著增加。相关性分析表明乳球菌属、魏斯氏菌属、假单胞菌属、青霉属和汉逊酵母属是剁椒萝卜后熟期潜在风味物质贡献微生物,与多种挥发性风味物质显著强相关。望本研究结果有助于解析剁椒萝卜后熟期微生物菌群对风味品质形成机制,为辣椒产品品质提升提供理论参考。

  • 图  1   剁椒萝卜不同后熟阶段pH(A)、总酸(B)、能量(C)和感官评价雷达图(D)

    注:图中上标小写字母不同表示差异显著(P<0.05),含相同字母表示差异不显著(P>0.05)。

    Figure  1.   The pH (A), total acid (B), energy (C) and sensory evaluation radar chart (D) at different post-ripening stages of chopped pepper radish

    图  2   细菌(A、B)和真菌(C、D)稀释曲线和香农指数曲线

    Figure  2.   Bacteria (A, B) and fungi (C, D) rarefaction curves and Shannon curves

    图  3   剁椒萝卜后熟阶段细菌(A)和真菌(B)群落NMDS

    Figure  3.   Bacterial (A) and fungal (B) community NMDS in the post-ripening stage of chopped pepper radish

    图  4   剁椒萝卜细菌门水平(A)和真菌门水平(B)上的相对丰度百分比堆积图

    Figure  4.   The relative abundance percentage stacking map at the bacterial phylum level (A) and fungal phylum level (B) of chopped pepper radish

    图  5   剁椒萝卜细菌(A)和真菌(B)属水平丰度变化

    Figure  5.   Changes in genus abundance of bacteria (A) and fungi (B) in chopped pepper radish

    图  6   剁椒萝卜后熟阶段挥发性风味物质PCA(A)和OPLS-DA(B)得分图

    Figure  6.   The PCA (A) and OPLS-DA (B) scores of the volatile flavor substances at the post-ripening stage of chopped pepper radish

    图  7   优势菌属与差异代谢物相关性分析

    Figure  7.   Correlation analysis of dominant bacteria with differential metabolites

    表  1   剁椒萝卜感官评价标准

    Table  1   Sensory evaluation standard of chopped pepper radish

    项目评价标准满分
    色泽辣椒、萝卜干红白相间,色泽鲜艳明亮(16~20)分
    色泽一般,较均匀(11~15)分
    色泽灰暗,不均匀(6~10)分
    20
    脆度辣椒很脆,萝卜干有脆度(16~20)分
    辣椒、有脆度,萝卜干稍有脆度(11~15)分
    辣椒、稍有脆度,萝卜干富有嚼劲(6~10)分
    20
    风味风味自然、保持辣椒、萝卜干原有味道(21~30)分
    风味不突出,辣椒、萝卜干原味过重或过轻(11~20)分
    风味较差,辣椒、萝卜干原味不自然(0~10)分
    30
    滋味鲜辣爽口,酸咸适宜(21~30)分
    酸咸适中(11~20)分
    过酸或过咸(0~10)分
    30
    下载: 导出CSV

    表  2   剁椒萝卜α-多样性指数

    Table  2   The α-diversity indicators of chopped pepper radish

    微生物种类多样性指数样品名称
    D0D3D7D14
    细菌Chao1102.56±6ab134.93±14.1ab81.52±30.65c169.6±47.05a
    Faith_pd8.95±0.22a11.17±1.14a8.68±2.28a12.05±1.99a
    Observed_otus102±6ab135±14ab81±31c169±47a
    Shannon5.75±0b5.07±0.26c5.2±0.34bc6.34±0.22a
    Simpson0.97±0a0.89±0.02b0.95±0.01a0.97±0a
    真菌Chao190.33±11.9a116.33±30.62a74.33±20.98a115.33±24.14a
    Faith_pd18.7±1.4a21.7±3.42a15.94±4.33a21.76±2.38a
    Observed_otus90±12a116±31a74±21a115±24a
    Shannon2.95±0.11ab3.35±0.38a2.51±0.25b2.88±0.26ab
    Simpson0.64±0.02a0.73±0.09a0.61±0.05a0.62±0.06a
    注:同行数据上标小写字母不同表示差异显著(P<0.05),含相同字母表示差异不显著(P>0.05)。
    下载: 导出CSV

    表  3   不同后熟阶段挥发性化合物种类和含量

    Table  3   Types and contents of volatile compounds at different post-ripening stages

    序号保留时间(min)化合物名称含量(μg/kg)
    D0D3D7D14
    烯烃类22.64±4.489.55±2.9720.81±14.0442.26±17.36
    A113.83β-蒎烯1.45±0.34a0.20±0.14a0.92±0.20a0.85±1.20a
    A214.043-乙基-1,4-己二烯1.77±0.33a0.55±0.27a1.39±0.92a0.56±0.24a
    A315.09β-罗勒烯0.40±0.28abND0.27±0.21ab0.51±0.07a
    A428.37α-姜黄烯5.44±0.75ab2.24±0.70b5.34±3.53ab10.49±3.77a
    A528.79姜烯7.40±1.99ab3.30±1.30b7.69±5.45ab17.47±7.68a
    A629.21β-红没药烯1.65±0.45ab0.54±0.24b1.56±1.27ab3.62±1.70a
    A729.55Δ-杜松烯0.26±0.12aND0.11±0.08a0.30±0.21a
    A829.75Β- 倍半水芹烯3.9±1.30ab1.51±0.52b3.40±2.44ab8.04±3.40a
    A934.07(+)-喇叭烯0.36±0.21abND0.14±0.05bc0.42±0.08a
    酮类13.82±1.626.49±1.568.75±2.9312.5±1.36
    B110.52-甲基环戊酮3.52±0.14a3.21±0.44a3.26±0.50a3.22±0.59a
    B223.272-十一酮1.85±0.52aND1.19±0.51a1.54±0.38a
    B327.38香叶基丙酮3.08±0.44a1.45±0.40b1.17±0.97b2.97±0.32a
    B428.28β-紫罗酮5.37±0.73a1.83±0.80b3.13±1.23ab4.77±1.26a
    醛类60.16±40.1520.73±2.4118.86±2.4121.81±2.10
    C114.36正辛醛0.42±0.30a0.40±0.13aNDND
    C214.56(E,E)-2,4-庚二烯醛2.39±0.17a0.58±0.38b1.80±0.77ab0.82±0.58b
    C316.152-辛烯醛1.50±0.23a0.61±0.22b0.98±0.24ab1.07±0.20ab
    C420.79癸醛3.94±0.30a3.94±0.16a3.82±0.10a3.85±0.40a
    C521.72(Z)-3,7-二甲基辛-2,6-二烯醛19.68±16.69a4.03±0.52b2.30±1.72b4.20±0.44b
    C622.42(E)-2-癸烯醛1.06±0.30a0.78±0.25a0.80±0.15a1.35±0.48a
    C722.57香叶醛26.77±23.22a5.51±0.88b4.15±0.61b5.5±0.82b
    C823.7十一醛1.71±0.09a1.79±0.28a1.41±1.01a1.62±0.25a
    C926.42月桂醛2.12±0.39a2.22±0.49a2.82±0.26a2.39±0.19a
    酚类6.90±0.618.85±2.627.25±2.108.96±3.15
    D113.42苯酚1.36±0.09b1.29±0.14b1.80±0.29a1.57±0.06ab
    D229.082,4-二叔丁基酚5.53±0.70a7.57±2.70a5.45±1.85a7.38±3.18a
    酯类122.74±48.3365.49±15.7878.03±4.66106.81±24.61
    E114.15正己酸乙酯ND0.42±0.09a0.24±0.18a0.28±0.04a
    E215.691-甲基己酯乙酸酯0.35±0.06aNDND0.03±0.05b
    E320.26乙酸苏合香酯5.99±0.36a7.03±0.46a6.01±1.23a6.39±0.62a
    E420.36水杨酸甲酯0.86±0.07a0.28±0.21b0.79±0.31aND
    E521.53螺内酯3.13±0.60a3.17±0.56a2.62±0.65a2.56±0.57a
    E623.07乙酸冰片酯64.18±37.39a46.07±15.18a41.39±3.50a42.86±12.72a
    E724.13乙酸桃金娘烯酯4.66±3.76a3.40±2.25a2.31±0.19a2.48±0.89a
    E825.57乙酸香叶酯42.06±9.74ab4.44±3.94c23.72±7.70bc50.52±16.13a
    E929.87二氢猕猴桃内酯1.34±0.04a0.54±0.31b0.81±0.42ab1.41±0.29a
    E1031.38异戊酸香叶酯0.15±0.10a0.04±0.01a0.04±0.01a0.18±0.08a
    E1142.13棕榈酸乙酯0.02±0.03a0.11±0.03a0.09±0.06a0.11±0.10a
    醇类159.68±22.9461.62±29.68149.76±34.82166.22±5.15
    F115.17异辛醇58.43±10.06b38.6±27.54c77.64±18.24a71.75±10.49a
    F220.064-萜烯醇2.56±1.38a0.23±0.17b0.92±0.33ab2.29±0.75a
    F320.5α-松油醇19.66±3.35a6.69±1.23b13.88±3.13a16.2±1.06a
    F421.39香茅醇8.02±1.36a1.47±1.11c4.88±1.29b6.84±1.10ab
    F522.08香叶醇59.19±3.50a11.42±3.55b45.39±10.73a58.53±6.46a
    F624.81醋酸香茅醇5.17±1.67aND3.09±0.68a4.18±1.35a
    F725.222-丁基辛醇0.28±0.40a0.30±0.21a0.26±0.18a0.60±0.43a
    F827.461-七三十醇0.29±0.14b0.62±0.15a0.25±0.04bc0.03±0.01c
    F928.14月桂醇2.38±1.13a1.46±0.19a1.98±0.61a1.69±0.26a
    F1031.01反式-橙花叔醇1.54±0.84a0.40±0.13b0.65±0.33b1.76±0.76a
    F1133.98β-桉叶醇2.18±1.27a0.43±0.31b0.82±0.22ab2.36±0.53a
    烷烃类6.50±2.568.48±1.848.92±1.316.29±0.56
    G116.042,6,10-三甲基十四烷0.10±0.02b0.11±0.02b0.14±0.10aND
    G220.62十二烷1.87±1.37a1.94±0.24a2.67±0.60a2.07±0.03a
    G322.762,6,11-三甲基十二烷1.73±0.32a1.48±0.11a1.12±0.80a0.89±0.76a
    G424.064,6-二甲基十二烷NDND0.81±0.23a0.33±0.25b
    G526.18十四烷2.43±1.14a2.40±0.57a2.37±0.12a2.42±0.14a
    G628.96正十五烷ND1.26±1.25a1.17±0.86aND
    G732.33正十六烷0.04±0.03b0.46±0.26a0.14±0.11ab0.14±0.10ab
    G835.27正十七烷0.34±0.13a0.83±0.38a0.44±0.18a0.43±0.18a
    酸类140.08±21.5722.02±1.07133.45±12.01111.80±9.20
    H13.68邻氟苯甲酸0.10±0.07b0.21±0.06b1.03±0.47a0.34±0.08b
    H218.88山梨酸116.73±20.52a0.28±0.10c104.71±7.87ab86.68±9.5b
    H319.28异辛酸11.08±0.98c15.56±0.91bc22.28±4.03a19.71±0.49ab
    H423.868-甲基壬-6-烯酸1.43±0.09a1.18±0.15a1.38±0.38a0.97±0.20a
    H525.13脱氢乙酸10.51±1.57a4.47±0.41b3.82±0.53b3.93±0.28b
    H641.38棕榈酸0.23±0.04ab0.33±0.07a0.23±0.05ab0.17±0.03b
    芳香烃类1.11±0.311.12±0.150.23±0.220.70±0.53
    I18.97乙基苯0.21±0.04a0.14±0.03ab0.03±0.04b0.09±0.11ab
    I29.37对二甲苯0.34±0.14ab0.66±0.2a0.19±0.16b0.37±0.22ab
    I39.36邻二甲苯0.24±0.21a0.28±0.24aNDND
    I410.09苯乙烯0.06±0.01a0.04±0.02ab0.01±0.01b0.04±0.03ab
    I514.99邻-异丙基苯0.25±0.18aNDND0.20±0.17a
    萜烯类2.03±1.550.39±0.140.66±0.162.38±1.82
    J112.32莰烯2.03±1.55a0.39±0.14a0.66±0.16a2.38±1.82a
    硫醚类38.63±8.787.31±6.0415.26±7.536.13±4.59
    K116.83二烯丙基二硫38.63±8.78a7.31±6.04b15.26±7.53b6.13±4.59b
    其他类16.34±4.424.95±1.708.37±2.7011.44±2.32
    L119.81冰片12.31±2.56a3.35±0.59c7.64±1.76b9.35±1.23ab
    L221.19格拉非宁0.56±0.78a0.17±0.24a0.34±0.48a0.42±0.59a
    L323.24吲嗪ND0.72±0.16aNDND
    L426.54顺式拉法辛2.64±0.53a0.54±0.47bNDND
    L526.89石竹素0.13±0.09b0.17±0.24b0.39±0.46ab0.88±0.25a
    L632.73(Z)-β-倍半萜水合物0.51±0.28aNDND0.55±0.17a
    L734.66反式倍半水合物0.19±0.18aNDND0.24±0.08a
    注:同一行字母不同表示具有显著差异(P<0.05),ND表示未检测出该物质。
    下载: 导出CSV

    表  4   重要差异挥发性风味物质

    Table  4   Important differences volatile flavor compounds

    序号保留时间(min)SICas #化合物VIP值
    BF113.42837108-95-2Phenol苯酚1.21471
    C120.591098-55-5α-Terpineolα-松油醇1.07023
    C221.39861106-22-9Citronellol香茅醇1.07195
    C322.08913106-24-1Geraniol香叶醇1.10751
    C424.81852150-84-56-Octen-1-ol, 3,7-dimethyl-, acetate醋酸香茅醇1.04992
    C531.0182940716-66-3Nerolidol反式-橙花叔醇1.11096
    C633.98830473-15-4beta-Eudesmolβ-桉叶醇1.03234
    FX18.97757100-41-4Ethylbenzene乙基苯1.06938
    FX210.09896100-42-5Styrene苯乙烯1.08217
    LM116.838172179-57-9Diallyl disulphide二烯丙基二硫1.19662
    Q114.568374313-03-52,4-Heptadienal,(E,E)-(E,E)-2,4-庚二烯醛1.22639
    Q216.157942548-87-02-Octenal,(E)-2-辛烯醛1.0479
    QT119.81920507-70-0endo-Borneol冰片1.05961
    QT223.24745274-40-8Indolizine吲嗪1.13567
    QT326.54836123954-93-8cis-Raphasatin顺式拉法辛1.25886
    QT426.897481139-30-6Caryophyllene oxide石竹素1.0057
    QT532.7376158319-05-4(Z)-β-Sesquisabinene hydrate(Z)-β-倍半萜水合物1.13322
    QT634.66719145512-84-1trans-Sesquisabinene hydrate反式倍半水合物1.0466
    S13.68877445-29-4Benzoic acid, 2-fluoro-邻氟苯甲酸1.28545
    S218.88933110-44-1Sorbic acid山梨酸1.16366
    S319.28873149-57-52-ethyl-Hexanoic acid,异辛酸1.2996
    S423.8676621382-25-28-Methyl-6-nonenoic acid8-甲基壬-6-烯酸1.00441
    S525.13771520-45-6Dehydroacetic acid脱氢乙酸1.20737
    S641.3878657-10-3Palmitic acid棕榈酸1.05647
    T123.27839112-12-92-Undecanone2-十一酮1.04268
    WT124.0675861141-72-8Dodecane, 4,6-dimethyl-4,6-二甲基十二烷1.32313
    WT232.33798544-76-3Hexadecane正十六烷1.00789
    XT128.37838644-30-4α-Curcumeneα-姜黄烯1.12478
    XT228.79874495-60-3(-)-Zingiberene姜烯1.14878
    XT329.21818495-61-4β-Bisaboleneβ-红没药烯1.12009
    XT429.7586720307-83-9β-SesquiphellandreneΒ- 倍半水芹烯1.13644
    XT534.0773021747-46-6(+)-Trumpetene(+)-喇叭烯1.0678
    Z114.15734123-66-0Hexanoic acid, ethyl ester正己酸乙酯1.02979
    Z215.697345921-82-42-Heptanol, acetate1-甲基己酯乙酸酯1.21263
    Z320.36720119-36-8Methyl salicylate水杨酸甲酯1.34987
    Z425.5791416409-44-22,6-Octadien-1-ol, 3,7-dimethyl-, acetate乙酸香叶酯1.09102
    下载: 导出CSV
  • [1]

    ALVAREZ-PARRILLA E, DE LA ROSA L A, AMAROWICZ R, et al. Antioxidant activity of fresh and processed jalapeno and serrano peppers[J]. Journal of Agricultural and Food Chemistry,2011,59(1):163−173. doi: 10.1021/jf103434u

    [2]

    ZHUANG Y L, CHEN L, SUN L P, et al. Bioactive characteristics and antioxidant activities of nine peppers[J]. Journal of Functional Foods,2012,4(1):331−338. doi: 10.1016/j.jff.2012.01.001

    [3] 李旭阳, 何余堂, 解玉梅, 等. 剁椒扇贝酱工艺研究及贮藏品质分析[J]. 中国食品学报,2022,22(4):225−232. [LI X Y, HE Y T, XIE Y M, et al. Studies on technology and analysis on the storage quality of scallop sauce with chopped pepper[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(4):225−232.

    LI X Y, HE Y T, JIE Y M, et al. Studies on technology and analysis on the storage quality of scallop sauce with chopped pepper [J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(4): 225-232.

    [4] 蔡达, 江育荧, 王文正, 等. 山东、四川不同类型萝卜营养品质分析与综合评价[J]. 食品安全质量检测学报,2022,13(8):2649−2657. [CAI D, JIANG Y Y, WANG W Z, et al. Analysis and comprehensive evaluation of nutritional quality of different types of radishes in Shandong and Sichuan Province[J]. Journal of Food Safety & Quality,2022,13(8):2649−2657.

    CAI D, JIANG Y Y, WANG W Z, et al. Analysis and comprehensive evaluation of nutritional quality of different types of radishes in Shandong and Sichuan Province [J]. Journal of Food Safety & Quality, 2022, 13(8): 2649-2657.

    [5]

    GUTIERREZ R M P, PEREZ R L. Raphanus sativus (radish): Their chemistry and biology[J]. The Scientific World Journal,2004,4:873172.

    [6]

    XU X X, WU B B, ZHAO W T, et al. Shifts in autochthonous microbial diversity and volatile metabolites during the fermentation of chili pepper (Capsicum frutescens L.)[J]. Food Chemistry,2021,335:127512. doi: 10.1016/j.foodchem.2020.127512

    [7]

    DENG W, WANG M, LI Z, et al. Effect of the changs of microbial community on flavor components of traditional soybean paste during storage period[J]. Food Research International,2022,161:111866. doi: 10.1016/j.foodres.2022.111866

    [8]

    MA D, LI Y, CHEN C, et al. Microbial succession and its correlation with the dynamics of volatile compounds involved in fermented minced peppers[J]. Frontiers in Nutrition,2022,9:1041608. doi: 10.3389/fnut.2022.1041608

    [9]

    MEILUN L, XINXING X, SHUANG B, et al. Identification and validation of core microbes associated with key aroma formation in fermented pepper paste (Capsicum annuum L.)[J]. Food Research International,2023,163:112194. doi: 10.1016/j.foodres.2022.112194

    [10] 罗凤莲, 夏延斌, 欧阳建勋, 等. 剁辣椒发酵过程中滋味物质的变化[J]. 食品科学,2013,34(3):21−24. [LUO F L, XIA Y B, OUYANG J X, et al. Changes in tasty materials during fermentation of chopped chili[J]. Food Science,2013,34(3):21−24.

    LUO F L, XIA Y B, OUYANG J X, et al. Changes in tasty materials during fermentation of chopped chili [J]. Food Science, 2013, 34(3): 21-24.

    [11] 史婷, 高甜甜, 刘伟, 等. 不同发酵剂对剁辣椒品质的影响[J]. 食品与发酵工业,2022,48(15):144−153. [SHI T, GAO T T, LIU W, et al. Effect of different starters on quality of chopped pepper[J]. Food and Fermentation Industries,2022,48(15):144−153.

    SHI T, GAO T T, LIU W, et al. Effect of different starters on quality of chopped pepper [J]. Food and Fermentation Industries, 2022, 48(15): 144-153.

    [12] 郑红, 唐毅, 王森, 等. 剁椒发酵工艺及贮藏过程品质变化研究[J]. 中国调味品,2020,45(1):155−159. [ZHENG H, TANG Y, WANG S, et al. Study on fermentation technology and quality change of chopped pepper during storage[J]. China Condiment,2020,45(1):155−159.

    ZHENG H, TANG Y, WANG S, et al. Study on fermentation technology and quality change of chopped pepper during storage [J]. China Condiment, 2020, 45(1): 155-159.

    [13]

    CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al. DADA2: High-resolution sample inference from Illumina amplicon data[J]. Nature Methods,2016,13(7):581−587. doi: 10.1038/nmeth.3869

    [14]

    BOKULICH N A, KAEHLER B D, RIDEOUT J R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin[J]. Microbiome,2018,6(1):90−107. doi: 10.1186/s40168-018-0470-z

    [15] 王景. 16S rRNA基因二代测序中的测序深度与测序错误对微生物群落多样性分析的影响[D]. 上海: 上海交通大学, 2018. I−II.

    WANG J. The effects of sequencing depth and sequencing errors in the second generation sequencing of 16S rRNA gene on the analysis of microbial community diversity[D]. Shanghai: Shanghai Jiaotong University, 2018. I−II.

    [16]

    WANG J, WANG R, XIAO Q, et al. Analysis of bacterial diversity during fermentation of Chinese traditional fermented chopped pepper[J]. Letters in Applied Microbiology,2019,69(5):346−352. doi: 10.1111/lam.13212

    [17]

    MENGJUAN C, YEYOU Q, FANGMING D, et al. Illumina MiSeq sequencing reveals microbial community succession in salted peppers with different salinity during preservation[J]. Food Research International,2021,143:110234. doi: 10.1016/j.foodres.2021.110234

    [18]

    WILLIAM H U, BOLTON B M. A manual of bacteriology[J]. The American Journal of the Medical Sciences,1910,139(3):436−436. doi: 10.1097/00000441-191003000-00024

    [19]

    SALZER W, SEIBEL N, SMITH M. Erwinia asparaginase in pediatric acute lymphoblastic leukemia[J]. Expert Opinion on Biological Therapy,2012,12(10):1407−1414. doi: 10.1517/14712598.2012.718327

    [20]

    RAU R E, DREYER Z, CHOI M R, et al. Outcome of pediatric patients with acute lymphoblastic leukemia/lymphoblastic lymphoma with hypersensitivity to pegaspargase treated with PEGylated Erwinia asparaginase, pegcrisantaspase: A report from the Children's Oncology Group[J]. Pediatr Blood Cancer,2018,65(3):e26873. doi: 10.1002/pbc.26873

    [21]

    RAO Y, QIAN Y, TAO Y F, et al. Characterization of the microbial communities and their correlations with chemical profiles in assorted vegetable Sichuan pickles[J]. Food Control,2020,113:107174. doi: 10.1016/j.foodcont.2020.107174

    [22] 陈添艳, 苏伟, 母应春, 等. 剁椒山笋后熟过程中微生物与挥发性风味物质的相关系研究[J]. 食品科学,2022,44(6):180−189. [CHEN T Y, SU W, MU Y C, et al. Study on the relationship between microorganism and volatile flavor substances during post-ripening process of chopped pepper bamboo shoots[J]. Food Science,2022,44(6):180−189.

    CHEN T Y, SU W, MU Y C, et al. Study on the relationship between microorganism and volatile flavor substances during post-ripening process of chopped pepper bamboo shoots [J]. Food Science, 2022, 44(6): 180-189.

    [23]

    SHIVAS R G, TAN Y P, EDWARDS J, et al. Colletotrichum species in Australia[J]. Australasian Plant Pathology,2016,45(5):447−464. doi: 10.1007/s13313-016-0443-2

    [24]

    WU J R, TIAN T, LIU Y M, et al. The dynamic changes of chemical components and microbiota during the natural fermentation process in Da-Jiang, a Chinese popular traditional fermented condiment[J]. Food Research International,2018,112:457−467. doi: 10.1016/j.foodres.2018.06.021

    [25]

    MU Y, SU W, YU X T, et al. Untargeted metabolomics based on GC-TOF-MS reveals the optimal pre-fermentation time for black glutinous rice wine[J]. International Journal of Food Properties,2019,22(1):2033−2046. doi: 10.1080/10942912.2019.1705481

    [26] 杨洋, 杨宇航, 王洪伟, 等. 不同发酵剂对泡萝卜挥发性风味成分及感官品质的影响[J]. 食品与发酵工业,2023,49(4):175−184. [YANG Y, YANG Y H, WANG H W, et al. Effects of different starter on volatile flavor components and sensory properties of pickled radish[J]. Food and Fermentation Industries,2023,49(4):175−184.

    YANG Y, YANG Y H, WANG H W, et al. Effects of different starter on volatile flavor components and sensory properties of pickled radish [J]. Food and Fermentation Industries, 2023, 49(4): 175-184.

    [27]

    ZAREI N, GOLMAKANI M T, KERAMAT M, et al. Process intensification for the autocatalytic esterification of citronellol using microwave radiation[J]. LWT-Food Science and Technology,2021,145:111358. doi: 10.1016/j.lwt.2021.111358

    [28]

    MCGINTY D, SCOGNAMIGLIO J, LETIZIA C S, et al. Fragrance material review on 2-ethyl-1-hexanol[J]. Food and Chemical Toxicology,2010,48:S115−S29. doi: 10.1016/j.fct.2010.05.042

    [29]

    WANG J J, WANG R R, XIAO Q, et al. SPME/GC-MS characterization of volatile compounds of Chinese traditional-chopped pepper during fermentation[J]. International Journal of Food Properties,2019,22(1):1863−1872. doi: 10.1080/10942912.2019.1684320

    [30] 孙宝国. 食用调香技术[M]. 北京: 化学工业出版社, 2015: 10−28.

    SUN B G. Edible flavoring technology[M]. Beijing: Chemical Industry Press, 2015: 10−28.

    [31]

    GOGUS F, OZEL M Z, KESKIN H, et al. Volatiles of fresh and commercial sweet red pepper pastes: Processing methods and microwave assisted extraction[J]. International Journal of Food Properties,2015,18(8):1625−1634. doi: 10.1080/10942912.2014.923910

    [32]

    LEE S M, LEE J Y, CHO Y J, et al. Determination of volatiles and carotenoid degradation compounds in red pepper fermented by Lactobacillus parabuchneri[J]. Journal of Food Science,2018,83(8):2083−2091. doi: 10.1111/1750-3841.14221

    [33] 石华治, 王娟, 刘玉平, 等. 剁椒关键性香气成分分析[J]. 食品安全质量检测学报,2018,9(15):3976−3983. [SHI H Z, WANG J, LIU Y P, et al. Identification of the key odorants in chili pepper[J]. Journal of Food Safety & Quality,2018,9(15):3976−3983.

    SHI H Z, WANG J, LIU Y P, et al. Identification of the key odorants in chili pepper [J]. Journal of Food Safety & Quality, 2018, 9(15): 3976-3983.

    [34]

    MAICAS S, MATEO J J. Hydrolysis of terpenyl glycosides in grape juice and other fruit juices: A review[J]. Applied Microbiology and Biotechnology,2005,67(3):322−335. doi: 10.1007/s00253-004-1806-0

图(7)  /  表(4)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  20
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-29
  • 网络出版日期:  2023-08-04
  • 刊出日期:  2023-10-09

目录

/

返回文章
返回