Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/BasicLatin.js
  • EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

籽粒含水量对荞麦与沙米全粉性能的影响

郁映涛, 曹少攀, 肖刘洋, 黄继鹏, 张静茹, 韩立宏

郁映涛,曹少攀,肖刘洋,等. 籽粒含水量对荞麦与沙米全粉性能的影响[J]. 食品工业科技,2022,43(17):62−71. doi: 10.13386/j.issn1002-0306.2021110218.
引用本文: 郁映涛,曹少攀,肖刘洋,等. 籽粒含水量对荞麦与沙米全粉性能的影响[J]. 食品工业科技,2022,43(17):62−71. doi: 10.13386/j.issn1002-0306.2021110218.
YU Yingtao, CAO Shaopan, XIAO Liuyang, et al. Effects of Grain Moisture Content on Properties of Whole Flour of Buckwheat and Agriophyllum squarrosum[J]. Science and Technology of Food Industry, 2022, 43(17): 62−71. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110218.
Citation: YU Yingtao, CAO Shaopan, XIAO Liuyang, et al. Effects of Grain Moisture Content on Properties of Whole Flour of Buckwheat and Agriophyllum squarrosum[J]. Science and Technology of Food Industry, 2022, 43(17): 62−71. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110218.

籽粒含水量对荞麦与沙米全粉性能的影响

基金项目: 宁夏自然基金重点项目(2021AAC02020);国家自然基金项目(31460406)。
详细信息
    作者简介:

    郁映涛(1998−),女,硕士,研究方向:谷物深加工理论及应用,E-mail:2760357297@qq.com

    通讯作者:

    韩立宏(1979−),女,博士,副教授,研究方向:谷物深加工理论及应用,E-mail:hanlihong_0317@126.com

  • 中图分类号: TS213

Effects of Grain Moisture Content on Properties of Whole Flour of Buckwheat and Agriophyllum squarrosum

  • 摘要: 以不同含水量的甜荞麦和沙米为原料,通过旋风粉碎制备全粉,对比分析了籽粒含水量对两种全粉性能的影响。结果表明,荞麦中淀粉含量显著(P<0.05)高于沙米,而其蛋白质、脂肪和粗纤维含量均显著(P<0.05)低于沙米;两种全粉的粒径、吸油量和膨胀度均随籽粒含水量的升高呈现增大趋势;荞麦全粉的吸水量和弹性模量随籽粒含水量增大而显著(P<0.05)降低,但沙米全粉两特征值的变化与之相反;籽粒含水量对荞麦全粉破损淀粉含量没有显著影响,沙米全粉的破损淀粉含量随着籽粒含水量增大显著(P<0.05)降低;荞麦全粉的糊化黏度特征值及凝胶硬度均高于沙米全粉,而黏弹性和热焓值低于沙米全粉;不同含水量籽粒所得沙米全粉破损淀粉含量和粒径的差异对其膨胀度、溶解度、糊化特征值、糊化焓和面团流变学特性等性能参数产生了显著(P<0.05)影响。这些结果说明沙米全粉与荞麦全粉粉质特性不同,通过改变籽粒含水量可调控沙米全粉的加工性能。本研究将为沙米作为面制食品新资源的高值化利用提供理论支撑,为确保国家粮食安全助力。
    Abstract: The effects of grain water content on the properties of sweet buckwheat and Agriophyllum squarrosum (A. squarrosum) flour prepared by cyclone pulverization were studied. The results showed that the starch content of whole buckwheat flour was significantly (P<0.05) higher than that of whole A. squarrosum flour, while the protein, fat and crude fiber contents of buckwheat flour were significantly (P<0.05) lower than that of which. The grain size, oil absorption and expansion power of two kinds of flour increased with the increase of grain water content. The water absorption and elastic modulus of whole buckwheat flour decreased significantly (P<0.05) with the increase of grain water content, but the changes of the two characteristic values of A. squarrosum flour were opposite. Grain water content had no significant effect on damaged starch content of whole buckwheat flour, but the damaged starch content of whole A. squarrosum flour decreased significantly (P<0.05) with the increase of grain water content. The values of gelatinization viscosity and gel hardness of buckwheat flour were higher than that of whole A. squarrosum flour, while the viscoelasticity and enthalpy of buckwheat flour were lower than that of whole A. squarrosum flour. The difference of damaged starch content and grain size of whole A. squarrosum flour with different water content had significant (P<0.05) effects on its expansion degree, solubility, gelatinization characteristic value, gelatinization enthalpy and dough rheological properties. These results indicated that the properties of whole A. squarrosum flour were different from buckwheat flour, and the processing properties of whole A. squarrosum flour could be controlled by changing the grain water content. This study will provide theoretical support for the high-value utilization of A. squarrosum seeds as a new food resource and help ensure national food security.
  • 荞麦(Fagopyrum esculentum Moench.)是一年生双子叶蓼科草本植物,耐寒、耐旱、耐贫瘠,在全球范围内有广泛种植[1]。荞麦营养价值高,富含淀粉、蛋白质,以及膳食纤维、芦丁、多糖等多种保健因子,有“五谷之王”的美称,具有清热降火、开胃宽肠、治绞肠痧、慢性泄泻、降血压、降血脂以及抗肿瘤等功效[2]。面条、饸饹、凉粉等荞麦制品是倍受世界各地消费者青睐的食品[2]。从营养成分和功能讲,荞麦与小麦、大麦、玉米等谷物相似,但是,从植物学角度看,荞麦是不同于普通谷物的单子叶植物,所以,将它称为“假谷物”。国外关于假谷物的相关研究较早,美国谷物化学家协会(AACC)给出了可供人类食用的假谷物名单,藜麦(Chenopodium quinoa Willd.)、籽粒苋(Amaranthus hypochondriacus L.)就位列其中。假谷物由于其优异的营养价值及保健功能,当前在食品加工业界得到了高度关注[3]

    沙米(Agriophyllum squarrosum)是藜科沙蓬属一年生草本植物沙蓬的籽粒,与传统谷物缺乏植物学上的亲缘关系,也可以归为与荞麦同类的假谷物(pseudocereals)[4-5]。沙蓬抵御风沙能力强、生长繁殖快,适于生长在沙丘及流动沙丘,是目前沙漠生态治理工程上防风固沙的“先锋植物”[6],在中国、俄罗斯等沙漠及沙化地区有大规模野生和种植,人工种植沙蓬沙米产量高达950 kg/hm2[7-8]。沙米含有丰富的碳水化合物、粗蛋白、脂肪,以及镁、钾等矿物质元素,其营养价值堪比联合国粮农组织推荐的完美营养食品藜麦[9],具有助消化、健脾胃、清热解毒和利尿的功能[10]。沙米被沙区牧民作为粮食食用已有1300多年的历史,在兰州、内蒙古、宁夏等地区,就有沙米炒面、沙米点心、沙米凉粉等美食[11]。因此,沙米可视为一种优质的荒漠特色食品新资源,被认为是全球气候变暖导致粮食减产背景下的潜在粮食作物[12]

    假谷物具有与谷物类似的加工性能和加工方式,可以作为主食,也可以部分代替主食。制粉是谷物深加工利用的基本途径之一,粉质特性是决定谷物粉加工性能的内在因素。国内外关于荞麦粉粉质特性的研究已经很广泛,荞麦全粉在食品加工中的应用研究也比较多[13-14]。但是,沙米粉作为一种新型食品原料,目前国内外关于沙米粉理化性质的研究还极少。此外,磨粉籽粒含水量是影响谷物粉粉质特性的主要因素之一[15],籽粒含水量不同,所得谷物粉的粒径分布[16-18]、流变行为[17,19]等特性截然不同。关于假谷物籽粒含水量对其所得全粉粉质特性影响的相关研究报道还很少,Morishita等[20]的研究表明籽粒含水量对苦荞碾磨特性有显著影响,但是目前还没有关于籽粒含水量对所得沙米粉粉质特性影响的系统研究报道。

    本研究以假谷物甜荞为参考,系统分析了不同含水量的甜荞和沙米籽粒经过旋风粉碎之后所得两种全粉的破损淀粉含量、粒径分布、吸水性、吸油性、溶胀性、糊化特性、热特性及凝胶流变学行为等综合粉质特性,以期为沙米作为面制食品新资源的深加工利用提供理论依据和实践指导,为发挥沙蓬的经济价值,促进沙漠生态治理和农业经济发展有机结合,以及确保国家粮食安全助力。

    沙米 产自腾格里沙漠甘肃省民勤地段(2020年秋季采收);荞麦 宁夏山逗子杂粮绿色食品科技开发有限公司捐赠(2020年秋季采收);硼酸、碘化钾、硫代硫酸钠、二甲基硅油(均为分析纯) 国药集团化学试剂有限公司。

    MCR102/MCR302型流变仪 奥地利安东帕(上海)商贸有限公司;RVA-TecMaster快速黏度分析仪 澳大利亚Newport科学仪器公司;DSC 214差示量热扫描仪 德国耐驰仪器制造有限公司;TMS—PRO物性分析仪 美国FTC公司;Bettersize 2000激光粒度分布仪 丹东市百特仪器有限公司;SD matic损伤淀粉测定仪、Grinder型旋风磨粉碎机 法国肖邦技术公司;GTR10-2冷冻离心机 湖南湘仪实验室仪器开发有限公司;101-3-BS-Ⅱ型电热恒温鼓风干燥箱 上海跃进医疗器械有限公司;AL104型电子天平 梅特勒—托利多仪器(上海)有限公司。

    将荞麦、沙米籽粒去壳除杂后,置于烘箱中30 ℃平衡24 h,分为五份,放于烧杯中。在保证旋风粉碎磨工作所允许的物料含水量范围内,根据籽粒的平衡后水分含量(3%)计算出每份样品要加入的水分量,分别量取适量的蒸馏水加入烧杯中封口摇动使籽粒与水分充分接触,放入冰箱冷藏24 h,每隔4 h搅拌一次,制备水分梯度依次为3%、10%、17%、24%、31%的荞麦和沙米籽料样品。调整好含水量的两种籽粒经旋风粉碎磨粉碎,过100目筛,所得全粉于40 ℃的烘箱中干燥24 h,密封、备用。

    荞麦和沙米原料组分按照国标方法进行分析。淀粉含量测定:参照GB5009.9-2016食品中淀粉的测定;蛋白质含量测定:参照GB5009.5-2016食品中蛋白质含量的测定;脂肪含量测定:参照GB5009.6-2016食品中脂肪的测定;粗纤维含量测定:参照GB/T5009.10-2003植物类食品粗纤维含量测定;灰分含量测定:参照GB12086-89食品中灰分的测定;水分含量测定:参照GB5009.3-2016食品中水分的测定。

    采用肖邦破损淀粉测定仪进行测定,根据宋永泉等[21]报道的方法,称取1 g全粉样品于样品小匙中间,在反应杯中加入120 mL蒸馏水、3 g硼酸、3 g碘化钾和1滴硫代硫酸钠(0.1 mol/L)。仪器自动计算碘的吸收率,得到损伤淀粉含量,以UCD单位来表示。

    全粉样品的粒径分布通过Bettersize 2000激光粒度分布仪进行测定。根据Tian等[22]的方法,取适量粉体置于容器内,加蒸馏水,用超声波使粉体分散。测量条件为:样品折射率1.52、全粉颗粒吸光值0.10、分散介质为水、介质折射率1.33、折光率5%~10%。D10、D50、D90分别表示样品颗粒中有10%、50%、90%的颗粒粒径小于此值,剩余的颗粒粒径均大于此值。

    根据Kocher等[23]描述的方法来评估全粉样品的持水能力(WHC)。称取3 g样品(C0)于50 mL离心管(C1),加入25 mL蒸馏水,在室温下旋涡振荡30 min。将此混合物在3000×g下离心25 min,弃去上清液,沉淀在50 ℃下暴露25 min,测定离心管与沉淀的重量(C2)。公式如下:

    WHC(g/ggg)=C2C1C0

    使用Kocher 等[23]报道的方法测量全粉样品的吸油量(OHC)。称取2 g样品(G0)于50 mL离心管(G1),加入25 mL玉米油,在室温下漩涡振荡30 min。将此混合物在6000×g下离心25 min,弃去分离的油状物。倒置离心管3 min以排出多余的油,确定沉淀和离心管的重量(G2)。公式如下:

    OHC(g/ggg)=G2G1G0

    按照Hemar等[24]提供的方法测定全粉沉积物体积分数(φ)。准备50 mL离心管并加入20 mL蒸馏水,加入1 g全粉样品,涡旋混合均匀并保持6 h以进行水合,然后在1000×g条件下离心30 min。测定离心后的总体积(v)和上清液的体积(v1)。按以下公式计算沉积物体积分数(φ):

    φ()=vv1v×100

    参照文献[25]的方法。称取全粉样品0.5 g(M0)于装有25.0 mL蒸馏水的离心管中,离心管的质量为M1,设置温度梯度,分别在50、60、70、80 ℃和90 ℃下水浴振荡30 min。冷却至室温后,在3000×g条件下离心15 min,将上清液倒入培养皿(M3)中,将离心管和湿沉淀称重(M2)。然后将离心管中湿沉淀和培养皿中的上清液均在105 ℃下干燥至恒重,即得离心管和干沉淀的质量(M),培养皿和溶解物的质量(M4)。全粉样品的膨胀度和溶解度的计算公式如下:

    (g/g)=M2M1MM1
    (%)=M4M3M0×100

    采用快速黏度分析仪(RVA)测定不同全粉的糊化特性,参照闵照永等[26]的方法测定。准确称取3 g样品于RVA铝制圆筒中,加入25 mL蒸馏水,制成28 g的总体系,用RVA搅拌桨搅拌均匀即可进行测定。

    测定条件:起始温度为50 ℃,维持1 min,以12 ℃/min升温至95 ℃,维持2.5 min,再以12 ℃/min将温度降至50 ℃,维持2 min。整个过程13 min。

    参照董贝贝[27]方法进行测定,将快速黏度仪测定糊化特性之后的全粉粉糊在4 ℃下密封放置24 h,制成直径为1 cm的圆柱形凝胶,采用质构仪进行质构分析。

    采用TPA测定模式,测定条件:探头P/0.5,力量感应的量程10 N,形变百分量30%,测定前后速度120 mm/min,测定速度60 mm/min,起始力0.1 N。

    参照龙明秀等[28]的方法,采用流变仪对全粉面团样品进行测定。取5 g全粉样品,加入5.5 mL蒸馏水,和成面团。设置间隙为1.0 mm,温度为25 ℃,将面团放在测定台上,设置探头压下,刮去板外多余的面团,并在其边缘涂上一层硅油,防止水分蒸发。先确定全粉样品的线性黏弹区,再用频率扫描程序研究面团的流变特性。

    测定条件:转子为pp25,频率为1.0 Hz,应变率为0.005%,频率变化范围为0.1~10 Hz。

    参考Angelidis等[29]的方法。用DSC专用铝制坩埚准确称量3 mg全粉样品,按质量比1:4的比例加入蒸馏水,密封压盖,常温平衡24 h后,以密封压盖的空铝盒为参照进行热特性分析。

    测定条件:氮气流速为60 mL/min,温度扫描范围为30 ℃到130 ℃,升温速率为20 ℃/min。

    采用SPSS软件进行统计分析,差异显著性分析采用单因素方差分析(One-Way ANOVA),置信度为5%,实验结果以“平均值±标准差”的形式表示。运用origin8.5软件进行绘图。除了质构测定实验每个样品9个重复,其余所有实验每组试样3个重复。

    荞麦和沙米原料的基本组成如表1所示,由表可知,荞麦和沙米的基本成分含量差异显著(P<0.05)。沙米中蛋白质、粗脂肪、粗纤维和灰分含量分别为13.12%、9.34%、2.44%和2.78%,均显著(P<0.05)高于荞麦中相应成分的含量,而沙米中淀粉含量为64.32%,显著(P<0.05)低于荞麦中淀粉的含量(69.58%)。可见,沙米是一种高蛋白、高脂肪和高纤维的优质食品原料。

    表  1  荞麦和沙米原料的基本成分
    Table  1.  Composition of buckwheat and A. squarrosum seeds
    样品淀粉(%)蛋白质(%)粗脂肪(%)粗纤维(%)灰分(%)水分(%)
    荞麦全粉69.58±0.37a10.78±0.28b2.65±0.08b1.55±0.06b1.80±0.04b13.62±0.04a
    沙米全粉64.32±0.05b13.12±0.08a9.34±0.05a2.44±0.01a2.78±0.03a8.00±0.06b
    注:同列不同字母表示差异显著(P<0.05);表3表4表7同。
    下载: 导出CSV 
    | 显示表格

    籽粒含水量对所得荞麦全粉和沙米全粉破损淀粉含量的影响如图1所示。由图可知,荞麦全粉破损淀粉含量随籽粒含水量的增大无规律性变化,而沙米全粉破损淀粉含量随籽粒含水量的增大显著(P<0.05)降低。说明水分含量变化对荞麦全粉和沙米全粉中破损淀粉含量的影响不同,高含水量的沙米全粉破损淀粉含量低,这是因为籽粒中水分含量越高,籽粒脆性越低,塑性和柔软度增大[30],降低了旋风磨粉碎过程中的机械力对淀粉颗粒造成的破坏,破损淀粉含量减少。高晓旭等[31]研究表明水分含量越大,大米粉破损淀粉含量越低。

    图  1  籽粒含水量对全粉破损淀粉含量的影响
    注:误差线上不同字母表示差异显著(P<0.05)。
    Figure  1.  Effect of grain water content on damaged starch content of whole flour

    面粉的粒径大小是决定其加工性能的重要因素[32]。粒度分布数据通常用D10、D50、D90值来讨论,籽粒含水量对所得全粉粒径的影响如表2所示。从表中可知籽粒含水量对所得全粉粒径产生了一定程度的影响。随着籽粒含水量从3%增大至31%,荞麦全粉和沙米全粉的D10、D50和D90值整体上均呈现增大趋势。这是因为高含水量使籽粒质地变软,增加了籽粒的研磨能耗;而且,水作为增塑剂,使得高含水量的籽粒变得难以粉碎[15,30,33-34]。因此,籽粒含水量越高,导致所得全粉粒径变大。

    表  2  籽粒含水量对全粉粒径的影响
    Table  2.  Effect of grain water content on grain size of whole flour
    样品籽粒含水量(%)D10(µm)D50(µm)D90(µm)
    荞麦全粉34.76±0.17b44.96±1.69b145.83±13.00b
    105.16±0.10ab53.65±2.43a173.40±8.34a
    175.48±0.30a59.01±6.55a190.73±7.47a
    245.37±0.26a53.36±3.08a174.80±4.45a
    315.30±0.23a55.27±5.30a186.07±11.91a
    沙米全粉
    31.08±0.02c14.78±1.18d102.46±4.46b
    101.09±0.02c15.36±0.82d118.43±5.67a
    171.11±0.00c17.81±0.33c118.97±3.36a
    241.15±0.01b22.61±1.36b122.93±6.87a
    311.24±0.03a30.50±0.32a117.93±11.84a
    注:同列不同字母表示同一样品不同含水量间差异显著(P<0.05);表5表6表8同。
    下载: 导出CSV 
    | 显示表格

    籽粒含水量对所得全粉吸水量和吸油量的影响如表3所示。由表可知,随着籽粒含水量的增大,荞麦全粉的吸水量显著(P<0.05)降低,而沙米全粉的吸水量显著(P<0.05)升高。可见,籽粒含水量对荞麦全粉和沙米全粉吸水量的影响趋势截然相反,这可能与荞麦籽粒和沙米籽粒的淀粉颗粒大小和组成不同,以及不同含水量籽粒制备的荞麦和沙米全粉中的损伤淀粉含量、粉体粒径大小的变化趋势不同有关。Correia等[35]和Bourré等[36]研究表明,面粉吸水量是破损淀粉、面粉粒径、淀粉来源、蛋白质和纤维含量等多种因素共同作用的结果。

    表  3  籽粒含水量对全粉吸水量和吸油量的影响
    Table  3.  Effect of grain water content on water-holding capacity and oil-holding capacity of whole flour
    籽粒含水量(%)荞麦全粉吸水量(g/g)荞麦全粉吸油量(g/g)沙米全粉吸水量(g/g)沙米全粉吸油量(g/g)
    32.27±0.00a1.80±0.02e1.84±0.01d1.89±0.02d
    102.21±0.02b1.83±0.01d1.88±0.01d2.02±0.04c
    172.07±0.01c1.85±0.01c2.03±0.03c2.20±0.03b
    242.01±0.01d1.87±0.01b2.09±0.02b2.34±0.87a
    311.96±0.01e1.99±0.01a2.18±0.03a2.33±0.06a
    下载: 导出CSV 
    | 显示表格

    随籽粒含水量的增大,荞麦全粉和沙米全粉吸油量均显著(P<0.05)升高;在籽粒含水量相同时,沙米全粉吸油量高于荞麦全粉。Ahmed等[37]表明吸油量随面粉粒度的减小而减小,因此沙米籽粒含水量对沙米全粉吸油量的影响主要源于沙米全粉中粒径的大小。沙米全粉吸油量较高表明沙米全粉更适合作为一种功能食品原料添加到含油食品中。

    沉积物体积分数表示体系离心后的颗粒占用率,它主要估计颗粒的有效体积分数[38]。籽粒含水量对所得全粉沉积物体积分数的影响如表4所示。由表可知,当籽粒含水量超过3%时,荞麦全粉的沉积物体积分数随着籽粒含水量增大无显著(P>0.05)变化;沙米全粉的沉积物体积分数随籽粒含水量的增大呈增大趋势。籽粒含水量对所得荞麦全粉和沙米全粉的沉积物体积分数的影响趋势不同,这是由于荞麦和沙米的颗粒组成成分不同。Ahmed等[39]在研究藜麦粉和南瓜粉沉积物体积分数时,表明两种粉的沉积物体积分数存在显著差异,这是因为它们在组成成分,如纤维、蛋白质含量等方面存在差异。

    表  4  籽粒含水量对全粉沉积物体积分数的影响
    Table  4.  Effect of grain water content on sediment volume fraction of whole flour
    籽粒含水量(%)荞麦全粉沉积物体积分数(%)沙米全粉沉积物体积分数(%)
    38.10±0.01b6.57±0.01b
    1010.40±0.00a6.97±0.00b
    1711.10±0.00a9.50±0.03ab
    2410.37±0.00a10.27±0.02ab
    3110.27±0.01a11.40±0.03a
    下载: 导出CSV 
    | 显示表格

    膨胀度为面粉-水体系在加热糊化时面粉所表现出来的吸水和持水能力,溶解度是溶解在水中面粉样品的多少[40]。如表5所示,测定了荞麦全粉和沙米全粉在50~90 ℃温度范围内的膨胀度和溶解度。荞麦全粉和沙米全粉的膨胀度和溶解度均随着温度的升高而增大;同一温度下,随着籽粒含水量的增大,荞麦全粉和沙米全粉的膨胀度均呈现增大趋势;沙米全粉的溶解度比荞麦全粉的低,但在同一温度下,荞麦全粉的溶解度随籽粒含水量的升高呈现增大趋势,而沙米全粉的溶解度随籽粒含水量的升高呈现降低趋势。

    表  5  籽粒含水量对全粉膨胀度和溶解度的影响
    Table  5.  Effect of grain water content on expansion degree and solubility of whole flour
    样品籽粒含水量(%)50 ℃60 ℃70 ℃80 ℃90 ℃
    膨胀度(g/g)
    荞麦全粉33.32±0.06d4.46±0.06e6.98±0.05d8.26±0.06c9.71±0.12bc
    103.65±0.07c4.57±0.06d7.68±0.07c8.56±0.03a9.88±0.17ab
    174.02±0.05b4.83±0.04c7.89±0.02b8.37±0.01b9.50±0.01cd
    244.03±0.01b4.95±0.08b7.93±0.01b8.50±0.00a9.40±0.15d
    314.20±0.04a5.15±0.02a8.50±0.06a8.42±0.06b9.98±0.10a
    沙米全粉33.93±0.01d4.22±0.05e6.21±0.04d7.88±0.03e8.90±0.05b
    104.02±0.05d4.43±0.01d6.28±0.03d8.17±0.12d8.97±0.03b
    174.32±0.04c4.65±0.09c8.07±0.06c8.41±0.01c8.69±0.12c
    244.49±0.02b6.23±0.04b8.39±0.09b8.88±0.06b8.60±0.03c
    315.07±0.11a6.34±0.02a9.40±0.02a10.03±0.08a10.33±0.13a
    溶解度(%)
    荞麦全粉312.73±0.00bc12.07±0.00d10.70±0.00d12.87±0.00d16.30±0.01a
    1012.03±0.09c12.13±0.00cd12.37±0.00c13.80±0.00c16.23±0.00ab
    1712.50±0.00c12.53±0.00c12.60±0.00c13.97±0.00c14.53±0.01c
    2413.47±0.00ab13.30±0.00b13.17±0.00b14.47±0.00b15.47±0.00b
    3114.20±0.00a13.73±0.00a13.80±0.00a15.87±0.00a16.70±0.00a
    沙米全粉37.97±0.00a7.27±0.01a8.70±0.00ab10.13±0.00a12.97±0.00a
    107.27±0.01b7.70±0.00a9.13±0.01a9.53±0.00ab12.30±0.00b
    177.00±0.00b6.50±0.00b8.03±0.00bc9.40±0.00b11.77±0.00b
    246.10±0.01c6.20±0.00b7.23±0.00c8.37±0.00c10.40±0.03c
    315.73±0.00c5.47±0.00c8.50±0.01ab6.90±0.01d9.47±0.00d
    下载: 导出CSV 
    | 显示表格

    随着温度的不断升高,面粉中的淀粉逐渐糊化,淀粉颗粒内部分子链段间的氢键断裂,淀粉颗粒吸水膨胀,晶体结构被破坏,形成黏稠的淀粉糊[41],因此,荞麦全粉和沙米全粉的膨胀度和溶解度随温度的升高而增大。膨胀度与粉体颗粒粒径有关,粉体颗粒粒径越小,超微粉体的膨胀度越低[42];Protonotariou等[43]指出破损淀粉可以限制淀粉颗粒的膨胀,而本实验发现随着沙米籽粒含水量的增大,沙米全粉中破损淀粉含量降低,所以沙米全粉的膨胀度不断增大。溶解度可反映粉体的水化能力,与粉体颗粒表面积、颗粒粒径以及分子结构等有关[44]。已有研究表明[42]超微粉末的溶解度随粒径的增大而降低,因此,沙米全粉粒径随籽粒含水量增大而增大,是导致沙米全粉溶解度降低的重要原因。

    面粉的糊化特性与其加工性能和产品品质密切相关[45]。不同含水量籽粒所得全粉的RVA特征参数值如表6所示。由表可知,随着籽粒含水量的增大,荞麦全粉的峰值黏度(含水量为3%~17%时)、崩解值、终止黏度和回生值均显著(P<0.05)升高,而谷值黏度呈现降低趋势;当籽粒含水量为3%~24%时,沙米全粉的峰值黏度、谷值黏度、崩解值、终止黏度、回生值随着籽粒含水量的增大均显著(P<0.05)降低,而当籽粒含水量为24%~31%时,沙米全粉的峰值黏度和崩解值随籽粒含水量的增大显著(P<0.05)升高;除籽粒含水量为3%外,不同含水量对荞麦全粉的糊化温度没有显著(P>0.05)影响,而沙米全粉的糊化温度随着籽粒含水量的增大呈现升高趋势;与荞麦全粉相比,沙米全粉的黏度参数值均较低。

    表  6  籽粒含水量对全粉糊化特性的影响
    Table  6.  Effect of grain water content on pasting properties of whole flour
    样品籽粒含水量(%)峰值黏度(cp)谷值黏度(cp)崩解值(cp)终止黏度(cp)回生值(cp)峰值时间(min)糊化温度(℃)
    荞麦全粉32389.0±21.7b1853.3±14.0a535.7±29.7c4360.0±65.1d2506.7±53.7d6.5±0.1b73.7±0.5a
    102428.0±30.1b1820.0±50.3ab608.0±20.3b4312.0±32.2d2492.0±27.4d6.6±0.1b72.9±0.4ab
    172530.3±21.1a1765.3±40.0b765.0±24.3a4467.0±53.7c2701.7±25.1c6.9±0.1a72.8±0.5b
    242403.3±31.2b1650.3±21.0c745.7±9.1a4629.7±11.6b2981.7±9.7b5.8±0.1c72.7±0.1b
    312409.7±18.6b1629.0±57.8c780.7±50.6a4781±14.1a3152.0±49.3a5.8±0.1c72.8±0.5b
    沙米全粉31735.0±52.4a1440.7±74.1a294.3±23.5b3213.7±95.7a1773.0±30.4a5.3±0.2ab72.6±0.1b
    101581.0±25.2b1324.7±76.1ab256.3±99.0b2915.3±11.8a1590.7±187.2ab5.3±0.2ab72.6±0.1b
    171394.3±43.7c1292.3±66.7bc102.0±51.4c2516.0±90.9b1223.7±54.3bc5.1±0.1b72.6±0.0b
    241287.0±34.7d1187.7±74.4c99.3±42.1c2105.0±14.0c917.3±81.1c6.1±0.9a74.0±0.5a
    311448.3±18.8c1014.3±56.8d434.0±72.6a2115.0±425.3c1100.7±473.7c4.9±0.2b74.5±0.5a
    下载: 导出CSV 
    | 显示表格

    峰值黏度反映面粉在糊化过程中其内淀粉颗粒的膨胀程度,谷值黏度反映了淀粉在高温条件下的耐剪切能力[46]。本研究中沙米全粉的黏度值随籽粒含水量的变化趋势与其破损淀粉含量的变化趋势一致,这与谭彩霞等[47]的研究结果一致,他们认为,小麦粉的糊化黏度值与其中破损淀粉的含量呈正相关。崩解值表示面粉糊化过程中淀粉颗粒直链淀粉的浸出程度,回生值表示面粉糊降温冷却过程中淀粉凝胶的老化程度[48]。沙米全粉的崩解值和回生值均低于荞麦全粉,表明沙米全粉较荞麦全粉耐高剪切力,热稳定性好,不易回生。沙米全粉的黏度参数值均比荞麦全粉的低,是因为沙米淀粉颗粒小、膨胀度较低[49-50]导致的。

    质构特性参数是反映面粉凝胶特性的重要指标[27]。由表7可知,荞麦全粉凝胶的硬度在籽粒含水量为3%~17%时,随着籽粒含水量的增大而显著(P<0.05)增大,在籽粒含水量为17%~31%时,随着籽粒含水量的升高呈现降低趋势;沙米全粉凝胶的硬度随着籽粒含水量的升高呈增大趋势,而且沙米全粉凝胶硬度较荞麦全粉凝胶硬度小。本研究中沙米全粉凝胶硬度随籽粒含水量的变化趋势与其破损淀粉含量的变化趋势相反,这与吴迪等[51]研究磨粉方式对青稞全粉凝胶硬度的影响结果一致,表明破损淀粉含量越高,青稞全粉凝胶硬度越低。在凝胶化过程中,沙米全粉由于膨胀程度低于荞麦全粉,水分子与淀粉分子以及淀粉分子之间的相互作用较弱,导致沙米凝胶硬度较低[52]

    表  7  籽粒含水量对全粉凝胶质构特性的影响
    Table  7.  Effect of grain water content on texture properties of whole flour gel
    籽粒含水量(%)荞麦凝胶硬度(N)沙米凝胶硬度(N)
    30.635±0.025c0.080±0.026b
    100.859±0.025b0.084±0.027ab
    170.957±0.038a0.100±0.013ab
    240.623±0.123cd0.112±0.014ab
    310.551±0.045d0.139±0.052a
    下载: 导出CSV 
    | 显示表格

    储能模量和损耗模量分别是表征样品弹性和黏性的量度。籽粒含水量对所得荞麦全粉和沙米全粉面团流变特性的影响如图2所示。从图中可知,随着角频率的增大,荞麦全粉和沙米全粉面团的储能模量和损耗模量均呈现增大趋势;随着籽粒含水量的增大,荞麦全粉的储能模量和损耗模量均随之减小,而沙米全粉的储能模量和损耗模量均随之增大;与荞麦相比,沙米面团的黏弹性较大。

    图  2  籽粒含水量对全粉流变特性的影响
    注:A:荞麦全粉;B:沙米全粉。
    Figure  2.  Effect of grain water content on rheological properties of whole flour

    储能模量代表了面团在变形过程中所储存的能量,表达了面团变形后的恢复能力。损耗模量表明面团在变形过程中由于抵抗弹性而损失的能量[53]。在同一频率下,储能模量总是大于损耗模量,说明荞麦全粉和沙米全粉面团体系均属于弹性高于黏性的黏弹体,表现为典型的弱凝胶体系[28]。沙米面团黏弹性增大是因为随着籽粒含水量的增大,所得沙米全粉粒径变大、破损淀粉含量减少,使得沙米面团获得了更大的黏弹性。王崇崇[54]报道指出颗粒较大的小麦淀粉受破坏程度小,在受到力的作用时,不易发生形变,故淀粉的黏弹性较大。荞麦面团黏弹性随籽粒含水量的变化趋势与其粒径的变化趋势相反,这与程佳钰等[55]的报道结果一致,表明苦荞麦面团的黏弹性随粒径的减小而增大,这可能与破损淀粉的黏结作用以及纤维、淀粉等组分间相互结合作用的增强有关。

    不同籽粒含水量全粉样品的DSC曲线如图3所示。由图3可以看出,荞麦全粉和沙米全粉的吸收峰位置不同,说明荞麦全粉和沙米全粉的热稳定性不同。DSC热力学特征参数见表8,随着籽粒含水量增大,荞麦全粉和沙米全粉的起始温度以及荞麦全粉的终止温度均没有显著性(P>0.05)差异;荞麦全粉和沙米全粉的峰值温度和沙米全粉的终止温度随籽粒含水量的增大无规律性变化;随着籽粒含水量增大,荞麦全粉的热焓值无规律性变化,而沙米全粉的热焓值呈现降低趋势;沙米全粉的峰值温度、焓变比荞麦全粉的高,糊化区间比荞麦全粉的窄。

    图  3  籽粒含水量对全粉DSC曲线的影响
    A:荞麦全粉;B:沙米全粉。
    Figure  3.  Effect of grain water content on DSC curve of whole flour
    表  8  籽粒含水量对全粉DSC曲线热力学关键参数的影响
    Table  8.  Effect of grain water content on key thermodynamic parameters of DSC curve of whole flour
    样品籽粒含水量(%)起始温度(℃)峰值温度(℃)终止温度(℃)焓变(J/g)
    荞麦全粉365.37±0.32a71.50±0.40ab77.43±1.39a8.60±0.24a
    1065.47±0.12a71.20±0.17bc77.40±0.40a6.65±0.25b
    1765.40±0.43a71.60±0.14a77.70±0.62a7.55±0.16ab
    2465.10±0.42a71.40±0.14abc78.25±0.64a7.65±0.00ab
    3164.83±0.45a71.10±0.13c77.27±0.90a8.25±0.05a
    沙米全粉372.50±0.29a78.45±0.26a84.53±0.21a11.40±0.09a
    1072.15±0.07a78.10±0.14ab84.20±0.28ab10.35±0.01b
    1771.8±0.65a77.75±0.41b83.58±0.45c10.00±0.14b
    2472.1±0.28a78.15±0.07ab84.45±0.21a8.95±0.03c
    3171.63±0.60a77.73±0.25b83.63±0.21bc8.50±0.11c
    下载: 导出CSV 
    | 显示表格

    面粉的热特性跟其中淀粉的颗粒形态、大小、直链淀粉和支链淀粉比例以及支链淀粉的链长等有关[56]。Han等[57]研究表明沙米淀粉的热焓值较玉米淀粉和藜麦淀粉的高,这主要归因于沙米淀粉分子分子量较高和支链淀粉分支结构比例较大。张杰[58]表明黑米淀粉热焓值越高,其热稳定性越好。因此,低含水量籽粒所得沙米全粉具有更好的稳定性。

    荞麦中蛋白质、粗脂肪和粗纤维含量均显著(P<0.05)低于沙米,而淀粉含量显著(P<0.05)高于沙米。相同的制粉工艺下,籽粒含水量对荞麦和沙米全粉性能的影响显著(P<0.05)不同。随着籽粒含水量从3%增大到31%,沙米全粉的破损淀粉含量显著(P<0.05)降低,粒径显著(P<0.05)增大;籽粒含水量对荞麦和沙米全粉吸水量的影响趋势截然相反,而对吸油量和膨胀度的影响趋势相同;荞麦全粉的溶解度、糊化黏度特征值以及凝胶硬度均高于沙米全粉,而黏弹性和热焓值低于沙米全粉。因此,本研究通过调整籽粒含水量来改善沙米全粉的持水力、糊化特性、热特性和面团流变学行为等的加工性能参数,对沙米作为面制品新资源的开发利用具有重要的理论指导价值。但是关于全粉微观形态、全粉中淀粉颗粒多层级结构,以及全粉凝胶化过程中淀粉和蛋白质等大分子物理交联行为等随着籽粒含水量的变化规律及其内在机制的研究还需要深入探究。

  • 图  1   籽粒含水量对全粉破损淀粉含量的影响

    注:误差线上不同字母表示差异显著(P<0.05)。

    Figure  1.   Effect of grain water content on damaged starch content of whole flour

    图  2   籽粒含水量对全粉流变特性的影响

    注:A:荞麦全粉;B:沙米全粉。

    Figure  2.   Effect of grain water content on rheological properties of whole flour

    图  3   籽粒含水量对全粉DSC曲线的影响

    A:荞麦全粉;B:沙米全粉。

    Figure  3.   Effect of grain water content on DSC curve of whole flour

    表  1   荞麦和沙米原料的基本成分

    Table  1   Composition of buckwheat and A. squarrosum seeds

    样品淀粉(%)蛋白质(%)粗脂肪(%)粗纤维(%)灰分(%)水分(%)
    荞麦全粉69.58±0.37a10.78±0.28b2.65±0.08b1.55±0.06b1.80±0.04b13.62±0.04a
    沙米全粉64.32±0.05b13.12±0.08a9.34±0.05a2.44±0.01a2.78±0.03a8.00±0.06b
    注:同列不同字母表示差异显著(P<0.05);表3表4表7同。
    下载: 导出CSV

    表  2   籽粒含水量对全粉粒径的影响

    Table  2   Effect of grain water content on grain size of whole flour

    样品籽粒含水量(%)D10(µm)D50(µm)D90(µm)
    荞麦全粉34.76±0.17b44.96±1.69b145.83±13.00b
    105.16±0.10ab53.65±2.43a173.40±8.34a
    175.48±0.30a59.01±6.55a190.73±7.47a
    245.37±0.26a53.36±3.08a174.80±4.45a
    315.30±0.23a55.27±5.30a186.07±11.91a
    沙米全粉
    31.08±0.02c14.78±1.18d102.46±4.46b
    101.09±0.02c15.36±0.82d118.43±5.67a
    171.11±0.00c17.81±0.33c118.97±3.36a
    241.15±0.01b22.61±1.36b122.93±6.87a
    311.24±0.03a30.50±0.32a117.93±11.84a
    注:同列不同字母表示同一样品不同含水量间差异显著(P<0.05);表5表6表8同。
    下载: 导出CSV

    表  3   籽粒含水量对全粉吸水量和吸油量的影响

    Table  3   Effect of grain water content on water-holding capacity and oil-holding capacity of whole flour

    籽粒含水量(%)荞麦全粉吸水量(g/g)荞麦全粉吸油量(g/g)沙米全粉吸水量(g/g)沙米全粉吸油量(g/g)
    32.27±0.00a1.80±0.02e1.84±0.01d1.89±0.02d
    102.21±0.02b1.83±0.01d1.88±0.01d2.02±0.04c
    172.07±0.01c1.85±0.01c2.03±0.03c2.20±0.03b
    242.01±0.01d1.87±0.01b2.09±0.02b2.34±0.87a
    311.96±0.01e1.99±0.01a2.18±0.03a2.33±0.06a
    下载: 导出CSV

    表  4   籽粒含水量对全粉沉积物体积分数的影响

    Table  4   Effect of grain water content on sediment volume fraction of whole flour

    籽粒含水量(%)荞麦全粉沉积物体积分数(%)沙米全粉沉积物体积分数(%)
    38.10±0.01b6.57±0.01b
    1010.40±0.00a6.97±0.00b
    1711.10±0.00a9.50±0.03ab
    2410.37±0.00a10.27±0.02ab
    3110.27±0.01a11.40±0.03a
    下载: 导出CSV

    表  5   籽粒含水量对全粉膨胀度和溶解度的影响

    Table  5   Effect of grain water content on expansion degree and solubility of whole flour

    样品籽粒含水量(%)50 ℃60 ℃70 ℃80 ℃90 ℃
    膨胀度(g/g)
    荞麦全粉33.32±0.06d4.46±0.06e6.98±0.05d8.26±0.06c9.71±0.12bc
    103.65±0.07c4.57±0.06d7.68±0.07c8.56±0.03a9.88±0.17ab
    174.02±0.05b4.83±0.04c7.89±0.02b8.37±0.01b9.50±0.01cd
    244.03±0.01b4.95±0.08b7.93±0.01b8.50±0.00a9.40±0.15d
    314.20±0.04a5.15±0.02a8.50±0.06a8.42±0.06b9.98±0.10a
    沙米全粉33.93±0.01d4.22±0.05e6.21±0.04d7.88±0.03e8.90±0.05b
    104.02±0.05d4.43±0.01d6.28±0.03d8.17±0.12d8.97±0.03b
    174.32±0.04c4.65±0.09c8.07±0.06c8.41±0.01c8.69±0.12c
    244.49±0.02b6.23±0.04b8.39±0.09b8.88±0.06b8.60±0.03c
    315.07±0.11a6.34±0.02a9.40±0.02a10.03±0.08a10.33±0.13a
    溶解度(%)
    荞麦全粉312.73±0.00bc12.07±0.00d10.70±0.00d12.87±0.00d16.30±0.01a
    1012.03±0.09c12.13±0.00cd12.37±0.00c13.80±0.00c16.23±0.00ab
    1712.50±0.00c12.53±0.00c12.60±0.00c13.97±0.00c14.53±0.01c
    2413.47±0.00ab13.30±0.00b13.17±0.00b14.47±0.00b15.47±0.00b
    3114.20±0.00a13.73±0.00a13.80±0.00a15.87±0.00a16.70±0.00a
    沙米全粉37.97±0.00a7.27±0.01a8.70±0.00ab10.13±0.00a12.97±0.00a
    107.27±0.01b7.70±0.00a9.13±0.01a9.53±0.00ab12.30±0.00b
    177.00±0.00b6.50±0.00b8.03±0.00bc9.40±0.00b11.77±0.00b
    246.10±0.01c6.20±0.00b7.23±0.00c8.37±0.00c10.40±0.03c
    315.73±0.00c5.47±0.00c8.50±0.01ab6.90±0.01d9.47±0.00d
    下载: 导出CSV

    表  6   籽粒含水量对全粉糊化特性的影响

    Table  6   Effect of grain water content on pasting properties of whole flour

    样品籽粒含水量(%)峰值黏度(cp)谷值黏度(cp)崩解值(cp)终止黏度(cp)回生值(cp)峰值时间(min)糊化温度(℃)
    荞麦全粉32389.0±21.7b1853.3±14.0a535.7±29.7c4360.0±65.1d2506.7±53.7d6.5±0.1b73.7±0.5a
    102428.0±30.1b1820.0±50.3ab608.0±20.3b4312.0±32.2d2492.0±27.4d6.6±0.1b72.9±0.4ab
    172530.3±21.1a1765.3±40.0b765.0±24.3a4467.0±53.7c2701.7±25.1c6.9±0.1a72.8±0.5b
    242403.3±31.2b1650.3±21.0c745.7±9.1a4629.7±11.6b2981.7±9.7b5.8±0.1c72.7±0.1b
    312409.7±18.6b1629.0±57.8c780.7±50.6a4781±14.1a3152.0±49.3a5.8±0.1c72.8±0.5b
    沙米全粉31735.0±52.4a1440.7±74.1a294.3±23.5b3213.7±95.7a1773.0±30.4a5.3±0.2ab72.6±0.1b
    101581.0±25.2b1324.7±76.1ab256.3±99.0b2915.3±11.8a1590.7±187.2ab5.3±0.2ab72.6±0.1b
    171394.3±43.7c1292.3±66.7bc102.0±51.4c2516.0±90.9b1223.7±54.3bc5.1±0.1b72.6±0.0b
    241287.0±34.7d1187.7±74.4c99.3±42.1c2105.0±14.0c917.3±81.1c6.1±0.9a74.0±0.5a
    311448.3±18.8c1014.3±56.8d434.0±72.6a2115.0±425.3c1100.7±473.7c4.9±0.2b74.5±0.5a
    下载: 导出CSV

    表  7   籽粒含水量对全粉凝胶质构特性的影响

    Table  7   Effect of grain water content on texture properties of whole flour gel

    籽粒含水量(%)荞麦凝胶硬度(N)沙米凝胶硬度(N)
    30.635±0.025c0.080±0.026b
    100.859±0.025b0.084±0.027ab
    170.957±0.038a0.100±0.013ab
    240.623±0.123cd0.112±0.014ab
    310.551±0.045d0.139±0.052a
    下载: 导出CSV

    表  8   籽粒含水量对全粉DSC曲线热力学关键参数的影响

    Table  8   Effect of grain water content on key thermodynamic parameters of DSC curve of whole flour

    样品籽粒含水量(%)起始温度(℃)峰值温度(℃)终止温度(℃)焓变(J/g)
    荞麦全粉365.37±0.32a71.50±0.40ab77.43±1.39a8.60±0.24a
    1065.47±0.12a71.20±0.17bc77.40±0.40a6.65±0.25b
    1765.40±0.43a71.60±0.14a77.70±0.62a7.55±0.16ab
    2465.10±0.42a71.40±0.14abc78.25±0.64a7.65±0.00ab
    3164.83±0.45a71.10±0.13c77.27±0.90a8.25±0.05a
    沙米全粉372.50±0.29a78.45±0.26a84.53±0.21a11.40±0.09a
    1072.15±0.07a78.10±0.14ab84.20±0.28ab10.35±0.01b
    1771.8±0.65a77.75±0.41b83.58±0.45c10.00±0.14b
    2472.1±0.28a78.15±0.07ab84.45±0.21a8.95±0.03c
    3171.63±0.60a77.73±0.25b83.63±0.21bc8.50±0.11c
    下载: 导出CSV
  • [1]

    VALENTINA T, ANTONELLA D F, CHIARA N, et al. Exploitation of tartary buckwheat as sustainable ingredient for healthy foods production[J]. Agriculture and Agricultural Science Procedia,2016,8:455−460. doi: 10.1016/j.aaspro.2016.02.043

    [2] 宋英杰, 龙春林. 荞麦的传统知识和文化[J]. 科学,2019(2):9−12. [SONG Y J, LONG C L. Traditional knowledge and culture of buckwheat[J]. Science,2019(2):9−12.

    SONG Y J, LONG C L. Traditional knowledge and culture of buckwheat[J]. Science, 2019(2): 9-12.

    [3] 杨积鹏, 刘建福. 假谷物的营养及加工应用研究进展[J]. 食品与发酵工业,2022,48(10):284−289, 298. [YANG J P, LIU J F. Research progress of pseudocereal nutrition and processing application[J]. Food and Fermentation Industries,2022,48(10):284−289, 298. doi: 10.13995/j.cnki.11-1802/ts.028644

    YANG J P, LIU J F. Research progress of pseudocereal nutrition and processing application[J]. Food and Fermentation Industries, 2022, 48(10): 284-289, 298. DOI: 10.13995/j.cnki.11-1802/ts.028644.

    [4]

    ALVAREZ-JUBETE L, WIJNGAARD H, ARENDT E K, et al. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking[J]. Food Chemistry,2010,119(2):770−778. doi: 10.1016/j.foodchem.2009.07.032

    [5]

    PERRI G, CALABRESE F M, RIZZELLO C G, et al. Sprouting process affects the lactic acid bacteria and yeasts of cereal, pseudocereal and legume flours[J]. LWT-Food Science and Technology,2020,126:109314. doi: 10.1016/j.lwt.2020.109314

    [6] 马国君, 曾凡玉. 观念与灾变: 我国北方沙地粮食作物兴衰历史的启示—以沙米为中心[J]. 原生态民族文化刊,2017,9(2):3−13. [MA G J, ZENG F Y. Concept and catastrophe: Enlightenment of the rise and fall of grain crops in sandy land of north China: Centered on Agriophyllum squarrosum[J]. Journal of Original Ecological National Culture,2017,9(2):3−13.

    MA G J, ZENG F Y. Concept and catastrophe: Enlightenment of the rise and fall of grain crops in sandy land of north china: centered on Agriophyllum squarrosum[J]. Journal of Original Ecological National Culture, 2017, 9(2): 3-13.

    [7] 张德魁, 马全林, 魏林源, 等. 沙米的主要营养成分及应用价值研究进展[J]. 现代农业科技,2019(16):185−186,188. [ZHANG D K, MA Q L, WEI L Y. Main nutritional components and application value of Agriophyllum squarrosum[J]. Modern Agricultural Science and Technology,2019(16):185−186,188. doi: 10.3969/j.issn.1007-5739.2019.16.115

    ZHANG D K, MA Q L, WEI L Y. Main nutritional components and application value of Agriophyllum squarrosum[J]. Modern Agricultural Science and Technology, 2019(16): 185-186, 188. doi: 10.3969/j.issn.1007-5739.2019.16.115

    [8]

    HAN L H, WEI Q, CAO S P, et al. The assisting effects of ultrasound on the multiscale characteristics of heat-moisture treated starch from Agriophyllum squarrosum seeds[J]. International Journal of Biological Macromolecules,2021,187:471−480. doi: 10.1016/j.ijbiomac.2021.07.123

    [9] 李文婷, 彭菁, 孙旭阳, 等. 双螺杆挤压对沙米复合粉理化及糊化特性的影响[J]. 中国粮油学报,2019,34(4):112−117,125. [LI W T, PENG J, SUN X Y, et al. Effects of twin-screw extrusion on physicochemical and pasting properties of sand rice composite powder[J]. Journal of the Chinese Cereals and Oils Association,2019,34(4):112−117,125. doi: 10.3969/j.issn.1003-0174.2019.04.020

    LI W T, PENG J, SUN X Y, et al. Effects of twin-screw extrusion on physicochemical and pasting properties of sand rice composite powder[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(4): 112-117, 125. doi: 10.3969/j.issn.1003-0174.2019.04.020

    [10] 尹成亮, 赵杰才, 胡进玲, 等. 环境异质性对潜在粮食作物沙米表型变异的影响[J]. 中国科学: 生命科学,2016,46(11):1324−1335. [YIN C L, ZHAO J C, HU J L, et al. Phenotypic variation of a potential food crop, Agriophyllum squarrosum, impacted by environmental heterogeneity[J]. Scientia Sinica Vitae,2016,46(11):1324−1335. doi: 10.1360/N052015-00294

    YIN C L, ZHAO J C, HU J L, et al. Phenotypic variation of a potential food crop, Agriophyllum squarrosum, impacted by environmental heterogeneity[J]. Scientia Sinica Vitae, 2016, 46(11): 1324-1335. doi: 10.1360/N052015-00294

    [11] 赵杰才, 赵鹏善, 赵昕, 等. 沙米(Agriophyllum squarrosum)生物学特性、营养价值及驯化可行性[J]. 中国沙漠,2016,36(3):636−643. [ZHAO J C, ZHAO P S, ZHAO X, et al. Biological characters, nutrient value and domestication feasibility of Agriophyllum squarrosum[J]. Journal of Desert Research,2016,36(3):636−643. doi: 10.7522/j.issn.1000-694X.2016.00025

    ZHAO J C, ZHAO P S, ZHAO X, et al. Biological characters, nutrient value and domestication feasibility of Agriophyllum squarrosum[J]. Journal of Desert Research, 2016, 36(3): 636-643. doi: 10.7522/j.issn.1000-694X.2016.00025

    [12] 彭菁, 章梦琦, 邢梦珂, 等. 沙米麸皮和外胚乳分离蛋白的理化及功能性质[J]. 食品科学,2017,38(13):71−76. [PENG J, ZHANG M K, XING M K, et al. Physiochemical and functional properties of protein isolates prepared from bran and perisperm of sand rice seeds (Agriophyllum squarrosum)[J]. Food Science,2017,38(13):71−76. doi: 10.7506/spkx1002-6630-201713012

    PENG J, ZHANG M K, XING M K, et al. Physiochemical and functional properties of protein isolates prepared from bran and perisperm of sand rice seeds (Agriophyllum squarrosum)[J]. Food Science, 2017, 38(13): 71-76. doi: 10.7506/spkx1002-6630-201713012

    [13]

    SUN X, LI W, HU Y, et al. Comparison of pregelatinization methods on physicochemical, functional and structural properties of tartary buckwheat flour and noodle quality[J]. Journal of Cereal Science,2018,80:63−71. doi: 10.1016/j.jcs.2018.01.016

    [14]

    BINEY K, BETA T. Phenolic profile and carbohydrate digestibility of durum spaghetti enriched with buckwheat flour and bran[J]. LWT-Food Science and Technology,2014,57(2):569−579. doi: 10.1016/j.lwt.2014.02.033

    [15]

    HWABIN J, YOUN J L, WON B Y. Effect of moisture content on the grinding process and powder properties in food: A Review[J]. Processes,2018,6(6):69−85. doi: 10.3390/pr6060069

    [16]

    ALESSIO C, LORENZO G, ALESSANDRO P, et al. Effects of wheat tempering and stone rotational speed on particle size, dough rheology and bread characteristics for a stone-milled weak flour[J]. Journal of Cereal Science,2020,91(C):102879−102879.

    [17]

    WEI C, YOSHIO N, SHOJI K. Physicochemical, mechanical and thermal properties of brown rice grain with various moisture contents[J]. International Journal of Food Science & Technology,2004,39(9):899−906.

    [18]

    CHIANG P Y, YEH A I. Effect of soaking on wet-milling of rice[J]. Journal of Cereal Science,2002,35(1):85−94. doi: 10.1006/jcrs.2001.0419

    [19]

    MITRA H, PUSHPADASS H A, FRANKLIN M E E, et al. Influence of moisture content on the flow properties of basundi mix[J]. Powder Technology,2017,312:133−143. doi: 10.1016/j.powtec.2017.02.039

    [20]

    MORISHITA T, ISHIGURO K, NODA T, et al. The effect of grain moisture contents on the roll milling characteristics of Tartary buckwheat cultivar ‘Manten-Kirari’[J]. Plant Production Science,2020,23(4):539−546. doi: 10.1080/1343943X.2020.1747358

    [21] 宋永泉, 赵莹, 王瑞杰, 等. 小麦粉破损淀粉含量的比较分析[J]. 粮食与食品工业,2019,26(2):11−13. [SONG Y Q, ZHAO Y, WANG R J, et al. Comparision and analysis of damaged starch content of wheat flour[J]. Cereal and Food Industry,2019,26(2):11−13. doi: 10.3969/j.issn.1672-5026.2019.02.003

    SONG Y Q, ZHAO Y, WANG R J, et al. Comparision and analysis of damaged starch content of wheat flour[J]. Cereal and Food Industry, 2019, 26(2): 11-13. doi: 10.3969/j.issn.1672-5026.2019.02.003

    [22]

    TIAN Y L, YING M, SHI F Y, et al. The effect of ball milling treatment on structure and porosity of maize starch granule[J]. Innovative Food Science & Emerging Technologies,2011,12(4):586−593.

    [23]

    KOCHER P N, FOEGEDING E A. Microcentrifuge-based method for measuring water-holding of protein gels[J]. Journal of Food Science,1993,58(5):1040−1046. doi: 10.1111/j.1365-2621.1993.tb06107.x

    [24]

    HEMAR Y, LEBRETON S, XU M, et al. Small-deformation rheology investigation of rehydrated cell wall particles-xanthan mixtures[J]. Food Hydrocolloids,2010,25(4):668−676.

    [25]

    ANDRADE-MAHECHA M M, TAPIA-BLÁCIDO D R, MENEGALLI F C. Physical-chemical, thermal, and functional properties of achira (Canna indica L.) flour and starch from different geographical origin[J]. Starch-Stärke,2012,64(5):348−358.

    [26] 闵照永, 汪雅馨, 师玉忠. 损伤淀粉对小麦粉物化特性以及面条品质的影响[J]. 粮食与饲料工业,2015(11):35−39. [MIN Z Y, WANG Y X, SHI Y Z. Effects of damage starch on the physicochemical properties of flour and noodle quality[J]. Cereal & Feed Industry,2015(11):35−39.

    MIN Z Y, WANG Y X, SHI Y Z. Effects of damage starch on the physicochemical properties of flour and noodle quality[J]. Cereal & Feed Industry, 2015(11): 35-39.

    [27] 董贝贝. 八种淀粉糊化和流变特性及其与凝胶特性的关系[D]. 西安: 陕西科技大学, 2017.

    DONG B B. Pasting, rheological properties and the relationship with gel properties of eight kinds of starch[D]. Xi’an: Shaanxi University of Science & Technology, 2017.

    [28] 龙明秀, 吴凤玉, 田竹希, 等. 魔芋胶对甘薯淀粉流变学特性及粉条品质的影响[J]. 现代食品科技,2018(12):26−33. [LONG M X, WU F Y, TIAN Z X, et al. Effect of konjac gum on rheological properties of sweet potato starch and qualities of starch noodles[J]. Modern Food Science and Technology,2018(12):26−33.

    LONG M X, WU F Y, TIAN Z X, et al. Effect of konjac gum on rheological properties of sweet potato starch and qualities of starch noodles[J]. Modern Food Science and Technology, 2018(12): 26-33.

    [29]

    ANGELIDIS G, PROTONOTARIOU S, MANDALA I, et al. Jet milling effect on wheat flour characteristics and starch hydrolysis[J]. Journal of Food Science and Technology-Mysore,2016,53(1):784−791. doi: 10.1007/s13197-015-1990-1

    [30]

    DENG L, MANTHEY F A. Laboratory-scale milling of whole-durum flour quality: Effect of mill configuration and seed conditioning[J]. Journal of the Science of Food and Agriculture,2016,97(10):3141−3150.

    [31] 高晓旭, 佟立涛, 钟葵, 等. 不同磨粉工艺对大米粉粉质特性的影响[J]. 现代食品科技,2015,31(1):194−199. [GAO X X, TONG L T, ZHONG K, et al. Effect of milling processes on quality of rice flour[J]. Modern Food Science and Technology,2015,31(1):194−199.

    GAO X X, TONG L T, ZHONG K, et al. Effect of milling processes on quality of rice flour[J]. Modern Food Science and Technology, 2015, 31(1): 194-199.

    [32] 周晚霞, 黎怡红, 陈炎, 等. 不同粒径小麦全粉的营养及加工特性比较[J]. 现代食品科技,2020,36(9):172−180. [ZHOU W X, LI Y H, CHEN Y, et al. Comparison of nutrition and processing characteristics of whole wheat flours with different particle sizes[J]. Modern Food Science and Technology,2020,36(9):172−180.

    ZHOU W X, LI Y H, CHEN Y, et al. Comparison of nutrition and processing characteristics of whole wheat flours with different particle sizes[J]. Modern Food Science and Technology, 2020, 36(9): 172-180.

    [33]

    JI H M, TOON W B. Effect of moisture content and particle size on grinding kinetics and flowability of balloon flower (Platycodon grandiflorum)[J]. Food Science and Biotechnology,2017,27(3):1−10.

    [34]

    HASSOON W H, DZIKI D, SZELG-SIKORA A. The effect of seed moisture and temperature on grinding characteristics of quinoa (Chenopodium quinoa Willd.)[J]. Bio Web of Conferences,2018,10:01006. doi: 10.1051/bioconf/20181001006

    [35]

    CORREIA P R, LEITAO A E, BEIRAO-DA-COSTA M L. Effect of drying temperatures on chemical and morphological properties of acorn flours[J]. International Journal of Food Science & Technology,2010,44(9):1729−1736.

    [36]

    BOURRÉ L, FROHLICH P, YOUNG G, et al. Influence of particle size on flour and baking properties of yellow pea, navy bean and red lentil flours[J]. Cereal Chemistry,2019,96(4):655−667. doi: 10.1002/cche.10161

    [37]

    AHMED J, AL-ATTAR H, ARFAT Y A. Effect of particle size on compositional, functional, pasting and rheological properties of commercial water chestnut flour[J]. Food Hydrocolloids,2016,52:888−895. doi: 10.1016/j.foodhyd.2015.08.028

    [38]

    AHMED J, AL-FOUDARI M, AL-SALMAN F, et al. Effect of particle size and temperature on rheological, thermal, and structural properties of pumpkin flour dispersion[J]. Journal of Food Engineering,2014,124:43−53. doi: 10.1016/j.jfoodeng.2013.09.030

    [39]

    AHMED J, THOMAS L, ARFAT Y A. Functional, rheological, microstructural and antioxidant properties of quinoa flour in dispersions as influenced by particle size[J]. Food Research International,2019,116:302−311. doi: 10.1016/j.foodres.2018.08.039

    [40] 李云, 方加军, 熊河生, 等. 不同品种芋头全粉理化特性研究[J]. 粮食与油脂,2020,33(4):58−61. [LI Y, FANG J J, XIONG H S, et al. Study on physicochemical properties of different types of taro whole powder[J]. Cereals and Oils,2020,33(4):58−61. doi: 10.3969/j.issn.1008-9578.2020.04.016

    LI Y, FANG J J, XIONG H S, et al. Study on physicochemical properties of different types of taro whole powder[J]. Cereals and Oils, 2020, 33(4): 58-61. doi: 10.3969/j.issn.1008-9578.2020.04.016

    [41] 王丽, 句荣辉, 贾红亮, 等. 淀粉的功能特性与加工品质间关系的研究进展[J]. 食品工业,2019,40(12):256−259. [WANG L, JU R H, JIA H L, et al. Research on the relationship between functional characteristics and processing quality of starch[J]. The Food Industry,2019,40(12):256−259.

    WANG L, JU R H, JIA H L, et al. Research on the relationship between functional characteristics and processing quality of starch[J]. The Food Industry, 2019, 40(12): 256-259.

    [42] 时东杰. 鹧鸪茶风味饮料研制及其抑制α-葡萄糖苷酶活性研究[D]. 哈尔滨: 黑龙江东方学院, 2020.

    SHI D J. Development of Mallotus oblongifolius flavored beverage and its inhibition of α-glucosidase activity[D]. Harbin: East University of Heilongjiang, 2020.

    [43]

    PROTONOTARIOU S, DRAKOS A, EVAGELIOU V, et al. Sieving fractionation and jet mill micronization affect the functional properties of wheat flour[J]. Journal of Food Engineering,2014,134:24−29. doi: 10.1016/j.jfoodeng.2014.02.008

    [44]

    ZHANG M, ZHANG C, SHRESTHA S. Study on the preparation technology of superfine ground powder of Agrocybe chaxingu Huang[J]. Journal of Food Engineering,2005,67(3):333−337. doi: 10.1016/j.jfoodeng.2004.04.036

    [45] 陈舒唱, 沈阿倩, 冯作山, 等. 高筋粉添加量对复配粉的糊化特性及面团流变学特性的影响[J]. 现代食品科技,2019,35(8):130−135. [CHEN S C, SHEN A Q, FENG Z S, et al. Effect of high gluten powder content on gelatinization and rheological properties[J]. Modern Food Science and Technology,2019,35(8):130−135.

    CHEN S C, SHEN A Q, FENG Z S, et al. Effect of high gluten powder content on gelatinization and rheological properties[J]. Modern Food Science and Technology, 2019, 35(8): 130-135.

    [46] 姚慧慧, 王燕, 吴卫国, 等. 酸改性麦麸粉对面粉粉质特性及面团质构特性的影响[J]. 食品科学,2019,40(2):59−64. [YAO H H, WANG Y, WU W G, et al. Effect of acid-modified wheat bran powder on farinographic properties and texture properties of wheat flour dough[J]. Food Science,2019,40(2):59−64. doi: 10.7506/spkx1002-6630-20171114-163

    YAO H H, WANG Y, WU W G, et al. Effect of acid-modified wheat bran powder on farinographic properties and texture properties of wheat flour dough[J]. Food Science, 2019, 40(2): 59-64. doi: 10.7506/spkx1002-6630-20171114-163

    [47] 谭彩霞, 封超年, 郭文善, 等. 不同品种小麦粉黏度特性及破损淀粉含量的差异[J]. 中国粮油学报,2011,26(6):4−7,12. [TAN C X, FENG C N, GUO W S, et al. Difference of starch viscosity characteristic and damaged starch content among different wheat cultivars[J]. Journal of the Chinese Cereals and Oils Association,2011,26(6):4−7,12.

    TAN C X, FENG C N, GUO W S, et al. Difference of starch viscosity characteristic and damaged starch content among different wheat cultivars[J]. Journal of the Chinese Cereals and Oils Association, 2011, 26(06): 4-7, 12.

    [48]

    SHAO Y F, BAO J S. Polyphenols in whole rice grain: Genetic diversity and health benefits[J]. Food Chemistry,2015,180(1):86−97.

    [49]

    ZHANG C, ZHU L, SHAO K, et al. Toward underlying reasons for rice starches having low viscosity and high amylose: Physiochemical and structural characteristics[J]. Journal of the Science of Food and Agriculture,2013,93(7):1543−1551. doi: 10.1002/jsfa.5987

    [50]

    CHANG L, WANG S, CHANG X, et al. Structural and functional properties of starches from Chinese chestnuts[J]. Food Hydrocolloids,2015,43:568−576. doi: 10.1016/j.foodhyd.2014.07.014

    [51] 吴迪, 葛飞, 马红, 等. 不同磨粉方式对青稞全粉理化特性的影响[J]. 中国粮油学报,2022,37(3):59−67. [WU D, GE F, MA H, et al. Effects of different milling methods on physicochemical properties of highland barley whole flour[J]. Journal of the Chinese Cereals and Oils Association,2022,37(3):59−67. doi: 10.3969/j.issn.1003-0174.2022.03.010

    WU D, GE F, MA H, et al. Effects of different milling methods on physicochemical properties of highland barley whole flour[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(3): 59-67. doi: 10.3969/j.issn.1003-0174.2022.03.010

    [52]

    VITTADINI E, CARINI E, CHIAVARO E, et al. High pressure induced tapioca starch gels: Physico-chemical characterization and stability[J]. European Food Research and Technology,2008,226(4):889−896. doi: 10.1007/s00217-007-0611-2

    [53] 黄峻榕, 董贝贝, 刘树兴, 等. 3种薯类淀粉的流变与凝胶特性研究[J]. 粮食与油脂,2017,30(4):25−29. [HUANG J R, DONG B B, LIU S X, et al. Study of rheological and gel properties of three tuber starches[J]. Cereals and Oils,2017,30(4):25−29. doi: 10.3969/j.issn.1008-9578.2017.04.008

    HUANG J R, DONG B B, LIU S X, et al. Study of rheological and gel properties of three tuber starches[J]. Cereals and Oils, 2017, 30(4): 25-29. doi: 10.3969/j.issn.1008-9578.2017.04.008

    [54] 王崇崇. 粒度对小麦粉及面条品质特性的影响机理研究[D]. 郑州: 河南工业大学, 2018.

    WANG C C. The effect of particle size on the quality characteristics of wheat flour and noodles[D]. Zhengzhou: Henan University of Technology, 2018.

    [55] 程佳钰, 高利, 汤晓智. 超微粉碎对苦荞面条品质特性的影响[J]. 食品科学,2021,42(15):99−105. [CHENG J Y, GAO L, TANG X Z. Effect of ultrafine grinding on the quality of tartary buckwheat noodles[J]. Food Science,2021,42(15):99−105. doi: 10.7506/spkx1002-6630-20200924-293

    CHENG J Y, GAO L, TANG X Z. Effect of ultrafine grinding on the quality of tartary buckwheat noodles[J]. Food Science, 2021, 42(15): 99-105. doi: 10.7506/spkx1002-6630-20200924-293

    [56]

    SASAKI T, YASUI T, MATSUKI J. Effect of amylose content on gelatinization, retrogradation, and pasting properties of starches from waxy and nonwaxy wheat and their F1 seeds[J]. Cereal Chemistry,2000,77(1):58−63. doi: 10.1094/CCHEM.2000.77.1.58

    [57]

    HAN L H, QIU S, CAO S P, et al. Molecular characteristics and physicochemical properties of very small granule starch isolated from Agriophyllum squarrosum seeds[J]. Carbohydrate Polymers,2021,273(2):118583.

    [58] 张杰. 黑米淀粉的理化性质及湿热处理研究[D]. 南宁: 广西大学, 2019.

    ZHANG J. Physicochemical properties and heat-moisture treatment of black rice starch[D]. Nanning: Guangxi University, 2019.

图(3)  /  表(8)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  48
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-17
  • 网络出版日期:  2022-06-29
  • 刊出日期:  2022-08-31

目录

/

返回文章
返回