• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

基于近红外光谱的红提内部品质无损检测研究

高升, 徐建华

高升,徐建华. 基于近红外光谱的红提内部品质无损检测研究[J]. 食品工业科技,2022,43(22):7−14. doi: 10.13386/j.issn1002-0306.2022030285.
引用本文: 高升,徐建华. 基于近红外光谱的红提内部品质无损检测研究[J]. 食品工业科技,2022,43(22):7−14. doi: 10.13386/j.issn1002-0306.2022030285.
GAO Sheng, XU Jianhua. Non-destructive Detection of the Internal Quality of Red Globe Grapes Based on Near Infrared Spectroscopy[J]. Science and Technology of Food Industry, 2022, 43(22): 7−14. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030285.
Citation: GAO Sheng, XU Jianhua. Non-destructive Detection of the Internal Quality of Red Globe Grapes Based on Near Infrared Spectroscopy[J]. Science and Technology of Food Industry, 2022, 43(22): 7−14. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030285.

基于近红外光谱的红提内部品质无损检测研究

基金项目: 国家自然科学基金(31871863,32072302);湖北省自然科学基金(2012FKB02910);湖北省研究与开发计划项目(2011BHB016)。
详细信息
    作者简介:

    高升(1988−),男,博士,讲师,研究方向:农产品无损检测技术及机电一体化,E-mail:gaosheng@qut.edu.cn

    通讯作者:

    高升(1988−),男,博士,讲师,研究方向:农产品无损检测技术及机电一体化,E-mail:gaosheng@qut.edu.cn

  • 中图分类号: O433.4;O439;S371

Non-destructive Detection of the Internal Quality of Red Globe Grapes Based on Near Infrared Spectroscopy

  • 摘要: 红提的可溶性固形物含量(Solube Solids Content,SSC)、总酸(Total Acid,TA)、pH、硬度(Firmness Index,FI)和含水率(Moisture Content,MC)等内部品质指标直接影响着果实的口感及品质,同时也是水果成熟度的评判标准。为快速获得上述内部品质指标,且避免不必要的检测损耗,本文提出了一种新的红提无损检测模型。以生长期红提为研究对象,利用Antaris II近红外光谱仪采集了360个样本的近红外光谱信息。对采集到的光谱信息分别用SNV等算法进行预处理并通过建模确定了最优预处理方法。然后通过降维算法提取光谱信息的特征波长,最后基于偏最小二乘回归算法(Partial Least Squares Regression,PLSR)分别建立了红提的SSC、TA、pH、FI和MC的检测模型。红提的SSC、TA的最优检测模型为SG-CARS-SPA-PLSR模型,pH的最优检测模型为MA-CARS-SPA-PLSR模型,FI和MC的最优检测模为SG-CARS-PLSR模型。所建立的红提SSC、TA、pH、FI和MC的最优PLSR模型的预测集的相关系数Rp分别为0.9787、0.9811、0.9870、0.9568、0.9329,残差预测偏差RPD分别为4.8637、4.9006、6.0939、3.4453、2.5825,表明以上模型具有较高的检测精度。本文所建的红提内部品质检测模型可为红提内部品质的检测提供可靠的方法。
    Abstract: The internal quality indicators such as soluble solids content (SSC), total acid (TA), pH, firmness index (FI) and moisture content (MC) of red globe grapes affect the taste and quality of the fruit directly. And they are also criterion for maturity. In order to obtain the internal quality indicators showed above quickly and avoid unnecessary inspection losses, a new non-destructive detection model for red globe grapes was proposed in this paper. The near-infrared spectral information of 360 samples was collected using the Antaris II near-infrared spectrometer for red globe grapes in the growing period. The collected spectral information was pre-processed by algorithms such as SNV and then modelled to determine the optimal spectral pre-processing method. The characteristic wavelengths of the spectral information were extracted by dimensionality reduction algorithms. Finally, the detection models for SSC, TA, pH, FI and MC of red grapes were established respectively based on Partial Least Squares Regression (PLSR) algorithm. For SSC and TA the optimal detection model was SG-CARS-SPA-PLSR, for pH the optimal detection model was MA-CARS-SPA-PLSR, and for FI and MC the optimal detection model was SG-CARS-PLSR. The correlation coefficients (Rp) of the optimal PLSR models established of the prediction sets for red globe grape SSC, TA, pH, FI and MC were 0.9787, 0.9811, 0.9870, 0.9568 and 0.9329 respectively, and the residual prediction deviations(RPD) were 4.8637, 4.9006, 6.0939, 3.4453 and 2.5825 respectively, indicating that the above models had high detection accuracy. The models established in this paper would provide a reliable method for the detection of the internal quality of red globe grapes.ity of red globe grapes.
  • 红提营养丰富,鲜嫩多汁,深受消费者喜爱[1-2]。可溶性固形物(SSC)、总酸(TA)、pH、硬度(FI)和含水率(MC)决定了果实的口味,可反映红提的感官性能、商品价值、水果成熟度[3-4]。FI和MC也是评价果蔬贮藏及运输运品质的重要参考[5]。掌握红提的含水率能及时挑选出将要腐烂的果实,对减少腐烂蔓延至关重要[6]。传统的水果内部品质检测为破坏性抽样检测,检测后的样本遭到严重破坏而无法销售和食用,且只能通过抽样检测来对整体进行评价,而每个果实的品质无法进行准确评价[7-9]。测定红提的SSC、TA、pH、FI和MC含量需要独立的实验,常规检测方法无法一次性获得。市场迫切需要一种无损、快速准确的检测方法,实现对红提内部品质的检测。

    光谱技术已在果蔬品质检测方面得到广泛应用[10-12]。刘燕德等[13]利用近红外光谱技术建立了不同产地苹果糖度的在线检测通用模型,实现苹果糖度的快速在线无损检测。王转卫等[14]利用近红外光谱技术建立了苹果可溶性固形物含量、硬度、pH和含水率的最小二乘支持向量机和极限学习机模型,实现了苹果各内部品质指标的检测。罗一甲等[15]利用近红外光谱技术结合GA-ELM预测模型实现了对赤霞珠葡萄总酚含量快速准确检测。Mza等[16]利用近红外光谱技术实现了苹果成熟度无损检测,选定的特征波长和光谱指数可以为开发测定苹果成熟度的无损设备提供参考。Byun等[17]利用近红外光谱技术研制了一种用于苹果糖含量的近红外(NIR)光谱仪器,实现了对苹果糖含量的无损检测。近红外光谱技术逐渐应用于葡萄品质的检测[18-19]。Luo等[20]提出了一种基于近红外光谱的快速方法来测定整串赤霞珠葡萄的可溶性固体含量(SSC)、pH和总酚含量(TPC)的方法,实现了对赤霞珠葡萄整串的化学参数无损检测。此外,近红外光谱技术在猕猴桃、葡萄等食品已经证明预测的可行性[21-23]。目前大多数的研究都侧重于采后和贮藏[24-26]中果蔬内部品质指标的检测与变化。检测的指标大多为单个,检测指标相对较少[27-28],利用近红外光谱技术对生长期红提SSC、TA、pH、FI和MC等五个内部指标的研究还未见报道。

    本文以生长期红提为研究对象,利用近红外光谱技术分别建立准确检测红提各内部指标(SSC、TA、pH、FI和MC)的最优无损检测模型,所建最优模型可为生长期红提内部品质SSC、TA、pH、FI和MC的无损快速检测提供新的方法。

    生长期红提 从葡萄园选取10棵红提植株并逐一进行编号,红提生长的周期大约为两个月,实验从红提开花后的第61 d开始,每隔5 d进行1次样本采集,每次采集10串葡萄,共采集12次。样本于实验当天采摘并进行编号,之后保存于恒温恒湿箱。

    Antaris II傅里叶变换近红外光谱仪 美国Thermo Fisher;HPX-25085H-Ⅲ恒温恒湿箱 上海新苗医疗器械制造有限公司;WAY(2WAJ)阿贝尔折射仪 申光;TMS-PRO型质构仪 美国FTC公司;XGQ-2000电热鼓风干燥箱 余姚市星辰仪表厂。

    在每串葡萄串的顶部、中部、底部各挑选5粒大小相近、完好无损的果粒,每串共采集15粒果粒作为实验材料。因单个果粒进行挤压后挤出的果汁较少,无法利用实验方法同时对红提SSC、TA、pH指标的测定,所以在实验材料中挑选3粒红提作为红提SSC、TA、pH指标检测的1个样本,每串测定3个样本,需要9粒红提。从每串红提采集的实验材料中分别挑选3粒作为红提硬度和含水率的实验样本,每次试验分别取用1粒红提,两个指标各进行3次实验。

    将经过恒温恒湿箱处理后的样本用Antaris II傅里叶变换近红外光谱仪进行光谱采集。选择积分球模块,利用该仪器采集样本10000~4000 cm−1范围的漫反射光谱信息。

    对样本进行完光谱采集后,立即对样本进行标准理化值测定,各指标检测方法如下:

    SSC测定:将样本放入到红提果粒挤压装置榨汁,测定经纱布过滤后的果汁的SSC值。样本SSC测定参照NY/T 2637-2014《水果、蔬菜制品可溶性固形物含量的测定——折射装置法》。

    TA测定:TA测定方法与SSC测定方法基本相同,参照GB/T 12456-2008《食品中总酸的测定》方法。

    pH测定:利用校准后的pH计对测定完SSC和总酸剩余后的果汁进行pH的测定。

    FI测定:将进行光谱检测后的红提样本横向放置在质构仪的实验台上,采用P100/R探头进行压缩。设置质构仪的测前速度为2.0 mm/s,测试速度为1.0 mm/s,测后速度为2.0 mm/s,起始力设置为0.05 N,压缩距离为8.0 mm。FI的测定值为压缩过程中样本承受的最大压力值

    MC测定:含水率采用国标GB 5009.3-2016《食品中水分的测定》进行测定。

    PLSR算法是一种较优的通过最小化偏差平方和实现对曲线进行线性拟合的算法,具有较多的优点。各指标均建立PLSR模型。模型的评价由预测集相关系数(Rp)、均方根误差(RMSEP)和残差预测偏差(RPD)进行模型性能的评价[1]

    图1可知,样本光谱曲线中存在4个明显波谷,分别为4520、6000、7900、9350 cm−1。为消除噪声等干扰信息,本研究选择标准正态变量变换(Standard Normal Variable transformation,SNV)等预处理方法对原始光谱(RAW)进行处理[29-30]。采用不同预处理方法对RAW进行处理后所建PLSR检测模型的结果如表1所示。

    图  1  原始光谱信息
    Figure  1.  Raw spectral information
    表  1  采用不同预处理方法的全波长PLSR检测模型
    Table  1.  Full-band PLSR prediction model using different preprocessing methods
    指标预处理LVs
    主因子数
    校正集 预测集RPD
    RcRMSECRpRMSEP
    SSCRAW90.96350.9128 0.91041.34562.2971
    SNV120.98200.64390.91131.32662.2988
    SG120.98340.61760.94441.09413.0490
    MSC130.98040.62770.90891.34852.2683
    MA100.94161.14740.89511.45072.1429
    MC90.96160.93480.91141.33762.3527
    Nor90.95990.95990.89911.42852.2107
    TARAW90.97761.97620.96573.08393.5477
    SNV100.97791.96170.96383.15883.4574
    SG100.97991.87130.96972.86473.8977
    MSC100.97711.99590.96283.19493.4185
    MA110.96392.49760.95793.36123.4129
    MC90.96742.37710.94573.81472.8195
    Nor90.97552.06290.96513.10123.5166
    pHRAW70.93700.18280.93510.19102.6190
    SNV70.93700.18290.93910.18542.7272
    SG150.98600.08700.96680.13863.8078
    MSC70.93650.18360.93900.18562.7231
    MA120.98850.07920.98150.10455.0952
    MC60.92810.19490.92620.20422.3806
    Nor70.93710.18270.93440.19212.6013
    FIRAW70.92399.04040.90618.93202.2733
    SNV60.92389.04140.90139.13052.1717
    SG60.92419.03640.91558.43272.3738
    MSC70.92389.08040.90728.85522.2746
    MA60.91359.62020.89219.53062.1115
    MC70.92189.16670.876210.25341.9845
    Nor70.92069.23670.90459.01762.2589
    MCRAW100.91470.95400.84961.36181.6058
    SNV100.91150.97490.85811.32611.6392
    SG90.92230.88860.88121.21851.8262
    MSC100.91190.97380.86151.31171.6521
    MA100.89461.02780.84741.37331.6541
    MC100.92150.89200.83781.41661.5467
    Nor100.91620.94390.84501.38171.5853
    下载: 导出CSV 
    | 显示表格

    对于SSC、TA、FI、MC来说,经过SG预处理后的原始光谱所建PLSR模型的Rc(每个模型对应的Rc值分别为0.9834、0.9799、0.9241、0.9223)和Rp(每个模型对应的Rp值分别为0.9444、0.9697、0.9155、0.8812)较大,且校正集和预测集的均方根误差较小。因此,针对SSC、TA、FI、MC四个指标,下文选取SG预处理后进行优化。对于pH经MA预处理后所建PLSR效果较好,选取MA预处理后进行优化。

    实验中每个指标各采集360个样本,利用SPXY算法按照3:1比例划分为校正集和预测集[31]。SSC、pH、TA、FI和MC分布范围、校正集及预测集的平均值如表2所示。SSC、pH、TA、FI和MC校正集的分布范围大于预测集的分布范围,证明通过SPXY算法划分后校正集的样本更具有代表性,校正集样本分布的范围更广对根据校正集所建模型的稳定性及准确性都会有所提升,利用SPXY算法划分样本集达到了较好的效果。

    表  2  生长期红提样本利用SPXY算法划分样本集的数据统计
    Table  2.  Growth statistics of red globe grape extract samples during growing period using SPXY algorithm to divide the sample set
    品质参数校正集 预测集
    数量范围平均值 数量范围平均值
    SSC(°Brix)2704.5~19.011.9904.5~18.011.9
    TA(%)2702.254~37.6639.629902.320~37.30211.538
    pH2702.68~4.623.64902.68~4.523.57
    FI/N2709.414~121.30533.4539013.149~102.93032.475
    MC(%)27083.15~96.5289.609083.15~95.6389.51
    下载: 导出CSV 
    | 显示表格

    将经过光谱预处理的原始光谱利用CARS算法、SPA算法和UVE算法提取特征波长,以下以SSC特征波长提取过程举例说明[32]

    CARS的提取过程见图2,蒙特卡罗采样设置为50次,5折交叉验证。当RMSECV值达到最小值时,为所建PLSR模型的最优结果,当运行为图中竖线的位置时,RMSECV值最小值时,采样运行了18次。

    图  2  基于CARS算法的样本的SSC特征波长提取图
    注:(a)采样变量数;(b)RMSECV;(c)回归系数路径。
    Figure  2.  Characteristic wavelength selection chart of SSC content in red globe grape extraction based on CARS algorithm

    SPA算法[33]提取过程见图3,根据RMSE的变化来确定被选取的特征变量,随着变量个数的增加,RMSE先迅速下降,表明光谱中的无用信息被高效剔除,然后趋于平稳。图4(a)中RMSE取得最小值24为选定的波长个数,最终选取的波长点索引见图3(b),模型取得最好的效果。

    图  3  基于SPA算法的红提SSC含量特征波长选取图
    Figure  3.  Characteristic wavelength selection chart of SSC content in red globe grape extraction based on SPA algorithm
    图  4  基于UVE算法的红提SSC含量特征波长选取图
    Figure  4.  Characteristic wavelength selection chart of SSC content in red globe grape extraction based on UVE algorithm

    UVE提取特征波长的后选取的结果见图4,设定噪声矩阵最大稳定性绝对值的99%作为剔除阈值,左侧黄色曲线为光谱信息,右侧红色曲线为添加的噪声信息,只保留两条虚线外侧的有用信息。

    结合表1选取的最优预处理方法,对于SSC、TA、FI、MC来说,经过SG预处理后的原始光谱所建PLSR效果最佳;对于pH指标,原始光谱进行MA预处理后所建PLSR模型效果最佳。本文对预处理后的光谱采用UVE算法、CARS算法和SPA算法等一次降维算法提取特征波长后建立PLSR模型。由表3可知,一次降维算法对样本的SSC、TA指标的提取效果较差。经过二次降维算法提取特征波段后,样本SSC和TA的CARS-SPA模型的RPD分别为4.8637和4.9006,模型的性能得到了提升。原始光谱经过MA预处理建立的pH的PLSR模型也需要进行二次特征波长提取,二次降维后建立的CARS-SPA模型的RPD为6.0939。对于FI和MC两个指标,经过CARS特征波段提取后,FI和MC的RPD达到3.4453和2.5825,所建模型的效果较好。

    表  3  基于不同特征波段提取方法建立的PLSR模型效果
    Table  3.  Effects of PLSR models based on different feature band extraction methods
    指标特征波段提取方法因子数特征
    数目
    校正集 预测集RPD
    RcRMSECRpRMSEP
    SSCSG-CARS101540.97790.7125 0.96030.93623.5968
    SG-SPA12240.94491.11540.92351.26632.5763
    SG-UVE139960.98490.59080.93161.21512.7493
    SG-CARS-SPA13320.98110.67640.97870.66174.8637
    SG-UVE-SPA11200.92891.26170.90361.44792.3262
    TASG-CARS9780.98141.80120.98012.30194.5187
    SG-SPA9160.96372.50630.96242.89103.8750
    SG-UVE912070.97901.91530.97022.84313.9255
    SG-CARS-SPA20440.98161.79340.98112.28354.9006
    SG-UVE-SPA15310.96442.48150.96082.89463.8606
    pHMA-CARS9600.98390.09350.98260.10115.2468
    MA-SPA11270.98350.09460.98190.10325.1235
    MA-UVE1013990.98620.08680.98140.10425.1114
    MA-CARS-SPA12270.98780.08160.98700.08676.0939
    MA-UVE-SPA12200.98120.10110.98300.1005.3303
    FISG-CARS9420.95796.80490.95686.18703.4453
    SG-SPA7260.92379.05980.92128.12882.4308
    SG-UVE710670.92339.07900.90798.83032.2944
    SG-CARS-SPA9130.93208.57190.93627.36022.7195
    SG-UVE-SPA6180.91729.42040.90998.66662.2538
    MCSG-CARS9780.93840.79440.93290.92772.5825
    SG-SPA11260.88501.07050.86991.27101.7250
    SG-UVE912260.91890.90740.87291.25881.7294
    SG-CARS-SPA13450.93880.79210.92061.01022.3351
    SG-UVE-SPA20290.89251.03720.87941.23041.7695
    下载: 导出CSV 
    | 显示表格

    对于红提SSC、TA和pH,CARS-SPA组合降维算法提取特征波长效果最佳;对于红提FI和MC,一次降维算法CARS提取特征波长效果最佳。在特征波长提取的基础上建立的红提的SSC、TA的最优检测模型为SG-CARS-SPA-PLSR模型,pH的最优检测模型为MA-CARS-SPA-PLSR模型,FI和MC的最优检测模型为SG-CARS-PLSR模型。所建立的红提的SSC、TA、pH、FI和MC的最优PLSR模型的RPD值均大于2.5,说明模型检测效果较好。图5为样本的检测效果图,五个模型的Rc的值分别为:0.9811、0.9816、0.9878、0.9579、0.9384,五个模型的Rp的值分别为:0.9787、0.9811、0.9870、0.9568、0.9329,五个模型的RPD的值分别为:4.4837、4.9006、6.0939、3.4453、2.5825。

    图  5  基于最优特征波长组合建立的红提内部品质各指标的PLSR模型
    Figure  5.  PLSR model of various indexes of internal quality of red globe grape extract based on optimal characteristic wavelength combination

    利用近红外光谱技术对生长期的红提进行光谱实验采集后,不同生长期红提的光谱曲线都呈现出相同的变化趋势,波峰及波谷的位置比较固定,光谱曲线的变化产生的原因为红提内部物质,主要是含氢基团的物质对不同波段光谱的吸收和反射特性不同,SSC、TA、pH、FI和MC等指标因内部各物质的不同而有所差异。说明光谱在进行红提内部各指标检测时光谱曲线比较稳定,也从另外一个方面说明了用近红外光谱技术进行检测的可靠性和稳定性。红提生长过程中内部品质的变化会引起光谱曲线的变化,可通过本文建立的最优模型实现对红提各内部品质指标的无损检测。在红提生长过程中内部物质会发生一定的转化,SSC、TA、pH、FI和MC等指标因内部各物质的不同而有所差异,随着果实的成熟,SSC和pH逐渐的增加,TA、FI和MC逐渐的减小,说明果实品尝的甜度会慢慢增加,果实逐渐成熟。后期将在本文的研究基础上,深入探究红提成熟度各内部指标的转化特性,建立红提成熟度与近红外光谱特征波长的对应关系模型。

    本文选取生长期内的红提作为研究对象,利用Antaris II近红外光谱仪采集了360个红提样本的近红外光谱信息。通过光谱预处理和各种降维算法提取光谱信息的特征波长建立了红提的SSC、TA、pH、FI和MC的最优PLSR检测模型。得到的结论如下:

    对于红提SSC、TA和pH,CARS-SPA组合降维算法提取特征波长效果最佳;对于红提FI和MC,一次降维算法CARS提取特征波长效果最佳。

    红提的SSC、TA的最优检测模型为SG-CARS-SPA-PLSR模型,pH的最优检测模型为MA-CARS-SPA-PLSR模型,FI和MC的最优检测模为SG-CARS-PLSR模型。

    红提SSC、TA、pH、FI和MC的最优检测模型的RPD的值分别为:4.4837、4.9006、6.0939、3.4453、2.5825,各指标最优检测模型的Rp都大于0.93,RPD均高于2.5,表明以上模型均具有较好的检测效果,实现了各内部指标的准确检测。本文建立的各指标检测模型可为生长期红提内部品质的无损快速检测提供新的方法。

  • 图  1   原始光谱信息

    Figure  1.   Raw spectral information

    图  2   基于CARS算法的样本的SSC特征波长提取图

    注:(a)采样变量数;(b)RMSECV;(c)回归系数路径。

    Figure  2.   Characteristic wavelength selection chart of SSC content in red globe grape extraction based on CARS algorithm

    图  3   基于SPA算法的红提SSC含量特征波长选取图

    Figure  3.   Characteristic wavelength selection chart of SSC content in red globe grape extraction based on SPA algorithm

    图  4   基于UVE算法的红提SSC含量特征波长选取图

    Figure  4.   Characteristic wavelength selection chart of SSC content in red globe grape extraction based on UVE algorithm

    图  5   基于最优特征波长组合建立的红提内部品质各指标的PLSR模型

    Figure  5.   PLSR model of various indexes of internal quality of red globe grape extract based on optimal characteristic wavelength combination

    表  1   采用不同预处理方法的全波长PLSR检测模型

    Table  1   Full-band PLSR prediction model using different preprocessing methods

    指标预处理LVs
    主因子数
    校正集 预测集RPD
    RcRMSECRpRMSEP
    SSCRAW90.96350.9128 0.91041.34562.2971
    SNV120.98200.64390.91131.32662.2988
    SG120.98340.61760.94441.09413.0490
    MSC130.98040.62770.90891.34852.2683
    MA100.94161.14740.89511.45072.1429
    MC90.96160.93480.91141.33762.3527
    Nor90.95990.95990.89911.42852.2107
    TARAW90.97761.97620.96573.08393.5477
    SNV100.97791.96170.96383.15883.4574
    SG100.97991.87130.96972.86473.8977
    MSC100.97711.99590.96283.19493.4185
    MA110.96392.49760.95793.36123.4129
    MC90.96742.37710.94573.81472.8195
    Nor90.97552.06290.96513.10123.5166
    pHRAW70.93700.18280.93510.19102.6190
    SNV70.93700.18290.93910.18542.7272
    SG150.98600.08700.96680.13863.8078
    MSC70.93650.18360.93900.18562.7231
    MA120.98850.07920.98150.10455.0952
    MC60.92810.19490.92620.20422.3806
    Nor70.93710.18270.93440.19212.6013
    FIRAW70.92399.04040.90618.93202.2733
    SNV60.92389.04140.90139.13052.1717
    SG60.92419.03640.91558.43272.3738
    MSC70.92389.08040.90728.85522.2746
    MA60.91359.62020.89219.53062.1115
    MC70.92189.16670.876210.25341.9845
    Nor70.92069.23670.90459.01762.2589
    MCRAW100.91470.95400.84961.36181.6058
    SNV100.91150.97490.85811.32611.6392
    SG90.92230.88860.88121.21851.8262
    MSC100.91190.97380.86151.31171.6521
    MA100.89461.02780.84741.37331.6541
    MC100.92150.89200.83781.41661.5467
    Nor100.91620.94390.84501.38171.5853
    下载: 导出CSV

    表  2   生长期红提样本利用SPXY算法划分样本集的数据统计

    Table  2   Growth statistics of red globe grape extract samples during growing period using SPXY algorithm to divide the sample set

    品质参数校正集 预测集
    数量范围平均值 数量范围平均值
    SSC(°Brix)2704.5~19.011.9904.5~18.011.9
    TA(%)2702.254~37.6639.629902.320~37.30211.538
    pH2702.68~4.623.64902.68~4.523.57
    FI/N2709.414~121.30533.4539013.149~102.93032.475
    MC(%)27083.15~96.5289.609083.15~95.6389.51
    下载: 导出CSV

    表  3   基于不同特征波段提取方法建立的PLSR模型效果

    Table  3   Effects of PLSR models based on different feature band extraction methods

    指标特征波段提取方法因子数特征
    数目
    校正集 预测集RPD
    RcRMSECRpRMSEP
    SSCSG-CARS101540.97790.7125 0.96030.93623.5968
    SG-SPA12240.94491.11540.92351.26632.5763
    SG-UVE139960.98490.59080.93161.21512.7493
    SG-CARS-SPA13320.98110.67640.97870.66174.8637
    SG-UVE-SPA11200.92891.26170.90361.44792.3262
    TASG-CARS9780.98141.80120.98012.30194.5187
    SG-SPA9160.96372.50630.96242.89103.8750
    SG-UVE912070.97901.91530.97022.84313.9255
    SG-CARS-SPA20440.98161.79340.98112.28354.9006
    SG-UVE-SPA15310.96442.48150.96082.89463.8606
    pHMA-CARS9600.98390.09350.98260.10115.2468
    MA-SPA11270.98350.09460.98190.10325.1235
    MA-UVE1013990.98620.08680.98140.10425.1114
    MA-CARS-SPA12270.98780.08160.98700.08676.0939
    MA-UVE-SPA12200.98120.10110.98300.1005.3303
    FISG-CARS9420.95796.80490.95686.18703.4453
    SG-SPA7260.92379.05980.92128.12882.4308
    SG-UVE710670.92339.07900.90798.83032.2944
    SG-CARS-SPA9130.93208.57190.93627.36022.7195
    SG-UVE-SPA6180.91729.42040.90998.66662.2538
    MCSG-CARS9780.93840.79440.93290.92772.5825
    SG-SPA11260.88501.07050.86991.27101.7250
    SG-UVE912260.91890.90740.87291.25881.7294
    SG-CARS-SPA13450.93880.79210.92061.01022.3351
    SG-UVE-SPA20290.89251.03720.87941.23041.7695
    下载: 导出CSV
  • [1] 高升, 王巧华, 李庆旭, 等. 基于近红外光谱的红提维生素C含量、糖度及总酸含量无损检测方法[J]. 分析化学,2019,47(6):941−949. [GAO Sheng, WANG Qiaohua, LI Qingxu, et al. Non-destructive detection of vitamin C, sugar content and total acidity of red globe grape based on near-infrared spectroscopy[J]. Chinese Journal of Analytical Chemistry,2019,47(6):941−949.
    [2] 陈辰, 鲁晓翔, 张鹏, 等. 红提葡萄VC含量的可见/近红外检测模型[J]. 食品与机械,2015,31(5):70−74. [CHEN Chen, LU Xiaoxiang, ZHANG Peng, et al. Determination of vitamin C in red globe grape based on visible/near-infrared diffuse reflectance spectroscopy[J]. Food & Machinery,2015,31(5):70−74.
    [3] 田海龙, 张平, 农绍庄, 等. 基于TPA测试法对1-MCP处理后葡萄果实质构性能的分析[J]. 食品与机械,2011,27(3):104−107. [TIAN Hailong, ZHANG Ping, NONG Shaozhuang, et al. Analysis on texture properties of treated grape fruit with 1-MCP based on TPA test[J]. Food & Machinery,2011,27(3):104−107. doi: 10.3969/j.issn.1003-5788.2011.03.033
    [4]

    ZHANG D, XU L, WANG Q, et al. The optimal local model selection for robust and fast evaluation of soluble solid content in melon with thick peel and large size by Vis-NIR spectroscopy[J]. Food Analytical Methods,2018,12:1−12.

    [5] 邓云, 吴颖, 李云飞. 温度和相对湿度对采后葡萄浆果硬度的影响[J]. 食品科学,2007(3):46−49. [DENG Yun, WU Ying, LI Yunfei. Effects of temperature and relative humidity on postharvest grapes berry firmness[J]. Food Science,2007(3):46−49. doi: 10.3321/j.issn:1002-6630.2007.03.006
    [6] 朱丹实, 张巧曼, 曹雪慧, 等. 湿度条件对巨峰葡萄贮藏过程中水分及质构变化的影响[J]. 食品科学,2014,35(22):340−345. [ZHU Danshi, ZHANG Qiaoman, CAO Xuehui, et al. Effect of relative humidity on the changes in water and texture of kyoho grape during storage[J]. Food Science,2014,35(22):340−345. doi: 10.7506/spkx1002-6630-201422066
    [7] 孙世鹏, 彭俊, 李瑞, 等, Vázquez-Arellano MANUEL, 傅隆生. 基于近红外高光谱图像的冬枣损伤早期检测[J]. 食品科学,2017,38(2):301−305. [SUN Shipeng, PENG Jun, LI Rui, et al. Early detection of mechanical damage in chinese winter Jujube (Zizyphus jujuba Mill. cv. Dongzao) using NIR hyperspectral images[J]. Food Science,2017,38(2):301−305. doi: 10.7506/spkx1002-6630-201702047
    [8] 冯迪, 纪建伟, 张莉, 等. 基于高光谱成像提取苹果糖度与硬度最佳波长[J]. 发光学报,2017,38(6):799−806. [FENG Di, JI Jianwei, ZHANG Li, et al. Optimal wavelengths extraction of apple brix and firmness based on hyperspectral imaging[J]. Chinese Journal of Luminescence,2017,38(6):799−806. doi: 10.3788/fgxb20173806.0799
    [9] 何嘉琳, 乔春燕, 李冬冬, 等. 可见-近红外高光谱成像技术对灵武长枣VC含量的无损检测方法[J]. 食品科学,2018,39(6):194−199. [HE Jialin, QIAO Chunyan, LI Dongdong, et al. Non-destructive detection of vitamin C content in ''Lingwu Changzao'' Jujubes (Zizyphus jujuba Mill. cv. Lingwu Changzao) using visible near infrared hyperspectral imaging[J]. Food Science,2018,39(6):194−199. doi: 10.7506/spkx1002-6630-201806031
    [10] 李江波, 彭彦昆, 陈立平, 等. 近红外高光谱图像结合CARS算法对鸭梨SSC含量定量测定[J]. 光谱学与光谱分析,2014,34(5):1264−1269. [LI Jiangbo, PENG Yankun, CHEN Liping, et al. Near-Infrared hyperspectral imaging combined with CARS algorithm to quantitatively determine soluble solids content in ''Ya'' pear[J]. Spectroscopy and Spectral Analysis,2014,34(5):1264−1269. doi: 10.3964/j.issn.1000-0593(2014)05-1264-06
    [11] 潘磊庆, 方莉, 周彬静, 等. 光学参数测量系统和原理及其在果蔬品质检测方面的研究进展[J]. 南京农业大学学报,2021,44(3):401−411. [PAN Leiqing, FANG Li, ZHOU Binjing, et al. System and principle of optical properties measurement and advances on quality detection of fruits and vegetables[J]. Journal of Nanjing Agricultural University,2021,44(3):401−411. doi: 10.7685/jnau.202007009
    [12] 卢伟, 蔡苗苗, 张强, 等. 高光谱和集成学习的黑枸杞快速分级方法[J]. 光谱学与光谱分析,2021,41(7):2196−2204. [LI LU Wei, CAI Miaomiao, ZHANG Qiang, et al. Fast classification method of black Goji berry (Lycium Ruthenicum Murr.) based on hyperspectral and ensemble learning[J]. Spectroscopy and Spectral Analysis,2021,41(7):2196−2204.
    [13] 刘燕德, 徐海, 孙旭东, 等. 不同产地苹果糖度可见近红外光谱在线检测[J]. 中国光学,2020,13(3):482−491. [LIU Yande, XU Hai, SUN Xudong, et al. On-line detection of soluble solids content of apples from different origins by visible and near-infrared spectroscopy[J]. Chinese Optics,2020,13(3):482−491.
    [14] 王转卫, 迟茜, 郭文川, 赵春江. 基于近红外光谱技术的发育后期苹果内部品质检测[J]. 农业机械学报,2018,49(5):348−354. [WANG Zhuanwei, CHI Qian, GUO Wenchuan, et al. Internal quality detection of apples during late developmental period based on Near-infrared spectral technology[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(5):348−354. doi: 10.6041/j.issn.1000-1298.2018.05.041
    [15] 罗一甲, 祝赫, 李潇涵, 等. 赤霞珠酿酒葡萄总酚含量的近红外光谱定量分析[J]. 光谱学与光谱分析,2021,41(7):2036−2042. [LUO Yijia, ZHU He, LI Xiaohan, et al. Quantitative analysis of quantitative analysis of total phenol content in cabernet sauvignon grape based Near-Infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2021,41(7):2036−2042.
    [16]

    MZA B, BO Z, HAO L, et al. Determination of bagged 'Fuji' apple maturity by visible and near-infrared spectroscopy combined with a machine learning algorithm-ScienceDirect[J]. Infrared Physics & Technology,2020:111.

    [17]

    BYUN S. Design of an integrated near-infrared spectroscopy module for sugar content estimation of apples[J]. Micromachines,2022,4(13):2−14.

    [18] 肖慧, 孙柯, 屠康, 等. 便携式葡萄专用可见-近红外光谱检测仪器开发与实验[J]. 食品科学,2019,40(8):300−305. [XIAO Hui, SUN Ke, TU Kang, et al. Development and application of a specialized portable visible and Near-Infrared instrument for grape quality detection[J]. Food Science,2019,40(8):300−305. doi: 10.7506/spkx1002-6630-20171124-305
    [19]

    COSTA D, MESA N, FREIRE M S, et al. Development of predictive models for quality and maturation stage attributes of wine grapes using vis-nir reflectance spectroscopy[J]. Postharvest Biology and Technology,2019,150:166−178. doi: 10.1016/j.postharvbio.2018.12.010

    [20]

    LUO Y, DONG J, SHI X, et al. Quantitative detection of soluble solids content, pH, and total phenol in Cabernet Sauvignon grapes based on near infrared spectroscopy[J]. International Journal of Food Engineering, 2021, 17(5).

    [21] 胡静, 黄金发, 刘小丹, 等. 基于近红外光谱技术的猕猴桃品质检测研究进展[J]. 食品研究与开发,2022,43(2):196−201. [HU Jing, HUANG Jinfa, LIU Xiaodan, et al. Progress in research into kiwifruit quality assessment based on near-infrared spectroscopy[J]. Food Research and Development,2022,43(2):196−201.
    [22] 李艳秋, 马川兰. 现代近红外光谱分析在食品检测中的应用[J]. 现代食品,2021(8):157−159. [LI Yanqiu, MA Chuanlan, LIU Xiaodan. Application of modern near infrared spectroscopy in food detection[J]. Modern Food,2021(8):157−159. doi: 10.16736/j.cnki.cn41-1434/ts.2021.08.043
    [23] 张静, 徐阳, 姜彦武, 等. 近红外光谱技术在葡萄及其制品品质检测中的应用研究进展[J]. 光谱学与光谱分析,2021,41(12):3653−3659. [ZHANG Jing, XU Yang, JIANG Yanwu, et al. Recent advances in application of Near-Infrared spectroscopy for quality detections of grapes and grape Products[J]. Spectroscopy and Spectral Analysis,2021,41(12):3653−3659.
    [24]

    ARAZURI S, JARÉN C, ARANA JI. Selection of the temperature in the sugar content determination of kiwi fruit[J]. International Journal of Infrared and Millimeter Waves,2005,26:607−616. doi: 10.1007/s10762-005-4076-8

    [25]

    BOBELYN E, SERBAN A S, NICU M, et al. Postharvest quality of apple predicted by nir-spectroscopy: Study of the effect of biological variability on spectra and model performance[J]. Postharvest Biology & Technology,2010,55:133−143.

    [26]

    IGNAT T, LURIE S, NYASORDZI J, et al. Forecast of apple internal quality indices at harvest and during storage by vis-nir spectroscopy[J]. Food & Bioprocess Technology,2014,7:2951−2961.

    [27]

    MUHAMMAD A, ZOU X, ELRASHEID T H, et al. Near-infrared spectroscopy coupled chemometric algorithms for prediction of antioxidant activity of black goji berries (Lycium ruthenicum Murr.)[J]. Journal of Food Measurement and Characterization,2018,12:2366−2376. doi: 10.1007/s11694-018-9853-x

    [28]

    AMODIO M L, CEGLIE F, CHAUDHRY M, et al. Potential of NIR spectroscopy for predicting internal quality and discriminating among strawberry fruits from different production systems[J]. Postharvest Biology and Technology,2017,125:112−121. doi: 10.1016/j.postharvbio.2016.11.013

    [29] 焦俊, 圣阳, 王标, 等. 光谱技术在核桃检测领域的研究进展[J]. 激光与光电子学进展,2021,58(22):44−54. [JIAO Jun, SHENG Yang, WANG Biao, et al. Research progress on spectroscopy in walnut detection[J]. Laser & Optoelectronics Progress,2021,58(22):44−54.
    [30] 赵杰文, 毕夏坤, 林颢, 等. 鸡蛋新鲜度的可见-近红外透射光谱快速识别[J]. 激光与光电子学进展,2013,50(5):213−220. [ZHAO Jiewen, BI Xiakun, LIN Hao, et al. Visible-Near-Infrared transmission spectra for rapid analysis of the freshness of eggs[J]. Laser & Optoelectronics Progress,2013,50(5):213−220.
    [31] 高升, 王巧华. 基于可见/近红外透射光谱技术的红提糖度和含水率无损检测[J]. 中国光学,2021,14(3):566−577. [GAO Sheng, WANG Qiaohua. Non-destructive testing of red globe grape sugar content and moisture content based on visible/near infrared spectroscopy transmission technology[J]. Chinese Optics,2021,14(3):566−577. doi: 10.37188/CO.2020-0085
    [32] 陈远哲, 王巧华, 高升, 等. 基于近红外光谱的淡水鱼贮藏期质构品质的无损检测模型[J]. 激光与光电子学进展,2021,58(12):507−515. [CHEN Yuanzhe, WANG Qiaohua, GAO Sheng, et al. Nondestructive testing model for textural quality of freshwater fish in storage using Near-Infrared spectroscopy[J]. Laser & Optoelectronics Progress,2021,58(12):507−515.
    [33]

    LIU D, SUN D W, ZNEG X A. Recent advances in wavelength selection techniques for hyperspectral image processing in the food industry[J]. Food and Bioprocess Technology,2014,7:307−323. doi: 10.1007/s11947-013-1193-6

图(5)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-22
  • 网络出版日期:  2022-10-17
  • 刊出日期:  2022-11-14

目录

/

返回文章
返回