• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

基于GC-IMS和SPME-GC-MS分析柠檬汁对太平洋牡蛎(Crassostrea gigas)酶解液风味的改善作用

南富心, 赵那娜, 马昱阳, 刘荔, 杨心怡, 曾名湧

南富心,赵那娜,马昱阳,等. 基于GC-IMS和SPME-GC-MS分析柠檬汁对太平洋牡蛎(Crassostrea gigas)酶解液风味的改善作用[J]. 食品工业科技,2022,43(17):43−54. doi: 10.13386/j.issn1002-0306.2021110196.
引用本文: 南富心,赵那娜,马昱阳,等. 基于GC-IMS和SPME-GC-MS分析柠檬汁对太平洋牡蛎(Crassostrea gigas)酶解液风味的改善作用[J]. 食品工业科技,2022,43(17):43−54. doi: 10.13386/j.issn1002-0306.2021110196.
NAN Fuxin, ZHAO Nana, MA Yuyang, et al. Using GC-IMS and SPME-GC-MS to Analysis the Flavor Improvement of Oyster (Crassostrea gigas) Hydrolysates Treated with Lemon Juice[J]. Science and Technology of Food Industry, 2022, 43(17): 43−54. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110196.
Citation: NAN Fuxin, ZHAO Nana, MA Yuyang, et al. Using GC-IMS and SPME-GC-MS to Analysis the Flavor Improvement of Oyster (Crassostrea gigas) Hydrolysates Treated with Lemon Juice[J]. Science and Technology of Food Industry, 2022, 43(17): 43−54. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110196.

基于GC-IMS和SPME-GC-MS分析柠檬汁对太平洋牡蛎(Crassostrea gigas)酶解液风味的改善作用

详细信息
    作者简介:

    南富心(1993−),女,硕士,研究方向:水产品高值化利用,E-mail:21160711028@stu.ouc.edu.cn

    通讯作者:

    曾名湧(1965−),男,博士,教授,研究方向:水产品高值化利用,E-mail:mingyz@ouc.edu.cn

  • 中图分类号: TS254.4

Using GC-IMS and SPME-GC-MS to Analysis the Flavor Improvement of Oyster (Crassostrea gigas) Hydrolysates Treated with Lemon Juice

  • 摘要: 目的:探究柠檬汁对牡蛎脂质氧化的抑制作用与改善牡蛎酶解液风味的效果,明确牡蛎酶解液风味改善前后的特征香气差异。方法:采用柠檬汁参与牡蛎水解过程对牡蛎(太平洋牡蛎)不良风味进行改善,利用感官评价、气相色谱-离子迁移谱(GC-IMS)与固相微萃取-气相色谱-质谱(SPME-GC-MS)等技术分析牡蛎酶解液风味改善前后的挥发性化合物,并结合感觉阈值和相对气味活度值(ROVA)对其进行特征性香气分析。结果:GC-IMS技术对牡蛎匀浆液、牡蛎酶解液及柠檬汁脱腥后的牡蛎酶解液中共鉴定出40种挥发性化合物,其中,经柠檬汁脱腥后牡蛎酶解液中新生成了7种具有花香、果香等愉快风味特点的挥发性化合物,它们是:蒎烯、苯甲醇、氧化芳樟醇、十二醛、2-庚酮、2-甲氧基苯酚、乙酸丁酯;减少了6种具有鱼腥味等不愉快特征风味的挥发性化合物含量,分别为(E,E)-2,4-辛二烯醛、庚醛、壬醛、(E)-2-辛烯醛、辛醛、1-辛烯-3醇。SPME-GC-MS技术及ROAV法鉴定分析结果显示,经柠檬汁脱腥处理后烯烃类物质的相对含量由8.37%上升为42.84%,主要增加了月桂烯、D-柠檬烯等柠檬汁的特征挥发性风味成分,1-辛烯-3醇不再作为关键风味成分,具有鱼腥味特点的庚醛和(E)-2-辛烯醛的ROAV值下降,整体不良风味减弱。结论:柠檬汁参与牡蛎水解过程可有效减少牡蛎酶解液的腥味及异味,该方法高效、便捷、安全,可为扩大牡蛎酶解液的应用及推动产业脱腥技术的发展提供有益参考。
    Abstract: Objects: The aim of this study was to find out the effect of lemon juice on the inhibition of lipid oxidation in oyster and flavor improvement of oyster hydrolysates. Furthermore, the difference of characteristic aromatic compounds in oyster hydrolysate before and after flavor improvement was clearly elucidated. Methods: The lemon juice was added to participate to the oyster (Crassostrea gigas) hydrolysis process to ameliorate the unpleasant odor of the hydrolysates. The volatile components in oyster hydrolysate before and after flavor improvement were analyzed by sensory evaluation, gas chromatography ion mobility spectrometry (GC-IMS), solid phase micro-extraction gas chromatograph mass spectrometer (SPME-GC-MS), and the characteristic aroma of oyster hydrolysate was analyzed by combining sensory threshold and ROAV (relative odor activity value) method. Results: The results showed that 40 kinds of volatile flavor compounds were identified in oyster samples with different treatment methods by GC-IMS. Seven new volatile flavor compounds with pleasent, fragrant, fruity characteristics were increased such as pinene, benzyl alcohol, linalool oxide, dodecanal, 2-methoxyphenol, 2-heptanone and butyl acetate. In contrast, six volatile flavor compounds with fishy and unpleasent characteristics were reduced such as (E,E)-2,4-octadienal, heptanal, nonanal, (E)-2-octenal, octanal and 1-octen-3-ol. The results of SPME-GC-MS analysis and ROAV showed that the amount of olefins were increased from 8.37% to 42.84%. The major volatile components of lemon such as D-limonene and β-Myrcene were detected in oyster protein hydrolysates with adding lemon juice. In addition, the results showed that, lemon juice had positive effect on oyster hydrolysates flavor, 1-octen-3-ol was not a key flavor compound (ROAV≥1) and the ROAV value of volatile flavor compounds with fishy and unpleasent smell such as heptanal and (E)-2-octenal were decreased, and the overall bad flavor weakened. Conclusion: Lemon juice participating in the hydrolysis process of oyster can effectively reduce the fishy and unpleasent smell of oyster hydrolysate. This method is efficient, convenient and safe. This study can provide valuable reference for expanding the application of oyster hydrolysate and promoting the development of industrial deodorization technology.
  • 牡蛎味道鲜美,营养丰富,是我国主要养殖经济贝类之一[1]。太平洋牡蛎(Crassostrea gigas),又称乳山牡蛎、长牡蛎,是黄渤海地区的代表性养殖品种,具有环境适应能力强、生长快、味道鲜美、营养丰富等特点[2]。长期以来,我国牡蛎的加工技术滞后于行业发展,精加工技术落后,通过生物酶解技术利用牡蛎高蛋白特性以获取具有不同功能活性的牡蛎生物活性肽成为研究热点。但是,由于酶解过程中牡蛎的脂质氧化和蛋白质降解,导致牡蛎酶解液的腥苦味加重,风味变差[3],已成为制约其加工利用的瓶颈问题。目前,已报道的水产品酶解液脱腥方法有包埋法[4]、吸附法[5-6]、发酵法[7]、联合脱腥法[8-9]等,但这些方法会导致营养物质的部分损失,或存在操作复杂、成本较高等缺点。

    柠檬(Citrus limon L.),芸香科柑橘属植物。富含多酚、柠檬精油、类黄酮、柠檬酸、维生素C和维生素E,具有很强的抗氧化能力[10]。此外,柠檬还具有令人愉快风味,常用于制作果汁及调味。目前,将柠檬用于水产品酶解液的风味改善研究较少,郑世杰等[11]采用冻干柠檬皮粉对木瓜蛋白酶水解后的四角蛤蜊水解液进行脱腥处理,利用柠檬皮的气味掩蔽四角蛤蜊酶解液中的部分不良风味。但用柠檬汁参与酶解过程对牡蛎酶解液进行异味改善尚未有人研究。

    为改善牡蛎酶解液的不良风味,探究柠檬汁是否在共酶解作用下对腥味物质具有脱除及掩盖、产生愉快风味的能力,本研究利用感官评价、气相色谱-离子迁移谱(GC-IMS)、固相微萃取-气相色谱-质谱(SPME-GC-MS)等技术对柠檬汁处理前后牡蛎酶解液的整体感官轮廓、风味物质指纹图谱、挥发性化合物进行分析,明确经脱腥处理前后牡蛎酶解液特征风味成分的差异,探讨柠檬汁对牡蛎酶解液风味的改善作用。该方法简便、快捷、安全,可为改善牡蛎酶解液风味及行业加工利用提供一定的实验依据和有益参考。

    新鲜带壳太平洋牡蛎(Crassostrea gigas)软体组织平均重(15.0±2.5)g 青岛团岛市场,购于1月;柠檬 青岛团岛市场,产地四川安岳;动物蛋白酶(由外切酶、内切酶、风味蛋白酶复合而成的中性蛋白酶,酶活105 U/g) 广西东恒华道酶制剂公司;本实验所用化学试剂均为分析纯 北京索莱宝科技有限公司。

    GL-21M高速冷冻离心机 湘仪离心机仪器有限公司;QP2010-SE气相色谱质谱联用仪 日本岛津公司;VT32-20顶空进样瓶 日本岛津公司;UV-2550紫外可见分光光度计 岛津仪器(苏州)有限公司;57329 U DVB/CAR/PDMS萃取头 西格玛奥德里奇(上海)贸易有限公司;Flavour Spec气相离子迁移谱联用仪 德国G.A.S仪器有限公司。

    牡蛎匀浆液的制备:新鲜太平洋牡蛎去壳,洗净。为改善牡蛎风味,降低牡蛎咸腥味,反复用4 ℃的冰水混合物浸泡清洗牡蛎进行脱盐处理[12],每次浸泡30 min,每隔15 min测定盐浓度直至参数不变。牡蛎蒸馏水洗净、沥干,打浆按牡蛎与蒸馏水质量之比为1:2添加蒸馏水。

    牡蛎酶解液的制备:按5000 U/g(粗蛋白)在牡蛎匀浆液中加入动物蛋白酶,pH维持自然条件(pH约为6.5~7.0),50 ℃条件下酶解4 h,经100 ℃灭酶处理10 min,冷却至室温后备用。

    柠檬汁处理牡蛎酶解液的制备:将柠檬洗净切开,挤压取汁,滤去果肉,迅速装入瓶中密封后冷藏保鲜备用。酶解前加入50%质量分数柠檬汁(w柠檬汁/w牡蛎净重),用饱和碳酸钾溶液调节pH至6.5,共同参与水解反应,酶解条件与未添加柠檬汁的牡蛎酶解液相同。

    参考Wu等[13]的方法。将0.2 mmol/L DPPH的95%乙醇溶液和柠檬汁或不同浓度的Trolox 1:1混合,室温下避光放置30 min,在517 nm处测定吸光度。DPPH自由基清除率计算如下式。用Trolox制作标准曲线,柠檬汁的自由基清除活性表示为mol/L Trolox。

     DPPH自由基清除率 (%)=(1A1A2A3)×100

    式中,A1为样品组(样品+DPPH溶液)的吸光度,A2为空白组(样品+95%乙醇)吸光度,A3为对照组(去离子水+DPPH溶液)的吸光度。

    采用邻苯二甲醛法[14]测定水解度。方法如下:7.62 g硼砂和200 mg十二烷基硫酸钠(SDS)溶解于150 mL去离子水中,160 mg邻苯二甲醛试剂(OPA)溶解于4 mL无水乙醇后全部加入到溶有硼砂和SDS的溶液中,再加入176 mg二硫苏糖醇(DTT),用去离子水定容到200 mL。用丝氨酸作标准品,绘制标准曲线。

    牡蛎肉匀浆处理液的制备方法为:2 mL牡蛎肉匀浆和4 mL盐酸(6 mol/L HCl)于120 ℃反应24~36 h。样品根据浓度进行适当稀释后备用。取3 mL OPA溶液于不同离心管中,分别加入400 μL蒸馏水、丝氨酸标准溶液、牡蛎肉匀浆处理液、待测样品(不同条件下制备得到的牡蛎酶解液),分别涡旋充分混合5 s后静置等待反应2 min,迅速在340 nm处测定吸光度。

    根据公式计算水解度:

    DH(%)=(A1A0)/(A2A0)×100

    式中,A1为牡蛎酶解液中游离氨基的含量,mg/mL;A0为空白;A2为牡蛎肉匀浆处理液(完全酸水解液)中游离氨基的含量,mg/mL。

    参考苏明月等[15]的方法,在5 g不同酶解时间下的牡蛎酶解液和经柠檬汁处理牡蛎酶解液中加入25 mL 7.5 g/100 mL的三氯乙酸(含0.1% EDTA),均质混匀,50 ℃振荡提取30 min,过滤。取滤液5 mL,加5 mL 0.02 mol/L硫代巴比妥酸 (TBA)溶液,90 ℃反应30 min,冷却至室温。用1,1,3,3-四乙氧基丙烷作为标准品,绘制标准曲线在532 nm波长处测定吸光度。

    将样品放于100 mL锥形瓶中,在密封条件下平衡30 min。选择12位经过系统感官评定课程学习和培训的感官评定员,年龄22~26岁,经嗅闻、讨论后确定使用与牡蛎风味相关的描述词,并分别对牡蛎及其酶解液进行评价。本实验采用国际标准ISO 6564-1985《感官分析方法学—风味剖面检验》中的独立方法对样品进行感官评价,选择贝肉香、青草味、水果香、蛤蜊味、鱼腥味作为描述词,将每种气味的分值设置为0~5分,分别代表(以贝肉香为例)0-无任何贝肉香、1-刚好可识别贝肉香、2-贝肉香弱、3-贝肉香中等、4-贝肉香强、5-贝肉香很强来表示其程度。

    量取8 mL样品置于20 mL顶空进样瓶中,进样体积500 μL,进样针温度60 ℃。采用极性柱(MXT-WAX 15 m×0.53 mm×1 μm),柱温50 ℃,IMS温度45 ℃,EI流速设置为150 mL/min,载气为氮气。使用Library Search(Version 1.0.8)工作站,比较RI和GC-IMS库分析定性每种化合物,利用LAV(Version 2.21版本,G.A.S公司出品)工作站完成实验数据识别、整理及绘图工作。

    固相微萃取条件:在20 mL的顶空专用进样瓶中装入8 mL待测样品,旋紧瓶盖后平稳放置在振荡器上,设置温度60 ℃、萃取时间30 min,结束后立即将萃取头插入QP 2010-SE的进样口,解析温度250 ℃,解析时间4 min。

    气相色谱条件:HP-INNO Wax色谱柱:30 m×0.25 mm×0.25 μm,载气为高纯氦气(99.999%),氦气流速为1.0 mL/min,不分流进样,进样口温度250 ℃。起始柱温40 ℃保持2 min,再以8 ℃/min速度升温至250 ℃保持10 min。

    质谱条件:溶剂切除时间1 min,离子阱温度150 ℃,传输线温度250 ℃,选用Scan采集方式并设置扫描范围为45~450 amu,扫描速率0.220 s/scan。EI电子能量70 eV。

    数据处理:采用岛津GC-MSsolution(Version 4.4.1)工作站的NIST17.L Libraries谱库自动检索各组分质谱数据,选取匹配度大于80%的鉴定结果。用峰面积归一化法确定物质的相对含量。

    某一种挥发性化合物对整体风味的贡献大小受其浓度和感觉阈值影响。感觉阈值越低,在同等浓度下该风味物质对整体风味影响越大[16]。经推导,三者关系的计算公式如下[17]

    ROAVCiCmax×TmaxTi×100

    其中Ci与Ti分别代表某一种风味物质的相对浓度和对应的感觉阈值,Cmax与Tmax分别代表对总体风味贡献最大的组分的相对浓度和对应的感觉阈值。各组分均满足以下关系:0<ROAV≤100,ROAV≥1的风味物质为关键风味成分,0.1≤ROAV<1的风味物质为重要修饰性风味成分。

    实验数据平行测定三次,由Excel和SPSS 22.0对数据进行统计分析,P<0.05表示差异显著,分析结果由平均值±标准差,利用Origin 2018对分析结果进行绘图。

    柠檬汁在常温条件下DPPH自由基清除率为94.08%±1.12%,自由基清除活性为(54.12±0.71)mol/L Trolox,该结果高于翟培等[18]测定的扁实柠檬汁的自由基清除率92.78%;柠檬汁在50 ℃条件密封加热下自由基清除率为92.58%±0.84%,自由基清除活性为(53.24±0.49)mol/L Trolox,在加热后柠檬汁的自由基清除率有所下降,但仍保持较高的自由基清除能力,这可能是由于多酚类[19]、类黄酮[20]及柠檬酸等抗氧化成分的含量不会因温度升高而降低,因此所制备的柠檬汁仍具有较强的抗氧化能力。

    牡蛎酶解液的水解度随着酶解时间的增加呈现先增大后减小的趋势(图1),并在4 h呈现峰值。酶解时间超过4 h时水解度呈下降趋势,可能原因在于随酶解时间增加,更多的游离氨基酸被释放出来,而其中的疏水性氨基酸会发生聚集,而后生成沉淀析出而致使水解度下降[21]。由图可知,经柠檬汁处理后的牡蛎酶解液与未处理的牡蛎酶解液相比水解度无明显差异。可能是由于经pH调整后的柠檬汁未对酶活产生影响,因此不改变牡蛎酶解液的水解度。

    图  1  不同处理牡蛎样品的水解度随时间的变化情况
    Figure  1.  The changes of degree of hydrolysis at different time in different treated oyster samples

    氧自由基作用于不饱和脂肪酸,生成脂肪氧化产物,脂质氧化程度可由脂肪氧化指标TBARS反映。根据图2可知,添加柠檬汁后牡蛎酶解液的TBARS值在酶解过程中1~4 h内无显著变化(P>0.05),而无添加柠檬汁酶解过程中TBARS值变化显著(P<0.05),其原因为柠檬汁的抗氧化活性抑制了牡蛎酶解过程中的脂质氧化反应。

    图  2  添加柠檬汁对牡蛎酶解液TBARS值的影响
    注:不同小写字母表示不同酶解时间差异显著(P<0.05)。
    Figure  2.  The effects of adding lemon juice on TBARS value of oyster hydrolysates

    图3可知,牡蛎匀浆液呈现出明显的青草味,其次是鱼腥味、水果香和贝肉香。经酶解后鱼腥味和蛤蜊味极显著增强(P<0.01),这可能与酶解过程中发生的脂质氧化反应相关;青草味极显著下降(P<0.01),水果香显著下降(0.01<P<0.05),贝肉香基本维持不变。说明酶解后整体风味变差。该结果与张梅超[22]的感官评定结果基本一致,但本研究中太平洋牡蛎在酶解后水果香显著下降,可能由于所用的酶不同导致。经过柠檬汁处理后牡蛎酶解液的鱼腥味和蛤蜊味显著降低(P<0.05),青草味显著下降(P<0.05),水果味显著提高(P<0.05),贝肉香与未脱腥前相比基本无变化,整体风味明显改善。

    图  3  不同处理牡蛎样品气味的感官评价雷达图
    Figure  3.  Sensory evaluation radar map of odor of different treated oyster samples

    将GC-IMS分析的不同处理牡蛎样品挥发性化合物(VOC)的数据以三维谱图形式可视化(图4),观察图4可知,由VOC三维谱图很难将牡蛎匀浆和牡蛎酶解液的挥发性成分进行区分,但经柠檬汁处理后的牡蛎酶解液和前二者出峰保留时间及峰强度均有明显区别,说明经柠檬汁处理后的VOC种类和含量发生明显改变,可能归因于柠檬汁的抗氧化作用抑制了脂质氧化反应,在减少或消除部分挥发性风味成分的同时引入了新的挥发性风味成分[10-11,18]

    图  4  不同处理牡蛎样品挥发性化合物的GC-IMS三维谱图
    注:A:牡蛎匀浆液;B:牡蛎酶解液;C:经柠檬汁处理牡蛎酶解液;图5~图7同。
    Figure  4.  GC-IMS three-dimensional spectra of volatile flavor compounds of different treated oyster samples

    将不同处理牡蛎样品VOC三维谱图投射生成二维地形图(图5),谱图中每个亮点表示一种挥发性化合物,但某些具有高质子亲和力的分析物可能会有1~2个或多个斑点(指示单体、二聚体或三聚体)[23],具体取决于其浓度及性质[24]。亮点越多代表该处理牡蛎样品中挥发性化合物种类越多,亮点颜色则代表某种挥发性化合物的信号强弱,红色代表信号强,白色代表信号弱[25]。牡蛎匀浆液及脱腥前后的牡蛎酶解液通过GC-IMS技术可以得到较好地识别和分离,不同处理的牡蛎样品表现出特征性的GC-IMS谱图,尤其是柠檬汁脱腥处理后的牡蛎酶解液亮点区域发生明显改变,部分红色亮点区域增多,部分白色亮点区域消失。这可能归因于柠檬汁中富含的多酚、类黄酮、柠檬酸、维生素E等成分所具有的较强抗氧化能力,在酶解过程中与醛、酮、醇、烷烃等化合物发生作用,同时柠檬汁引入了部分柠檬独有的风味物质,改变了挥发性化合物的数量和种类[10,18-20]

    图  5  不同处理牡蛎样品挥发性化合物的GC-IMS二维谱图
    Figure  5.  GC-IMS two-dimensional spectra of volatile flavor compounds of different treated oyster samples

    经过对比特征挥发性化合物的保留时间和迁移时间,使用Library Search软件,对不同处理牡蛎样品挥发性风味成分进行定性分析,由于IMS库现有容量有限且有拖尾现象,仅对40种化合物成功完成定性,包括12种醛、12种醇、5种酮、3种酸、4种酯、2种呋喃、2种其他化合物(见表1)。其中,醛类和醇类物质的种类最多,其次是酮类物质。庚醛、壬醛、辛醛、(E)-2-辛烯醛、1-辛烯-3-醇等具有青草味、鱼腥味和蛤蜊味[26],是水产品中常见的腥味和蛤蜊味来源,对鱼腥味具有加和作用。明确定性的挥发性物质C链介于C2~C10,已鉴定出的风味成分主要包括具有鱼腥味、青草味或花果香气的醛类、醇类、酮类、酯类、酸类及呋喃类成分。

    表  1  基于GC-IMS鉴定不同处理牡蛎样品挥发性化合物
    Table  1.  Volatile flavor compounds identified of oyster samples with different treatment methods detected by GC-IMS
    种类中文名称CAS化学式质量分数保留指数
    (RI)
    保留时间(s)漂移时间(ms)
    醛类
    (E,E)-2,4-壬二烯醛C5910872C9H14O138.21210.71069.52991.351
    (E,E)-2,4-辛二烯醛C30361285C8H12O124.21111.8889.981.267
    (E)-2-辛烯醛C2548870C8H14O126.21066.8808.079961.328
    庚醛C111717C7H14O114.2894427.034971.332
    壬醛C124196C9H18O142.21098.4865.829961.478
    辛醛C124130C8H16O128.2996.8666.329961.82
    戊醛C110623C5H10O86.1691.6168.841.187
    葵烯醛C3913711C10H18O154.31262.11162.771.114
    甲硫基丙醛C3268493C4H8OS104.2906.3452.969971.09
    2-苯乙醛C122781C8H8O120.21034.5746.131.542
    苯甲醛C100527C7H6O106.1953.2562.381.146
    十二醛C112549C12H24O184.31412.61435.8641.2333
    醇类氧化芳樟醇C60047178C10H18O2170.31065.1804.931.255
    异辛醇C104767C8H18O130.21038.7754.529971.415
    (E)-2-辛烯-1-醇C18409171C8H16O128.21067.9810.181.09
    1-庚醇C111706C7H16O116.2967595.981.256
    1-辛烯-3-醇C3391864C8H16O128.2923.5491.611.179
    (E)-2-己烯-1-醇C928950C6H12O100.2877.7395.431.168
    1-己醇C111273C6H14O102.2872.2385.349980.942
    2-己烯醇C2305217C6H12O100.2853.1352.591.185
    2,3-丁二醇C513859C4H10O290.1837327.389981.358
    呋喃甲醇C98000C5H6O298.1870.1381.4651.379
    3-甲基-3-丁烯-1-醇C763326C5H10O86.1741.9209.791.254
    甲醇C116096C3H6O274.1671.9157.51.044
    酮类5-甲基-3-庚酮C556241C6H12O2116.21029.7736.471.197
    3,4-己二酮C4437518C6H10O2114.1797.5272.8951.108
    2-环己烯酮C930687C6H8O96.1926.1497.594971.405
    2-庚酮C110430C7H14O114.2873.7388.081.715
    3-羟基-2-丁酮C513860C4H8O288.1732200.341.075
    酸类戊酸C109524C5H10O2102.5918.7480.689971.245
    丁酸C107926C4H8O288.1796.9272.161.171
    乙酸C64197C2H4O260.1623.4137.341.148
    酯类甲基丙酸乙酯C97621C6H12O2116.2750217.981.194
    乳酸乙酯C97643C5H10O3118.1795.7270.691.146
    丁酸内酯C96480C4H6O286.1889.1417.164981.29
    乙酸丁酯C123864C6H12O2116.2812.6292.741.108
    呋喃2 -二甲基呋喃C625865C6H8O96.1717.6187.739991.029
    乙基呋喃C3208160C6H8O96.1726.4195.299991.307
    其他2-甲氧基苯酚C90051C7H8O2124.11104.2876.329961.117
    蒎烯C80568C10H16136.21043.6764.191.175
    下载: 导出CSV 
    | 显示表格

    利用GC-IMS分析牡蛎匀浆液和经柠檬汁处理前后牡蛎酶解液挥发性风味物质变化情况的指纹图谱如图6所示。

    图  6  不同处理牡蛎样品挥发性化合物指纹谱图
    Figure  6.  Gallrey plot of volatile flavor compounds in oyster samples with different treatment methods

    a区中(E,E)-2,4-辛二烯醛、庚醛、壬醛、(E)-2-辛烯醛、辛醛、1-辛烯-3醇均为具有土腥味、蛤蜊味等不良风味的挥发性风味化合物,且由于阈值较低会对整体风味产生显著影响。(E)-2-辛烯-1-醇,具有泥土味,在白链鱼糜等水产品中是重要的特征风味成分[27]。牡蛎酶解液经柠檬汁处理后,上述风味物质被检出的含量明显下降,证实其具有风味改善效果。b区包含戊酸(刺激性气味)、丁酸(刺激性气味)[28]、丁酸内酯、戊醛(辛辣气息,稀释后呈果香味)[29]、2-苯乙醛、甲硫基丙醛(酱味、洋葱味、红烧肉味)[3],是牡蛎酶解液中较其他两种试样更为突出的挥发性风味物质,在风味改善后含量降低或未检出。c区是经柠檬汁处理后牡蛎酶解液中含量较牡蛎匀浆及牡蛎酶解液含量增加的挥发性风味化合物,包含蒎烯、苯甲醇、氧化芳樟醇、十二醛、2-庚酮、2-甲氧基苯酚、乙酸丁酯。蒎烯具有松木味;氧化芳樟醇又称2-甲基-2-乙烯基-5-四氢呋喃,具有强烈的甜香、草本香气和鲜花香气,工业常用于增强水果和茶类等香精的香气和口感[30];十二醛具有强烈脂肪香气,并有类似松叶油和橙油的强烈香气[31];2-庚酮具有一定的果香味;2-甲氧基苯酚又称为愈创木酚,是一种天然有机物,具有特殊的香味,常用作香料[32],乙酸丁酯为有果香气味的风味物质,可为整体气味贡献愉快的果香气味。综上,经柠檬汁处理后的牡蛎酶解液具有更多愉快气味的挥发性风味化合物,主要呈现花香、果香、甜香等风味特征。而呈鱼腥味、蛤蜊味等不愉快气味特征的挥发性风味成分含量明显降低。由于GC-IMS与SPME-GC-MS检测原理不同,所检测到的醛类、醇类、烯烃、芳香族化合物存在区分,因此,该结果可与本研究中SPME-GC-MS技术鉴定结果互为补充。

    将GC-IMS所检出的牡蛎匀浆、牡蛎酶解液和经柠檬汁处理牡蛎酶解液中挥发性成分数据进行主成分分析,结果见图7。PC1(61%)和PC2(28%)叠加贡献率可达89%,说明这两部分代表了样品绝大部分信息,PCA结果具有可信性。不同处理牡蛎样品风味物质主成分得分图具有明显差距,说明牡蛎匀浆、牡蛎酶解液、柠檬汁处理后牡蛎酶解液挥发性成分之间存在较大差异。该结果与指纹图谱分析及感官描述分析规律一致,表明本研究采用GC-IMS对不同处理牡蛎样品的挥发性风味物质分析结果具有可行性。

    图  7  不同处理牡蛎样品挥发性化合物主成分分析图
    Figure  7.  Principal component analysis of volatile flavor compounds in oyster samples with different treatment methods

    采用SPME-GC-MS技术,经标准谱库检索匹配,以面积归一化法计算相对百分含量进行分析,柠檬汁处理前后的牡蛎脱腥酶解液挥发性风味成分及特征见表2。由表2图8可知,牡蛎酶解液中共检测出56种挥发性风味化合物,其中,醛类16种,相对含量37.46%;醇类16种,相对含量32.69%;酮类9种,相对含量10.61%;烯烃类4种,相对含量8.37%;其他化合物(烷烃类、炔烃类、呋喃类、酸类、酯类)11种,相对含量10.87%。柠檬汁处理后的牡蛎酶解液中共检测出66种挥发性风味化合物,其中醛类增加4种,相对含量下降12.13%;醇类减少5种,相对含量下降16.18%;烯烃类增加4种,相对含量上升34.47%;酮类增加2种,相对含量下降3.34%;其他化合物16种,相对含量之和为8.05%。

    表  2  柠檬汁处理前后牡蛎酶解液的挥发性风味成分分析
    Table  2.  Analysis of volatile flavor compounds in oyster hydrolysate and oyster hydrolysate with lemon juice
    类别气味特征[33-37]中文名称英文名称保留
    时间(min)
    1#
    (%)
    2#
    (%)
    类似煮熟的肉味正戊醛pentanal4.331.130.76
    鱼腥味、生油脂和青草气及苹果香味己醛hexanal6.5731.120.60
    (E)-2-戊烯醛2-pentenal, (E)-7.8011.380.69
    鱼腥味、坚果香、甜杏气味庚醛heptanal9.1122.490.67
    清香、脂肪香(E)-2-己烯醛2-hexenal, (E)-10.0650.893.32
    (Z)-4-庚烯醛4-heptenal, (Z)-10.671.930.28
    青草味、腥臭味辛醛octanal11.8174.361.15
    蔬菜香,类亚麻油香(Z)-2-庚烯醛2-heptenal,(Z)-12.730.000.39
    花香、蜡香、脂香、橘香壬醛nonanal14.4481.160.57
    青草味、蛤蜊味(E)-2-辛烯醛2-octenal, (E)-15.3113.700.83
    草腥味、鱼腥味(E,E)-2,4-庚二烯醛2,4-heptadienal, (E,E)-16.1977.240.75
    甜香、蜡香、花香、橘香癸醛decanal16.950.000.16
    杏仁味苯甲醛benzaldehyde17.5632.434.36
    脂肪及黄瓜味(E)-壬烯醛2-nonenal, (E)-17.7561.132.35
    紫罗兰香气、黄瓜似香气(E,Z)-2,6-壬二烯醛2,6-nonadienal, (E,Z)-18.334.291.31
    (E)-2-癸烯醛2-decenal, (E)-20.1250.750.00
    花香香气,低浓度呈果香苯乙醛benzeneacetaldehyde20.1453.202.41
    3-乙基-苯甲醛benzaldehyde, 3-ethyl-21.4550.000.39
    花香味紫丁香醛Clilac aldehyde C21.720.004.13
    呈强烈的鸡香和鸡油味(E,E)-2,4-葵二烯醛2,4-dodecadienal,(E,E)23.4670.260.12
    脂肪香、蜡香、牛奶香、奶油香肉豆蔻醛tetradecanal29.2350.000.09
    土腥味1-戊烯-3-醇1-penten-3-one8.8723.810.30
    1,6-辛二烯-3-醇1,6-octadien-3-ol10.9981.150.00
    2-亚甲基-环戊烷丙醇cyclopentanepropanol, 2-methylene-11.310.650.00
    (Z)-2-戊烯-1-醇2-penten-1-ol, (Z)-12.5540.700.42
    有似穿樟脑气味正己醇1-Hexanol13.420.000.63
    腥味、菇类气味1-辛烯-3-醇1-octen-3-ol15.80510.341.65
    强烈芳香气味1-庚醇1-heptanol15.9040.560.62
    反式-1,2-环辛二醇1,2-cyclooctanediol, trans-16.0380.960.00
    3,7-二甲基-1,6-壬二烯- 3 -醇3,7-dimethyl-1,6-octadien-3-ol18.0111.244.15
    乙基环己醇4-ethylcyclohexanol17.810.000.00
    (Z)-2-辛烯-1-醇2-octen-1-ol, (Z)-19.470.180.33
    2-环己烯-1-醇2-cyclohexen-1-ol, 1-methyl-4-
    (1-methylethenyl)-, trans-
    20.6410.360.00
    3,7-二甲基-1,6-壬二烯-3-醇1,6-nonadien-3-ol, 3,7-dimethyl-20.7750.420.00
    3-环己烯-1-乙醇3-cyclohexene-1-ethanol20.9133.060.00
    2,4-癸二烯-1-醇2,4-decadien-1-ol20.9550.001.12
    3-环己烯-1-甲醇3-cyclohexene-1-methanol21.2074.620.00
    (E,Z)-3,6-壬二烯-1-醇3,6-nonadien-1-ol, (E,Z)-22.1852.194.97
    (E)-2-己烯1-醇2-hexen-1-ol, (E)22.9980.002.25
    (E)-3,7-二甲-2,6-辛二烯-1-醇2,6-octadien-1-ol, 3,7-dimethyl-, acetate, (E)-22.4030.430.00
    (Z)-3,7-二甲-2,6-辛二烯-1-醇2,6-octadien-1-ol, 3,7-dimethyl-, (Z)-23.2212.020.00
    1-环戊基-2-丙烯-1-醇1-cyclopentyl-2-propen-1-ol23.6450.000.07
    2,3-戊二酮2,3-pentanedione6.1540.300.10
    2,5-己二酮2,5-hexanedione7.850.000.68
    4-甲基3-戊烯-2-酮3-penten-2-one, 4-methyl-7.8581.440.00
    2-辛酮2-octanone9.1150.000.07
    6-甲基-2-庚酮6-methyl-2-heptanone10.5590.000.10
    树脂清香3-辛酮3-octanone10.9170.001.85
    5-甲基-5-庚-3-酮5-hepten-3-one, 5-methyl-12.7942.640.00
    2,5-辛二酮2,5-octanedione12.8050.000.34
    6-甲基-5-庚-2-酮5-hepten-2-one, 6-methyl-13.0820.530.34
    花果香、油脂香气2-壬酮2-nonanone14.3290.960.74
    蛤蜊味3,5-辛二烯-2-酮3,5-octadien-2-one17.3652.180.00
    柑橘类香气2-十一酮2-undecanone19.1390.002.46
    2-甲基-1-壬烯-3-酮1-nonen-3-one, 2-methyl-20.5630.380.00
    带有薄荷香气2 -戊基-环己酮2-pentyl-cyclohexanone21.640.000.34
    2-环己烯-1酮2-cyclohexen-1-one, 2-methyl-5-(1-methylethenyl)-, (R)-221.200.00
    双环(3.3.1)壬烷-2,6-二酮bicyclo(3.3.1)nonane-2,6-dione26.150.980.25
    丙烯酸酯acrylic acid, 5,7-octadien-1-yl ester70.000.09
    甲酸己酯formic acid, hexyl ester10.9250.000.22
    有玫瑰和熏衣草香气2,3 -环氧醋酸香叶酯geranyl acetate, 2,3-epoxy-17.3150.550.00
    6 -壬烯酸甲酯6-nonynoic acid, methyl ester19.410.400.00
    有甜味,浓度高时其刺激性气味乙酸乙酯diethyl-acetic acid21.4160.710.24
    丙二酸malonic acid12.9362.200.00
    丙酸propanoic acid18.090.000.13
    辛酸octanoic Acid28.0850.000.08
    壬酸nonanoic acid29.8650.000.15
    富马酸fumaric acid, ethyl 2-methylallyl ester37.620.000.14
    肉豆蔻酸tetradecanoic acid40.050.290.54
    烷烃三氯甲烷trichloromethane5.2470.000.31
    八甲基环四硅氧烷octamethyl cyclotetrasiloxane4.7391.850.74
    烯烃α-蒎烯1R-α-pinene5.0961.162.00
    水芹烯β-phellandrene7.2761.360.00
    β-蒎烯β-pinene8.8783.560.00
    令人愉快的甜香脂味月桂烯β-myrcene9.5140.0021.37
    甜香,柑橘香,柠檬香气D-柠檬烯D-limonene9.7170.0010.61
    类似柠檬的宜人香气蒈烯(+)-4-carene11.7972.294.91
    1,3-乙基-2-甲基-1,3-庚二烯1,3-heptadiene, 3-ethyl-2-methyl-14.9750.000.17
    2,5,5-三甲基-2-己烯2,5,5-trimethyl-2-Hexene,16.040.000.96
    3,5,5-三甲基-2-己烯3,5,5-trimethyl-2-Hexene16.650.002.76
    2,5,5-三甲基-1-己烯1-hexene, 2,5,5-trimethyl-22.6550.000.06
    炔烃6-十三烯-2-炔(Z)-6-tridecen-4-yne11.2450.510.11
    3-十二炔3-dodecyne23.8651.791.19
    1,11-十二二炔1,11-dodecadiyne27.560.160.11
    呋喃2,3-二氢呋喃2,3-dihydrofuran5.6370.000.16
    土豆和蔬菜香气2-戊基呋喃2-pentyl-Furan10.240.002.26
    反-2-(2-戊烯基)呋喃trans-2-(2-Pentenyl)furan12.2831.971.58
    豆香、面包香、麦芽香2-乙基呋喃furan, 2-ethyl-14.7390.440.00
    注:1#为牡蛎酶解液;2#为柠檬汁处理牡蛎酶解液;表3同。
    下载: 导出CSV 
    | 显示表格
    图  8  柠檬汁处理前后牡蛎酶解液的挥发性风味成分统计
    Figure  8.  Relative amount of different types of volatile flavor compounds in oyster hydrolysis solution and oyster hydrolysis solution with lemon juice

    醛类物质是在水产品风味中起主导作用的一类物质。醛类阈值较低,且部分醛类物质可与其他组分产生明显的风味重叠效果,因此,痕量存在时即可对风味产生显著贡献。柠檬汁处理后牡蛎酶解液中己醛、庚醛、辛醛、(E)-2-辛烯醛、(E,E)-2,4-庚二烯醛相对含量从1.12%、2.49%、4.36%、3.70%、7.24%分别下降至0.60%、0.67%、1.15%、0.83%、0.75%。这些直链饱和醛、烯醛和二烯醛是由不饱和脂肪酸氧化产生的,是牡蛎酶解液中鱼腥味的主要来源[24]。(E,E)-2,4-葵二烯醛具有强烈的鸡香和鸡油味,是亚油酸氧化产生的,经柠檬汁处理脱腥后相对含量从0.26%下降为0.12%,这可能是由于柠檬汁中富含类黄酮、多酚和VC等抗氧化成分在柠檬汁参与共酶解过程中抑制了牡蛎不饱和脂肪酸的氧化,降低了上述不饱和脂肪酸及亚油酸氧化产物的生成,降低了牡蛎酶解液的鱼腥味。此外,柠檬汁脱腥后增加了具有愉快气味的醛类物质,如(E)-2-己烯醛(清香、脂肪香)、(Z)-2-庚烯醛(蔬菜香、类亚麻油香)、癸醛(甜香、蜡香、花香、橘香)、苯甲醛(杏仁味)、(E)-壬烯醛(脂肪及黄瓜味)、紫丁香醛C(花香味)、肉豆蔻醛(脂肪香、蜡香、牛奶香、奶油香)相对含量从0.89%、0.00%、0.00%、2.43%、1.13%、0.00%、0.00%分别增加为3.32%、0.39%、0.16%、4.36%、2.35%、4.13%、0.09%,为脱腥后的牡蛎酶解液贡献了果蔬香、脂香、花香等愉快气味。

    柠檬汁脱腥前后醇类物质种类及相对含量发生了较大改变,但由于饱和的长链醇一般阈值很高,故对整体气味影响很小,但部分不饱和醇类物质会对香气产生显著影响。柠檬汁脱腥后1-辛烯-3-醇(阈值1 μg/kg)相对含量由10.34%下降为1.65%,1-戊烯-3-醇(阈值358.1 μg/kg)相对含量由3.81%下降为0.30%。其中,1-辛烯-3-醇具有鱼腥味、菇类气味,由于阈值较低常被认为是水产品中土腥味的主要来源。推断该两种成分的下降是由于柠檬汁的抗氧化作用抑制了牡蛎酶解过程中脂肪的氧化反应,减少了牡蛎酶解液中的不良风味。酮类物质相对含量的改变可能与部分氨基酸的降解和美拉德反应有关,贝类中发现的甲基酮(C3~C17)一般可为整体气味贡献芳香味、水果香,柠檬汁脱腥后新增了3-辛酮(树脂清香、相对含量1.85%)和柠檬的特征香气成分2-十一酮(柑橘类香气、相对含量2.46%)。烯烃类物质是柠檬中一类重要的挥发性风味成分,柠檬汁脱腥后月桂烯(令人愉快的甜香脂味)、D-柠檬烯(甜香,柑橘香,柠檬香气)、蒈烯(类似柠檬的宜人香气)相对含量从0.00%、0.00%、2.29%分别上升为21.37%、10.61%、4.91%,为整体风味贡献了令人愉快的水果香气、甜香脂味。Allegrone等[38]利用SPME-GC-MS技术比较了四种不同品种的新鲜柠檬汁挥发性物质含量,主要成分均为单萜,柠檬烯占54%~68.8%,说明经柠檬脱腥后的牡蛎酶解液增加的烯烃类芳香物质主要来自于柠檬汁所具有的单萜烯烃类挥发性化合物[34-35],可对不良风味起到掩蔽作用。

    酯类物质是由醇和羧酸通过酯化反应生成,通常与美拉德反应有关,有部分可能由于加热灭酶而产生,一般来说香气良好。柠檬汁脱腥后产生了两种新的酯类物质,相对含量较低,对整体气味贡献不大。酸类物质和烷烃类物质一般阈值较高[28]且相对含量有限,对风味贡献程度不大。呋喃类成分通常有较低的香气阈值,会对整体气味产生一定影响,柠檬汁脱腥后增加了两种呋喃类物质,即2,3-二氢呋喃和2-戊基呋喃(土豆和蔬菜香气);2-乙基呋喃(豆香、面包香、麦芽香)仅在牡蛎酶解液中检出。

    结合感觉阈值对表2牡蛎酶解液及柠檬汁脱腥处理牡蛎酶解液的挥发性风味成分进行分析对比,确定每种挥发性风味成分的气味活度值(OAV)及最大气味活度值(OAVmax)物质,根据公式计算其他风味物质ROAV值,将关键风味物质及修饰性风味物质列于表3。牡蛎酶解液中关键风味物质有(E,Z)-2,6-壬二烯醛(紫罗兰香气、黄瓜似香气)、(E)-壬烯醛(脂肪及黄瓜味)、辛醛(鱼腥味)和1-辛烯-3-醇(鱼腥味、菇类气味),ROVA值分别为100、3.29、2.03和1.85。修饰性风味成分中有具有鱼腥味、蛤蜊味的(E)-2-辛烯醛、庚醛、(E,E)-2,4-庚二烯醛,ROAV值分别为0.29、0.19、0.11,两种具有花果香气味的壬醛、苯乙醛的ROAV值分别为0.25、0.19。牡蛎酶解液的主要气味特征以青草味、鱼腥味和蛤蜊味为主,该结果与感官描述分析结论一致。

    表  3  柠檬汁处理前后牡蛎酶解液的关键挥发性风味成分分析
    Table  3.  Analysis of key volatile flavor compounds in oyster hydrolysate and oyster hydrolysate with lemon juice
    类型1#挥发性组分阈值[3536,3839](μg/kg)ROAV2#挥发性组分阈值(μg/kg)ROAV
    关键
    风味
    物质
    (E,Z)-2,6-壬二烯醛0.01100(E,Z)-2,6-壬二烯醛0.01100
    (E)-壬烯醛0.083.29(E)-壬烯醛0.0822.42
    辛醛0.72.03辛醛0.701.76
    1-辛烯-3-醇11.85癸醛0.101.22
    月桂烯141.17
    修饰性风味物质(E)-2-癸烯醛0.350.501-辛烯-3-醇10.96
    (E)-2-辛烯醛30.29D-柠檬烯100.81
    壬醛1.10.25苯乙醛40.46
    庚醛30.19壬醛1.10.40
    苯乙醛40.19(Z)-2-庚烯醛0.800.37
    (E,E)-2,4-庚二烯醛15.40.11十一酮5.50.34
    2-戊基呋喃6.000.29
    (E)-2-辛烯醛3.000.21
    庚醛3.000.17
    1 -庚醇3.000.16
    2-壬酮5.000.11
    己醛4.500.10
    下载: 导出CSV 
    | 显示表格

    柠檬汁脱腥处理后,关键风味成分中辛醛(鱼腥味、蛤蜊味)的ROAV值下降为1.76,1-辛烯-3-醇不再作为关键风味成分出现,(E,Z)-2,6-壬二烯醛仍为ROAV值最大的成分,(E)-壬烯醛ROAV值上升为22.42,关键风味成分新增了具有甜脂香气的月桂烯和呈甜香、蜡香、花香和橘香的癸醛,ROAV值分别为1.17和1.22。修饰性风味成分中增加了6种具有愉快花香、果香、蔬菜香特点的挥发性风味化合物,包括D-柠檬烯(甜香、柑橘香、柠檬香气)、(Z)-2-庚烯醛(蔬菜香、类亚麻油香)、十一酮(柑橘类香气)、2-戊基呋喃(土豆和蔬菜香气)、1 -庚醇(强烈芳香气味)、2-壬酮(花果香、油脂香气);壬醛(花香、蜡香、脂香、橘香)、苯乙醛(低浓度呈果香)ROAV值上升,可能是由于引入了柠檬所含具有愉快风味特征的挥发性风味成分;鱼腥味、蛤蜊味的庚醛和(E)-2-辛烯醛ROAV值下降。说明柠檬汁的添加对牡蛎酶解液的风味具有良好改善作用。但对比张梅超[22]采用姜汁-酵母发酵及黄可欣[17]采用酵母-壳聚糖等联合脱腥方法,柠檬汁对1-辛烯-3醇、壬醛、庚醛的脱除能力有限,可能是由于柠檬汁不能脱除牡蛎生长过程中富集在体内的腥味成分。

    在太平洋牡蛎肉酶解过程中添加柠檬汁可抑制不饱和脂肪酸的氧化,降低TBARS值,但不会影响酶解液的理化性质,该方法操作简单、便捷。本文结合GC-IMS和SPME-GC-MS技术对柠檬汁脱腥前后牡蛎酶解液的挥发性风味化合物及关键风味物质变化进行了详细分析。添加柠檬汁实现牡蛎酶解液风味改善的原因有二,一方面可通过抑制酶解过程中不饱和脂肪酸氧化,减少直链饱和醛、烯醛和二烯醛的生成,从而降低牡蛎酶解液的鱼腥味;另一方面,引入柠檬自身具有的花香、柠檬香和甜脂香特征的烯烃类和酮类风味物质,丰富牡蛎酶解液的整体气味,对鱼腥味等不良气味起到掩蔽作用。但是,本研究仍存在以下不足:本方法对于在牡蛎体内富集的来自外界环境的土腥味成分和微生物代谢相关的腥臭味成分的脱除能力有限(如辛醛、庚醛等),需联合其他方法进一步脱除。此外,关于柠檬汁与牡蛎酶解液中风味物质及脂肪氧化过程的相互作用机理还有待进一步探究。

  • 图  1   不同处理牡蛎样品的水解度随时间的变化情况

    Figure  1.   The changes of degree of hydrolysis at different time in different treated oyster samples

    图  2   添加柠檬汁对牡蛎酶解液TBARS值的影响

    注:不同小写字母表示不同酶解时间差异显著(P<0.05)。

    Figure  2.   The effects of adding lemon juice on TBARS value of oyster hydrolysates

    图  3   不同处理牡蛎样品气味的感官评价雷达图

    Figure  3.   Sensory evaluation radar map of odor of different treated oyster samples

    图  4   不同处理牡蛎样品挥发性化合物的GC-IMS三维谱图

    注:A:牡蛎匀浆液;B:牡蛎酶解液;C:经柠檬汁处理牡蛎酶解液;图5~图7同。

    Figure  4.   GC-IMS three-dimensional spectra of volatile flavor compounds of different treated oyster samples

    图  5   不同处理牡蛎样品挥发性化合物的GC-IMS二维谱图

    Figure  5.   GC-IMS two-dimensional spectra of volatile flavor compounds of different treated oyster samples

    图  6   不同处理牡蛎样品挥发性化合物指纹谱图

    Figure  6.   Gallrey plot of volatile flavor compounds in oyster samples with different treatment methods

    图  7   不同处理牡蛎样品挥发性化合物主成分分析图

    Figure  7.   Principal component analysis of volatile flavor compounds in oyster samples with different treatment methods

    图  8   柠檬汁处理前后牡蛎酶解液的挥发性风味成分统计

    Figure  8.   Relative amount of different types of volatile flavor compounds in oyster hydrolysis solution and oyster hydrolysis solution with lemon juice

    表  1   基于GC-IMS鉴定不同处理牡蛎样品挥发性化合物

    Table  1   Volatile flavor compounds identified of oyster samples with different treatment methods detected by GC-IMS

    种类中文名称CAS化学式质量分数保留指数
    (RI)
    保留时间(s)漂移时间(ms)
    醛类
    (E,E)-2,4-壬二烯醛C5910872C9H14O138.21210.71069.52991.351
    (E,E)-2,4-辛二烯醛C30361285C8H12O124.21111.8889.981.267
    (E)-2-辛烯醛C2548870C8H14O126.21066.8808.079961.328
    庚醛C111717C7H14O114.2894427.034971.332
    壬醛C124196C9H18O142.21098.4865.829961.478
    辛醛C124130C8H16O128.2996.8666.329961.82
    戊醛C110623C5H10O86.1691.6168.841.187
    葵烯醛C3913711C10H18O154.31262.11162.771.114
    甲硫基丙醛C3268493C4H8OS104.2906.3452.969971.09
    2-苯乙醛C122781C8H8O120.21034.5746.131.542
    苯甲醛C100527C7H6O106.1953.2562.381.146
    十二醛C112549C12H24O184.31412.61435.8641.2333
    醇类氧化芳樟醇C60047178C10H18O2170.31065.1804.931.255
    异辛醇C104767C8H18O130.21038.7754.529971.415
    (E)-2-辛烯-1-醇C18409171C8H16O128.21067.9810.181.09
    1-庚醇C111706C7H16O116.2967595.981.256
    1-辛烯-3-醇C3391864C8H16O128.2923.5491.611.179
    (E)-2-己烯-1-醇C928950C6H12O100.2877.7395.431.168
    1-己醇C111273C6H14O102.2872.2385.349980.942
    2-己烯醇C2305217C6H12O100.2853.1352.591.185
    2,3-丁二醇C513859C4H10O290.1837327.389981.358
    呋喃甲醇C98000C5H6O298.1870.1381.4651.379
    3-甲基-3-丁烯-1-醇C763326C5H10O86.1741.9209.791.254
    甲醇C116096C3H6O274.1671.9157.51.044
    酮类5-甲基-3-庚酮C556241C6H12O2116.21029.7736.471.197
    3,4-己二酮C4437518C6H10O2114.1797.5272.8951.108
    2-环己烯酮C930687C6H8O96.1926.1497.594971.405
    2-庚酮C110430C7H14O114.2873.7388.081.715
    3-羟基-2-丁酮C513860C4H8O288.1732200.341.075
    酸类戊酸C109524C5H10O2102.5918.7480.689971.245
    丁酸C107926C4H8O288.1796.9272.161.171
    乙酸C64197C2H4O260.1623.4137.341.148
    酯类甲基丙酸乙酯C97621C6H12O2116.2750217.981.194
    乳酸乙酯C97643C5H10O3118.1795.7270.691.146
    丁酸内酯C96480C4H6O286.1889.1417.164981.29
    乙酸丁酯C123864C6H12O2116.2812.6292.741.108
    呋喃2 -二甲基呋喃C625865C6H8O96.1717.6187.739991.029
    乙基呋喃C3208160C6H8O96.1726.4195.299991.307
    其他2-甲氧基苯酚C90051C7H8O2124.11104.2876.329961.117
    蒎烯C80568C10H16136.21043.6764.191.175
    下载: 导出CSV

    表  2   柠檬汁处理前后牡蛎酶解液的挥发性风味成分分析

    Table  2   Analysis of volatile flavor compounds in oyster hydrolysate and oyster hydrolysate with lemon juice

    类别气味特征[33-37]中文名称英文名称保留
    时间(min)
    1#
    (%)
    2#
    (%)
    类似煮熟的肉味正戊醛pentanal4.331.130.76
    鱼腥味、生油脂和青草气及苹果香味己醛hexanal6.5731.120.60
    (E)-2-戊烯醛2-pentenal, (E)-7.8011.380.69
    鱼腥味、坚果香、甜杏气味庚醛heptanal9.1122.490.67
    清香、脂肪香(E)-2-己烯醛2-hexenal, (E)-10.0650.893.32
    (Z)-4-庚烯醛4-heptenal, (Z)-10.671.930.28
    青草味、腥臭味辛醛octanal11.8174.361.15
    蔬菜香,类亚麻油香(Z)-2-庚烯醛2-heptenal,(Z)-12.730.000.39
    花香、蜡香、脂香、橘香壬醛nonanal14.4481.160.57
    青草味、蛤蜊味(E)-2-辛烯醛2-octenal, (E)-15.3113.700.83
    草腥味、鱼腥味(E,E)-2,4-庚二烯醛2,4-heptadienal, (E,E)-16.1977.240.75
    甜香、蜡香、花香、橘香癸醛decanal16.950.000.16
    杏仁味苯甲醛benzaldehyde17.5632.434.36
    脂肪及黄瓜味(E)-壬烯醛2-nonenal, (E)-17.7561.132.35
    紫罗兰香气、黄瓜似香气(E,Z)-2,6-壬二烯醛2,6-nonadienal, (E,Z)-18.334.291.31
    (E)-2-癸烯醛2-decenal, (E)-20.1250.750.00
    花香香气,低浓度呈果香苯乙醛benzeneacetaldehyde20.1453.202.41
    3-乙基-苯甲醛benzaldehyde, 3-ethyl-21.4550.000.39
    花香味紫丁香醛Clilac aldehyde C21.720.004.13
    呈强烈的鸡香和鸡油味(E,E)-2,4-葵二烯醛2,4-dodecadienal,(E,E)23.4670.260.12
    脂肪香、蜡香、牛奶香、奶油香肉豆蔻醛tetradecanal29.2350.000.09
    土腥味1-戊烯-3-醇1-penten-3-one8.8723.810.30
    1,6-辛二烯-3-醇1,6-octadien-3-ol10.9981.150.00
    2-亚甲基-环戊烷丙醇cyclopentanepropanol, 2-methylene-11.310.650.00
    (Z)-2-戊烯-1-醇2-penten-1-ol, (Z)-12.5540.700.42
    有似穿樟脑气味正己醇1-Hexanol13.420.000.63
    腥味、菇类气味1-辛烯-3-醇1-octen-3-ol15.80510.341.65
    强烈芳香气味1-庚醇1-heptanol15.9040.560.62
    反式-1,2-环辛二醇1,2-cyclooctanediol, trans-16.0380.960.00
    3,7-二甲基-1,6-壬二烯- 3 -醇3,7-dimethyl-1,6-octadien-3-ol18.0111.244.15
    乙基环己醇4-ethylcyclohexanol17.810.000.00
    (Z)-2-辛烯-1-醇2-octen-1-ol, (Z)-19.470.180.33
    2-环己烯-1-醇2-cyclohexen-1-ol, 1-methyl-4-
    (1-methylethenyl)-, trans-
    20.6410.360.00
    3,7-二甲基-1,6-壬二烯-3-醇1,6-nonadien-3-ol, 3,7-dimethyl-20.7750.420.00
    3-环己烯-1-乙醇3-cyclohexene-1-ethanol20.9133.060.00
    2,4-癸二烯-1-醇2,4-decadien-1-ol20.9550.001.12
    3-环己烯-1-甲醇3-cyclohexene-1-methanol21.2074.620.00
    (E,Z)-3,6-壬二烯-1-醇3,6-nonadien-1-ol, (E,Z)-22.1852.194.97
    (E)-2-己烯1-醇2-hexen-1-ol, (E)22.9980.002.25
    (E)-3,7-二甲-2,6-辛二烯-1-醇2,6-octadien-1-ol, 3,7-dimethyl-, acetate, (E)-22.4030.430.00
    (Z)-3,7-二甲-2,6-辛二烯-1-醇2,6-octadien-1-ol, 3,7-dimethyl-, (Z)-23.2212.020.00
    1-环戊基-2-丙烯-1-醇1-cyclopentyl-2-propen-1-ol23.6450.000.07
    2,3-戊二酮2,3-pentanedione6.1540.300.10
    2,5-己二酮2,5-hexanedione7.850.000.68
    4-甲基3-戊烯-2-酮3-penten-2-one, 4-methyl-7.8581.440.00
    2-辛酮2-octanone9.1150.000.07
    6-甲基-2-庚酮6-methyl-2-heptanone10.5590.000.10
    树脂清香3-辛酮3-octanone10.9170.001.85
    5-甲基-5-庚-3-酮5-hepten-3-one, 5-methyl-12.7942.640.00
    2,5-辛二酮2,5-octanedione12.8050.000.34
    6-甲基-5-庚-2-酮5-hepten-2-one, 6-methyl-13.0820.530.34
    花果香、油脂香气2-壬酮2-nonanone14.3290.960.74
    蛤蜊味3,5-辛二烯-2-酮3,5-octadien-2-one17.3652.180.00
    柑橘类香气2-十一酮2-undecanone19.1390.002.46
    2-甲基-1-壬烯-3-酮1-nonen-3-one, 2-methyl-20.5630.380.00
    带有薄荷香气2 -戊基-环己酮2-pentyl-cyclohexanone21.640.000.34
    2-环己烯-1酮2-cyclohexen-1-one, 2-methyl-5-(1-methylethenyl)-, (R)-221.200.00
    双环(3.3.1)壬烷-2,6-二酮bicyclo(3.3.1)nonane-2,6-dione26.150.980.25
    丙烯酸酯acrylic acid, 5,7-octadien-1-yl ester70.000.09
    甲酸己酯formic acid, hexyl ester10.9250.000.22
    有玫瑰和熏衣草香气2,3 -环氧醋酸香叶酯geranyl acetate, 2,3-epoxy-17.3150.550.00
    6 -壬烯酸甲酯6-nonynoic acid, methyl ester19.410.400.00
    有甜味,浓度高时其刺激性气味乙酸乙酯diethyl-acetic acid21.4160.710.24
    丙二酸malonic acid12.9362.200.00
    丙酸propanoic acid18.090.000.13
    辛酸octanoic Acid28.0850.000.08
    壬酸nonanoic acid29.8650.000.15
    富马酸fumaric acid, ethyl 2-methylallyl ester37.620.000.14
    肉豆蔻酸tetradecanoic acid40.050.290.54
    烷烃三氯甲烷trichloromethane5.2470.000.31
    八甲基环四硅氧烷octamethyl cyclotetrasiloxane4.7391.850.74
    烯烃α-蒎烯1R-α-pinene5.0961.162.00
    水芹烯β-phellandrene7.2761.360.00
    β-蒎烯β-pinene8.8783.560.00
    令人愉快的甜香脂味月桂烯β-myrcene9.5140.0021.37
    甜香,柑橘香,柠檬香气D-柠檬烯D-limonene9.7170.0010.61
    类似柠檬的宜人香气蒈烯(+)-4-carene11.7972.294.91
    1,3-乙基-2-甲基-1,3-庚二烯1,3-heptadiene, 3-ethyl-2-methyl-14.9750.000.17
    2,5,5-三甲基-2-己烯2,5,5-trimethyl-2-Hexene,16.040.000.96
    3,5,5-三甲基-2-己烯3,5,5-trimethyl-2-Hexene16.650.002.76
    2,5,5-三甲基-1-己烯1-hexene, 2,5,5-trimethyl-22.6550.000.06
    炔烃6-十三烯-2-炔(Z)-6-tridecen-4-yne11.2450.510.11
    3-十二炔3-dodecyne23.8651.791.19
    1,11-十二二炔1,11-dodecadiyne27.560.160.11
    呋喃2,3-二氢呋喃2,3-dihydrofuran5.6370.000.16
    土豆和蔬菜香气2-戊基呋喃2-pentyl-Furan10.240.002.26
    反-2-(2-戊烯基)呋喃trans-2-(2-Pentenyl)furan12.2831.971.58
    豆香、面包香、麦芽香2-乙基呋喃furan, 2-ethyl-14.7390.440.00
    注:1#为牡蛎酶解液;2#为柠檬汁处理牡蛎酶解液;表3同。
    下载: 导出CSV

    表  3   柠檬汁处理前后牡蛎酶解液的关键挥发性风味成分分析

    Table  3   Analysis of key volatile flavor compounds in oyster hydrolysate and oyster hydrolysate with lemon juice

    类型1#挥发性组分阈值[3536,3839](μg/kg)ROAV2#挥发性组分阈值(μg/kg)ROAV
    关键
    风味
    物质
    (E,Z)-2,6-壬二烯醛0.01100(E,Z)-2,6-壬二烯醛0.01100
    (E)-壬烯醛0.083.29(E)-壬烯醛0.0822.42
    辛醛0.72.03辛醛0.701.76
    1-辛烯-3-醇11.85癸醛0.101.22
    月桂烯141.17
    修饰性风味物质(E)-2-癸烯醛0.350.501-辛烯-3-醇10.96
    (E)-2-辛烯醛30.29D-柠檬烯100.81
    壬醛1.10.25苯乙醛40.46
    庚醛30.19壬醛1.10.40
    苯乙醛40.19(Z)-2-庚烯醛0.800.37
    (E,E)-2,4-庚二烯醛15.40.11十一酮5.50.34
    2-戊基呋喃6.000.29
    (E)-2-辛烯醛3.000.21
    庚醛3.000.17
    1 -庚醇3.000.16
    2-壬酮5.000.11
    己醛4.500.10
    下载: 导出CSV
  • [1] 林海生, 秦小明, 章超桦, 等. 中国沿海主要牡蛎养殖品种的营养品质和风味特征比较分析[J]. 南方水产科学,2019,15(2):110−120. [LIN H S, QIN X M, ZHANG C H, et al. Comparative analysis of nutritional components and flavor characteristics of cultivated oyster from different coastal areas of China[J]. South China Fisheries Science,2019,15(2):110−120. doi: 10.12131/20180226

    LIN H S, QIN X M, ZHANG C Y, et al. Comparative analysis of nutritional components and flavor characteristics of cultivated oyster from different coastal areas of China[J]. South China Fisheries Science, 2019, 15(2): 110-120. doi: 10.12131/20180226

    [2] 王伟军. 长牡蛎生长和肉质性状的遗传参数研究[D]. 青岛: 中国海洋大学, 2015.

    WANG W J. Studies on genetic parameters of growth and flesh traits in pacific oyster (Crassostrea gigas)[D]. Qingdao: Ocean University China, 2015.

    [3] 袁林, 查锋超, 姚烨, 等. 牡蛎酶解产物与还原糖美拉德反工艺优化及挥发性风味物质分析[J]. 食品科学,2015,36(24):1−9. [YUAN L, ZHA F C, YAO Y, et al. Optimization of maillard reaction for oyster enzymatic hydrolysates and reducing sugar by response surface methodology and analysis of volatile flavor compounds in reaction products[J]. Food Science,2015,36(24):1−9. doi: 10.7506/spkx1002-6630-201524001

    YUAN L, ZHA F C, YAO Y, et al. Optimization of maillard reaction for oyster enzymatic hydrolysates and reducing sugar by response surface methodology and analysis of volatile flavor compounds in reaction products[J]. Food Science, 2015, 36(24): 1-9. doi: 10.7506/spkx1002-6630-201524001

    [4] 刘奇. 鲟鱼腥味物质特征及其与脂肪酸氧化的关系研究[D]. 青岛: 中国海洋大学, 2013.

    LIU Q. Study on the off-flavor compounds character of sturgeon and their relationship with lipid oxidation[D]. Qingdao: Ocean University China, 2013.

    [5] 盛洁, 胡凌豪, 陈建康, 等. 凤尾鱼酶解产物脱腥脱色工艺优化[J]. 食品工业科技,2020,41(7):8. [SHENG J, HU L H, CHEN J K, et al. Optimization of deodorization and decolorization process of anchovy fish enzymatic hydrolysate[J]. Science and Technology of Food Industry,2020,41(7):8.

    SHENG J, HU L H, CHEN J K, et al. Optimization of deodorization and decolorization process of anchovy fish enzymatic hydrolysate[J]. Science and Technology of Food Industry, 2020, 41(7): 8.

    [6]

    LI J, XIONG S, WANG F, et al. Optimization of micro-encapsulation of fish oil with gum arabic/casein/beta-cy-clodextrin mixtures by spray drying[J]. Journal of Food Science,2015,80(7):1445−1452. doi: 10.1111/1750-3841.12928

    [7] 吴建中, 王倩倩, 廖顺, 等. 安琪酵母发酵对秋刀鱼汤的脱腥作用原因分析[J]. 食品与发酵工业,2019,45(7):213−220. [WU J Z, WANG Q Q, LIAO S, et al. Causes analysis of deodorization of saury soup by Angel yeast fermentation[J]. Food and Fermentation Industries,2019,45(7):213−220.

    WU J Z, WANG Q Q, LIAO S, et al. Causes analysis of deodorization of saury soup by Angel yeast fermentation[J]. Food and Fermentation Industries, 2019, 45(7): 213-220.

    [8] 邓静, 杨荭, 朱佳倩, 等. 水产原料腥味物质的形成及脱腥技术研究进展[J]. 食品安全质量检测学报,2019,10(8):2097−2102. [DENG J, YANG H, ZHU J Q, et al. Research progress in the formation and deodorization technology of fishy odor for aquatic raw material[J]. Journal of Food Safety and Quality,2019,10(8):2097−2102. doi: 10.3969/j.issn.2095-0381.2019.08.003

    DENG J, YANG H, ZHU J Q, et al. Research progress in the formation and deodorization technology of fishy odor for aquatic raw material[J]. Journal of Food Safety and Quality, 2019, 10(8): 2097-2102. doi: 10.3969/j.issn.2095-0381.2019.08.003

    [9] 张朝敏, 徐永霞, 姜程程, 等. 茶多酚-海藻糖脱腥液对白鲢鱼贮藏品质的影响[J]. 食品工业科技,2015,36(24):321−324,337. [ZHANG C M, XU Y X, JIANG C C, et al. Effect of deodorization on quality of silver carp fillets during storage by tea polyphenols and trehalose[J]. Journal of Food Safety and Quality,2015,36(24):321−324,337.

    ZHANG C M, XU Y X, JIANG C C, et al. Effect of deodorization on quality of silver carp fillets during storage by tea polyphenols and trehalose[J]. Journal of Food Safety and Quality, 2015, 36(24): 321-324, 337.

    [10] 刘义武, 王碧. 柠檬营养成分与综合利用研究进展[J]. 内江师范学院学报,2012,27(8):46−51. [LIU Y W, WANG B. Research progress of nutritional components and comprehensive utilization of citrus limon[J]. Journal of Neijiang Normal University,2012,27(8):46−51. doi: 10.3969/j.issn.1671-1785.2012.08.012

    LIU Y W, WANG B. Research progress of nutritional components and comprehensive utilization of citrus limon[J]. Journal of Neijiang Normal University, 2012, 27(8): 46-51. doi: 10.3969/j.issn.1671-1785.2012.08.012

    [11] 郑世杰, 王朝瑾, 来庆华, 等. 冻干柠檬皮粉在四角蛤蜊水解液中的脱腥研究[J]. 食品工业科技,2017,38(15):225−232. [ZHENG S J, WANG C J, LAI Q H, et al. Research of deodorization of enzymatic hydrolysis solution of Mactra veneriformis by lemon peel powder[J]. Science and Technology of Food Industry,2017,38(15):225−232.

    ZHENG S J, WANG C J, LAI Q H, et al. Research of deodorization of enzymatic hydrolysis solution of Mactra veneriformis by lemon peel powder[J]. Science and Technology of Food Industry, 2017, 38(15): 225-232.

    [12] 张宇昊, 马良, 谢祥, 等. 花生短肽脱盐工艺研究[J]. 中国粮油学报,2010,25(2):117−120. [ZHANG Y H, MA L, XIE X, et al. Desalinization process of peanut oligopeptide[J]. Journal of the Chinese Cereals and Oils Association,2010,25(2):117−120.

    Zhang YH, MA L, XIE X, et al. Desalinization process of peanut oligopeptide[J]. Journal of the Chinese Cereals and Oils Association, 2010, 25(2): 117-120.

    [13]

    WU H C, CHEN H M, SHIAU C Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus)[J]. Food Research International,2003,36(9/10):949−957.

    [14]

    NIELSEN P M, PETERSEN D, DAMBMANN C. Improved method for determining food protein degree of hydrolysis[J]. Journal of Food Science,2001,66(5):642−646. doi: 10.1111/j.1365-2621.2001.tb04614.x

    [15] 苏明月, 岳敏, 毛振杰, 等. 蒸煮牡蛎肉的蛋白酶解特性及风味特征的研究[J]. 肉类研究,2019,44(5):128−134. [SU M Y, YUE M, MAO Z J, et al. Enzymatic properties and flavor characteristics of cooked oyster (Crassostrea gigas)[J]. Food Science and Technology,2019,44(5):128−134.

    SU M Y, YUE M, MAO Z J, et al. Enzymatic properties and flavor characteristics of cooked oyster (Crassostrea gigas)[J]. Food Science and Technology, 2019, 44(5): 128-134.

    [16] 刘登勇, 周光宏, 徐幸莲. 确定食品关键风味化合物的一种新方法: “ROAV”法[J]. 食品科学,2008,29(7):370−374. [LIU D Y, ZHOU G H, XU X L. "ROAV" method: A new method for determining key odor compounds of rugao ham[J]. Food Science,2008,29(7):370−374. doi: 10.3321/j.issn:1002-6630.2008.07.082

    LIU D Y, ZHOU G H, XU X L. "ROAV" method: A new method for determining key odor compounds of rugao ham[J]. Food Science, 2008, 29(7): 370-374. doi: 10.3321/j.issn:1002-6630.2008.07.082

    [17] 黄可欣. 牡蛎酶解液挥发性风味成分分析及脱腥工艺研究[D]. 广州: 华南理工大学, 2020.

    HUANG K X. Study on analysis of volatile components of oyster enzymatic hydrolysate and its deodorization process[D]. Guangzhou: South China University of Technology, 2020.

    [18] 翟培, 韩晋辉. 扁实柠檬汁抗氧化活性及其对冷鲜肉保鲜效果的研究[J]. 保鲜与加工,2018,18(1):26−31. [ZHAI P, HAN J H. Study on antioxidant activity and preservative effects on chilled meat of citrus depressa hayata juice[J]. Storage and Process,2018,18(1):26−31. doi: 10.3969/j.issn.1009-6221.2018.01.005

    ZHAI P, HAN J H. Study on antioxidant activity and preservative effects on chilled meat of citrus depressa hayata juice[J]. Storage and Process, 2018, 18(1): 26-31. doi: 10.3969/j.issn.1009-6221.2018.01.005

    [19] 王丹, 王智能, 董丽红, 等. 灭菌和贮藏温度对荔枝汁中多酚化合物组成、含量及其抗氧化活性的影响[J]. 食品工业科技,2021,42(11):275−280. [WANG D, WANG Z N, DONG L H, et al. Effect of sterilization and storage temperature on the composition, content and antioxidant activity of polyphenol compounds in lychee juice[J]. Science and Technology of Food Industry,2021,42(11):275−280.

    WANG D, WANG Z N, DONG L H, et al. Effect of sterilization and storage temperature on the composition, content and antioxidant activity of polyphenol compounds in lychee juice[J]. Science and Technology of Food Industry, 2021, 42(11): 275-280.

    [20] 程江华, 王灼琛, 董万领, 等. 葛根植物饮料中试生产过程中总黄酮含量变化研究[J]. 中国酿造,2013,32(7):98−100. [CHENG J H, WANG Z C, DONG W L, et al. Change of flavonoids in Pueraria lobata plant beverage during pilot production[J]. China Brewing,2013,32(7):98−100. doi: 10.3969/j.issn.0254-5071.2013.07.027

    CHENG J H, WANG Z C, DONG W L, et al. Change of flavonoids in Pueraria lobata plant beverage during pilot production[J]. China Brewing, 2013, 32(7): 98-100. doi: 10.3969/j.issn.0254-5071.2013.07.027

    [21] 苏国万, 赵炫, 张佳男, 等. 酱油中鲜味二肽的分离鉴定及其呈味特性研究[J]. 现代食品科技,2019,35(5):7−15. [SU W G, ZHAO X, ZHANG J N, et al. Isolation, identification and taste characteristics of umami dipeptides from soy sauce[J]. Modern Food Science and Technology,2019,35(5):7−15.

    SU W G, ZHAO X, ZHANG J N, et al. Isolation, identification and taste characteristics of umami dipeptides from soy sauce[J]. Modern Food Science and Technology, 2019, 35(5): 7-15.

    [22] 张梅超. 牡蛎蛋白酶解液风味改善及运动饮料的研制[D]. 青岛: 中国海洋大学, 2014.

    ZHANG M C. Studies on improvement of oyster hydrolysates flavor and technology of oyster sports beverage[D]. Qingdao: Ocean University China, 2014.

    [23]

    LI X, WANG K, YANG R, et al. Mechanism of aroma compounds changes from sea cucumber peptide powders (SCPPs) under different storage conditions[J]. Food Research International,2020,128:108757. doi: 10.1016/j.foodres.2019.108757

    [24] 杜超, 戚军, 姚文生, 等. 基于气相-离子迁移谱分析反复炖煮过程中鸡肉风味物质的变化规律[J]. 食品与发酵工业,2020,46(9):265−271. [DU C, QI J, YAO W S, et al. Detection of volatile compounds in re-stewed chicken by GC-IMS[J]. Food and Fermentation Industries,2020,46(9):265−271.

    DU C, QI J, YAO W S, et al. Detection of volatile compounds in re-stewed chicken by GC-IMS[J]. Food and Fermentation Industries, 2020, 46(9): 265-271.

    [25] 余远江, 庞一扬, 袁桃静, 等. 基于电子鼻、HS-GC-IMS 和GC-MS 分析五种水产原料的风味特征[J]. 食品工业科技,2021,42(19):106−117. [YU Y J, PANG Y Y, YUAN T J, et al. Analysis of flavor characteristics of five aquatic raw materials based on electronic nose, HS-GC-IMS and HS-SPME-GC-MS[J]. Science and Technology of Food Industry,2021,42(19):106−117.

    YU Y J, PANG Y Y, YUAN T J, et al. Analysis of flavor characteristics of five aquatic raw materials based on electronic nose, HS-GC-IMS and HS-SPME-GC-MS[J]. Science and Technology of Food Industry, 2021, 42(19): 106-117.

    [26]

    LI X P, LIU Y W, WANG Y Y, et al. Combined ultrasound and heat pretreatment improve the enzymatic hydrolysis of clam (Aloididae aloidi) and the flavor of hydrolysates[J]. Innovative Food Science and Emerging Technologies,2021,67:102596. doi: 10.1016/j.ifset.2020.102596

    [27] 陈小冬, 江猛, 王菊琳, 等. 白鲢鱼糜熟制后挥发性风味的对比[J]. 食品科技,2016,41(4):152−160. [CHEN X D, JIANG M, WANG J L, et al. Comparison of cooked silver carp surimi on volatile flavor[J]. Food Science and Technology,2016,41(4):152−160.

    CHEN X D, JIANG M, WANG J L, et al. Comparison of cooked silver carp surimi on volatile flavor[J]. Food Science and Technology, 2016, 41(4): 152-160.

    [28]

    CHEN K, YANG X, HUANG Z, et al. Modification of gelatin hydrolysates from grass carp (Ctenopharyngodon idellus) scales by Maillard reaction: Antioxidant activity and volatile flavor compounds[J]. Food Chemistry,2019,295:569−578. doi: 10.1016/j.foodchem.2019.05.156

    [29] 王俊宁, 任雪岩, 余树明, 等. 9个菠萝蜜品系香气成分及特征香气分析[J]. 果树学报,2018,35(5):574−585. [WANG J N, REN X Y, YU S M, et al. Analysis of aroma compounds in 9 jackfruit varieties[J]. Journal of Fruit Science,2018,35(5):574−585.

    WANG J N, REN X Y, YU S M, et al. Analysis of aroma compounds in 9 jackfruit varieties[J]. Journal of Fruit Science, 2018, 35(5): 574-585.

    [30] 徐杨斌, 王凯, 朱瑞芝, 等. 香柠檬油挥发性成分的GC-TOFMS分析[J]. 食品研究与开发,2015,36(22):134−137. [XU Y B, WANG K, ZHU R Z, et al. Analysis of volatile components of bergamot oil by GC/TOFMS[J]. Food Research and Development,2015,36(22):134−137. doi: 10.3969/j.issn.1005-6521.2015.22.034

    XU Y B, WANG K, ZHU R Z, et al. Analysis of volatile components of bergamot oil by GC/TOFMS[J]. Food Research and Development, 2015, 36(22): 134-137. doi: 10.3969/j.issn.1005-6521.2015.22.034

    [31] 谢恬, 王丹, 马明娟, 等. OAV和GC-O-MS法分析五香驴肉风味活性物质[J]. 食品科学,2018(8):123−128. [XIE T, WANG D, MA M J, et al. Identification of flavor-active compounds in spiced donkey meat by odor activity value (OAV) calculation and gas chromatography-olfactometry-mass spectrometry[J]. Food Science,2018(8):123−128. doi: 10.7506/spkx1002-6630-201808020

    XIE T, WANG D, MA M J, et al. Identification of flavor-active compounds in spiced donkey meat by odor activity value (OAV) Calculation and Gas Chromatography-Olfactometry-Mass Spectrometry[J]. Food Science, 2018(8): 123-128. doi: 10.7506/spkx1002-6630-201808020

    [32] 常海军, 彭荣, 唐春红. 重庆城口腊肉挥发性风味化合物分析[J]. 食品科学,2016,37(4):120−126. [CHANG H J, PENG R, TANG C H. Volatile flavor compounds of chongqing chengkou bacon[J]. Food Science,2016,37(4):120−126. doi: 10.7506/spkx1002-6630-201604022

    CHANG H J, PENG R, TANG C H. Volatile flavor compounds of chongqing chengkou bacon[J]. Food Science, 2016, 37(4): 120-126. doi: 10.7506/spkx1002-6630-201604022

    [33] 王建辉, 杨晶, 刘永乐, 等. 不同贮藏条件下草鱼肌肉挥发性成分的变化分析[J]. 现代食品科技,2014,30(9):297−303. [WANG J H, YANG J, LIU Y L, et al. Variation in volatile components of grass carp muscle under different storage conditions[J]. Modern Food Science and Technology,2014,30(9):297−303.

    WANG J H, YANG J, LIU Y L, et al. Variation in volatile components of grass carp muscle under different storage conditions[J]. Modern Food Science and Technology, 2014, 30(9): 297-303.

    [34] 杨姣, 安玥琦, 陈雨欣, 等. 鱼糜制品加热过程中过熟味的特征风味成分解析[J]. 现在食品科技,2020,36(8):265−280. [YANG J, AN Y Q, CHEN Y X, et al. Characterization of odorant components in surimi products with warmed-over flavor during the heating process[J]. Modern Food Science and Technology,2020,36(8):265−280.

    YANG J, AN Y Q, CHEN YX, et al. Characterization of odorant components in surimi products with warmed-over flavor during the heating process[J]. Modern Food Science and Technology, 2020, 36(8): 265-280.

    [35] 孙宝国. 食用调香术. 第2版[M]. 北京: 化学工业出版社, 2003.

    SUN B G. The technology of food flavoring. Second edition[M]. Beijing: Chemical Industry Press, 2003.

    [36] 梅明鑫. 巴氏灭菌前后沃尔卡姆柠檬汁挥发性成分的分析比较[J]. 中国酿造,2020,39(10):176−182. [MEI M X. Analysis and comparison of aroma components of Volkamer lemon juice before and after pasteurization[J]. China Brewing,2020,39(10):176−182. doi: 10.11882/j.issn.0254-5071.2020.10.033

    MEI M X. Analysis and comparison of aroma components of Volkamer lemon juice before and after pasteurization[J]. China Brewing, 2020, 39(10): 176-182. doi: 10.11882/j.issn.0254-5071.2020.10.033

    [37] 陈晓晶, 黄文佳, 杜丽清. 柠檬果皮精油的成分分析及其抗氧化活性研究[J]. 广东化工,2021,48(8):89−92. [CHEN X J, HUANG W J, DU L Q. Chemical constituents and antioxidant activities of essential oils from lemon peel[J]. Guangdong Chemical Industry,2021,48(8):89−92. doi: 10.3969/j.issn.1007-1865.2021.08.033

    CHEN X J, HUANG W J, DU L Q. Chemical constituents and antioxidant activities of essential oils from lemon peel[J]. Guangdong Chemical Industry, 2021, 48(8): 89-92. doi: 10.3969/j.issn.1007-1865.2021.08.033

    [38]

    ALLEGRONE G, BELLIARDO F, CABELLA P, et al. Comparison of volatile concentrations in hand-squeezed juices of four different lemon varieties[J]. Journal of Agricultural and Food Chemisty,2006,54(5):1844−1848. doi: 10.1021/jf051206s

    [39]

    IGLESIAS J, MEDINA I. Solid-phase microextraction method for the determination of volatile flavor compounds associated to oxidation of fish muscle[J]. Journal of Chromatography A,2018,1192(1):9−16.

图(8)  /  表(3)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  48
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 网络出版日期:  2022-06-28
  • 刊出日期:  2022-08-31

目录

/

返回文章
返回