• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

茶叶挥发性成分提取及其香气特征分析研究进展

舒心, 高彦祥

舒心,高彦祥. 茶叶挥发性成分提取及其香气特征分析研究进展[J]. 食品工业科技,2022,43(15):469−480. doi: 10.13386/j.issn1002-0306.2021080311.
引用本文: 舒心,高彦祥. 茶叶挥发性成分提取及其香气特征分析研究进展[J]. 食品工业科技,2022,43(15):469−480. doi: 10.13386/j.issn1002-0306.2021080311.
SHU Xin, GAO Yanxiang. Research Progress on Extraction of Volatile Compounds and Analysis of Aroma Characteristics in Tea[J]. Science and Technology of Food Industry, 2022, 43(15): 469−480. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080311.
Citation: SHU Xin, GAO Yanxiang. Research Progress on Extraction of Volatile Compounds and Analysis of Aroma Characteristics in Tea[J]. Science and Technology of Food Industry, 2022, 43(15): 469−480. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080311.

茶叶挥发性成分提取及其香气特征分析研究进展

基金项目: 国家重点研发计划(2017YFD040080)。
详细信息
    作者简介:

    舒心(1998−),女,硕士研究生,研究方向:功能配料与食品添加剂,E-mail:shuxincau@126.com

    通讯作者:

    高彦祥(1961−),男,博士,教授,研究方向:功能配料与食品添加剂,E-mail:gyxcau@126.com

  • 中图分类号: TS272

Research Progress on Extraction of Volatile Compounds and Analysis of Aroma Characteristics in Tea

  • 摘要: 茶叶香气是决定其品质好坏与嗜好程度的重要因素。对茶叶香气特征进行充分解析将有助于指导茶叶加工,进一步提升茶叶品质。挥发性成分提取与分析鉴定则是解析其香气特征的关键步骤。为此,本文结合近年来国内外茶叶香气的研究进展,主要介绍了茶叶中挥发性成分常用的提取手段,总结归纳了茶叶关键呈香物质的分析方法,并对六大茶类的香气特征进行概述,旨在为茶叶香气的深入研究提供相关理论依据。
    Abstract: Tea aroma plays an important role in its quality and preference. A fully analysis of tea aroma characteristics will help guide tea processing and further improve its quality. Extracting and identifying volatile compounds in different types of tea are critical steps to analyze its aroma characteristics. To this end, this paper mainly introduce the commonly used extraction methods for tea volatile compounds, the analytical methods of key aroma substances are summarized, and the aroma characteristics of six major tea categories are also overviewed based on research progress domestic and abroad, aiming to provide a theoretical basis for the in-depth study of tea aroma.
  • 茶叶香气是不同类型和含量的挥发性物质带来的综合感受。作为评价茶叶品质的一项重要指标,茶叶的香气特征受到了广泛的关注。目前,研究人员已从茶叶中提取并分离出700多种香气物质,主要包括醇、醛、酮、酸、酯、酚及杂环类等化合物[1]。在茶叶香气特征的解析过程中,所选择的挥发性物质的提取方法决定了所获香气成分的完整性和真实性;受相对气味强度的影响,茶叶中挥发性物质对香气的贡献程度有所差异。因此,在对挥发性物质进行充分提取的同时,仍需综合选择合适的鉴定手段确定其中的关键性呈香物质,并对茶叶香气特征进行充分分析。本文主要介绍了茶叶挥发性成分的提取手段和鉴定分析方法,并对不同类型茶叶的香气特征和关键呈香物质的研究进展进行了综述,为茶叶香气与风味的深入研究提供理论依据。

    作为茶叶香气特征分析的第一步,挥发性成分提取的完整性以及真实程度对后续分析结果的准确性有着重要的影响。目前常见的茶叶香气成分提取方法有水蒸气蒸馏法、同时蒸馏萃取法、超临界流体萃取法、旋转锥体柱提取法和固相微萃取法等。

    水蒸气蒸馏法(steam distillation,SD)是一种较传统的提取方法,因设备简单、操作简便,常用于挥发性物质的大规模提取。在SD法中,易挥发组分被高温蒸气所带出,经冷凝、分离、萃取、浓缩等工序后即得富含香气物质的挥发油[2]。与其他提取方法相比,SD法获得的精油产率更高[3]。Gao等[4]探究了索氏提取法(soxhlet extraction,SE)、超声辅助提取法(ultrasonic assisted extraction,UAE)、同时蒸馏萃取法(simultaneous distillation and extraction,SDE)和水蒸气蒸馏法(steam distillation,SD)对普洱茶精油提取率的影响;四种方法的挥发油提取率分别为0.81 g/kg(SE)、0.36 g/kg(UAE)、0.11 g/kg(SDE)和0.59 g/kg(SD);挥发油中分别鉴定出40(SE)、38(UAE)、35(SDE)和47(SD)种成分;在同时考虑挥发油提取率和风味成分的情况下,采用SD法提取的效果最佳。对安化茯砖茶中香气成分提取时,采用SD法获得的挥发油组分更为丰富,对低沸点、低含量的化合物有更好的保留效果[5]。然而,过高的提取温度可能会造成风味物质的破坏;提取时间过长可能会导致香气中掺杂有不愉悦的蒸煮味[6]

    为了提高效率,同时蒸馏萃取法(simultaneous distillation and extraction,SDE)将水蒸气蒸馏与溶剂萃取过程结合,使携带有香气物质的水蒸气和有机蒸气在顶部区域混合,待混合气冷却、充分萃取分层后,萃取液分别回流至各自加热釜中再次提取,通过反复上述操作实现香气物质的富集(图1[7-8]。SDE法萃取效率高,对样品中含量较少的挥发性香气成分有较好的分离效果[9]

    图  1  同时蒸馏萃取法(SDE)实验仪器原理图[8]
    Figure  1.  Schematic diagram of the simultaneous distillation and extraction (SDE) experimental apparatus[8]

    采用SDE法获得的香气成分种类较多,且对高沸点物质的提取量更大。例如,廖素兰等[10]分别采用SDE法、静态顶空法(SHS)和固相微萃取(SPME)法从武夷水仙茶中提取出了121种、61种和114种挥发性成分,且采用SDE获得的挥发性物质中高沸点的醇类和酯类含量更高。Lin等[11]采用SDE法对白茶的挥发性物质进行提取,并鉴定出32种关键呈香物质,苯乙醛、β-大马酮、2-戊基呋喃、芳樟醇等在高温下获得的典型芳香物质可能是通过氨基酸降解、胡萝卜素降解、美拉德反应和糖苷水解等四种途径所产生的。因此,需要注意的是,SDE法需在高温密闭条件下对香气物质进行反复萃取浓缩,该过程中一些热敏性香气物质易受热分解;同时醇、醛、酸等物质间可能会发生反应,最终导致提取物与真实香气成分间产生差异[12-13]

    超临界流体萃取(supercritical fluid extraction,SFE)是基于超临界流体(supercritical fluid,SCF)所具有的特殊增溶能力,将特定成分从固体/液体中萃取分离提取的一种方法,其在食品油脂、天然香料、生物活性物质提取等方面具有广泛的应用前景[14-17]。CO2作为一种安全无毒、成本低、环境友好型溶剂,其临界温度接近室温(31 ℃),临界压力适中(7.3 MPa),在超临界状态下的黏度仅为液体的1%,而扩散系数却是液体的100倍,具有良好的传质特性,是超临界流体萃取中最常用的萃取剂[18-20]。CO2在超临界状态下的极性与戊烷相近,常用于非极性/弱极性物质的提取[19]。夹带剂(甲醇、乙醇、二氯甲烷、乙腈等)的加入还可提高极性分子的溶解度、拓宽物质提取的应用范围,同时还能降低操作压力和CO2消耗[19, 21]

    与传统的SE和SDE法相比,采用超临界CO2萃取法(supercritical CO2 extraction,SC-CO2)提取时,铁观音茶香气成分的质量分数和萃取率均有显著提升[22]。在采用SC-CO2法提取风味物质时,常需要对压力、温度、时间、流体流量、夹带剂等工艺参数进行优化[23]。张琪等[24]采用正交试验设计,对SC-CO2法提取前岭银毫茶叶精油的工艺条件进行了优化,在最佳萃取条件(压力25 MPa、温度45 ℃、CO2流量8 L/h、时间4 h)下获得的茶叶精油得率为2.57%,香气成分保留时间较长,风味与原茶一致。作为一种绿色新型提取技术,SFE法为茶叶香气物质提取提供了一条新思路。但目前其仍存在设备运行成本高、生产力偏低的问题;且针对不同特性的原料均需合理设计提取参数,这将对提高分离效果、减少样品损失、降低能耗起到重要作用。

    旋转锥体柱(spinning cone column,SCC)是一种特殊的液-气接触装置(图2)。在真空条件下,富含挥发性组分的液态物料受重力和旋转锥离心力的作用,与逆向而上的蒸气/惰性气体接触并进行充分的传热传质,捕获挥发性组分的蒸气经柱顶冷凝系统冷却后,即可获得富含挥发性成分的提取/浓缩液[25]。SCC技术具有操作时间短、液体滞留量小、压降小、分离效率高等优点,可对高沸点、难分离、热敏性香气化合物进行分离提纯[26]。目前该技术已用于茶叶/咖啡香气物质回收、葡萄酒/啤酒脱醇和精油提取[27-28]。高阳等[29]采用SCC法对龙井茶香气物质进行了提取,挥发油得率为0.198%,并鉴定出85种化学成分,提取效果明显优于传统水蒸气蒸馏法。Glancy等[30]在速溶茶片剂发明专利的提取/浸渍工艺环节采用SCC技术以提高香气物质存留,获得更佳口感。恒枫食品科技有限公司采用酶解和SCC技术联用获得四季春茶香气提取液;该发明在提高提取液中萜烯醇类花香气物质比重的同时,缩短了料液在旋转锥体柱中的停留时间,减少了香气成分的破坏[31]。目前,国内采用SCC提取茶叶风味物质的研究报道偏少,该项技术应用仍处于初期阶段。提取过程涉及到样品添加量、流速、温度、真空度等参数对提取效果的影响仍需进行深入探究和优化。

    图  2  旋转锥体柱(SCC)结构示意图[25]
    Figure  2.  Schematic diagram of spinning cone column (SCC)[25]

    固相微萃取法(solid phase micro-extraction,SPME)通常是利用熔融石英纤维(固定相)表面涂层对化合物吸附性的差异,对挥发性成分进行提取、富集[32]。SPME具有灵敏度好、样品需求量少、操作过程重复性高、无需使用有机溶剂等优点,常用于食品中挥发性成分、农药残留的分析鉴定[33-35]。根据萃取方法的不同,SPME又可分为直接固相微萃取(direct-solid phase micro-extraction,DI-SPME, 纤维插入液体样品或暴露于气体)和顶空固相微萃取(headspace solid phase micro-extraction,HS-SPME, 纤维至于样品上方蒸气相)[36]。与DI-SPME法相比,HS-SPME法达到吸附平衡的速率更快,更适合复杂样品中挥发性组分的提取[36-37]。此外,HS-SPME法还能与各种分析手段连用(如GC、GC-MS、HPLC、LC-MS、GC-O),实现物质成分的分析鉴定(图3[38]

    图  3  顶空固相微萃取(HS-SPME)及气相色谱(GC)分析过程示意图[39]
    Figure  3.  Schematic diagram of the headspace solid phase micro-extraction (HS-SPME) and gas chromatography (GC) process[39]

    HS-SPME法对于茶叶中典型的香气成分具有较好的提取效果。Chen等[40]采用HS-SPME法,对白茶三种不同亚种(白毫银针、白牡丹、寿眉)中挥发性香气成分进行了提取,并分离鉴定出25种化合物;多元分析和感官评价结果表明,苯乙醇、γ-壬内酯、反式-β-紫罗兰酮、反式-氧化芳樟醇、α-紫罗兰酮和顺-3-丁酸己酯是白茶中主要的呈香物质。采用HS-SPME法对绿茶、白茶和黄茶中香气成分进行提取的结果表明,醇类化合物中芳樟醇及其氧化物、脱氢芳樟醇、香叶醇,酯类化合物中顺-己酸-3-己烯酯和反-丁酸-3-己烯酯相对含量高[41]。在对乌牛早绿茶香气成分进行提取分析时,采用HS-SPME法能获得包括呈现花香气的2,6-二甲基环己醇、桂花香气的环氧芳樟醇、木质香气的δ-杜松烯和甜香气的β-紫罗酮与α-白菖考烯等典型的香气成分[42]

    选用HS-SPME法提取挥发性物质时,由于竞争效应可能会导致原本香气失真;此外,SPME所使用的固定相纤维易发生断裂,加之吸附涂层具有选择吸附性,吸附量较小、耐热性较差、涂层易发生剥离,该项技术在应用中仍存在一定的限制[32, 43]。因此,制备具有稳定性好、效率高、容量大、适用范围广的新型SPME材料也是拓展其在香气物质萃取富集应用中的关键。

    选择合适的提取方法对茶叶中挥发性成分进行提取后,还需对提取的成分进一步鉴定、分析,以确定茶叶中关键的呈香物质及其香气特征。常用的分析表征方法有:气相色谱-质谱联用法、气相色谱-离子迁移谱法、气相色谱-嗅觉测量分析法、全二维气相色谱法和电子鼻测定法等。

    气相色谱-质谱(Gas chromatography-mass spec-trometry,GC-MS)是对食品中挥发性和半挥发性物进行分离、结构鉴定以及定量分析时最常选用的方法[44]。GC-MS技术能对茶叶加工过程中香气物质的变化进行检测分析。Wang等[45]采用HS-SPME/GC-MS技术对云南碧螺春加工过程中茶叶挥发性成分进行了提取,并鉴定出67种挥发性成分;其中,芳樟醇氧化物、β-紫罗酮、苯乙醛、醛类、酮类和含氮化合物等在加工过程中含量有所增加,而醇类和碳氢化合物含量降低。基于茶叶中挥发性成分种类与含量的差异,GC-MS还可以对同品种茶叶等级进行鉴别。GC-MS联合化学计量分析法对五个不同等级(特级、一至四级)的浓香铁观音香气差异分析结果表明,香气成分中2-甲基呋喃、2-乙基呋喃、异亚丙基丙酮、2-戊基呋喃和D-柠檬烯含量与茶叶等级呈负相关,1-乙基吡咯含量与分级呈正相关;该研究为浓香铁观音茶叶等级划分提供了一种可参考的量化方法[46]

    GC-MS法在茶叶挥发性物质分析检测中应用非常广泛,但由于GC-MS存在检测限值,一些浓度低而相对气味强度较高的挥发性物质可能无法检出,进而影响分析结果的准确性。因此,采用GC-MS法分析的同时,可与其他表征手段联合使用,以获得更全面的风味信息。

    气相色谱-离子迁移谱(gas chromatography-ion mobility spectroscopy,GC-IMS),是基于不同气相离子在电场中迁移速度差异对化学离子物质进行表征的一项分析方法[47-48]。因其具有响应快、灵敏度高等特点,非常适用于痕量级组分的分析[49-50]。目前,GC-IMS技术已广泛应用于食品中挥发性风味物质的检测分析。金文刚等[51]利用GC-IMS技术分析了不同产地(南郑、勉县、镇巴、西乡、宁强)汉中仙毫绿茶的气味指纹差异,从汉中仙毫茶汤中共鉴定出61种挥发性气味物质。通过建立挥发性气味物质指纹图谱,该研究实现了不同产地茶叶气味物质差异的可视化呈现,对今后茶叶的品质控制、产地区分、质量评估提供了新思路。GC-IMS技术还能对茶叶加工过程中挥发性成分变化进行分析。李俊杰等[52]采用GC-IMS技术分析了手筑茯砖茶发酵和干燥过程中挥发性组分的变化情况。整批茶样共检测出85种挥发性有机物组分,其中有58种成分在发酵和干燥过程中总浓度呈现上升趋势,27种物质含量降低;通过发酵、干燥工艺,手筑茯砖茶由最初的潮湿、青辛气逐渐成熟,最后形成特有的药草香、木香、花果香和菌花香。目前,GC-IMS技术在茶叶风味物质分析鉴定中的应用偏少,应加快建立较完善的GC-IMS数据库,以实现快速、灵敏、自动检测。

    食品中一些挥发性物质对风味的贡献程度并非与其浓度呈正相关,这便造成了化学仪器检测信号强度与人体感知气味强度之间的差异[53]。为了能够更好地评价单一组分对于产品整体风味的贡献情况,气相色谱-嗅闻技术(gas chromatography-olfactometry,GC-O)将气相色谱的高分辨能力与人类嗅觉感知的选择性相结合,在对挥发性物质进行高效分离、测定、定量的同时,能使人们更好地理解对应刺激所产生的风味特征[53-55]。常用的GC-O检测方法有稀释法、检测频率法和强度法三种;检测方法的选择应根据研究目的、闻香人员的水平、分析对象的性质、分析时间等因素综合考虑[56]

    Chen等[57]采用SDE法提取中国陕西勉县红茶的挥发性成分,并利用GC-MS/O技术,香气提取稀释法(aroma extract dilution analysis,AEDA)对红茶中关键呈香物质进行了鉴定。结果表明,挥发组分中苯乙醛(蜂蜜味)、E,E-2,4-壬二烯醛和E-2-己烯醛(青草气)、E,Z-2,6-壬二烯醛(黄瓜味)、α/β-紫罗酮(罗兰香)、芳樟醇(花香气)、香叶醇(玫瑰香)、1-辛烯-3-酮(蘑菇香)、2-甲基丁酸乙酯(果香)具有非常高的稀释因子值(dilution factor,FD,香气提取物能被感知的最高稀释比值),气味强度突出。从红茶提取的58种香气物质中,共有19种化合物的香气活度值(odour activity value,OVA,香气成分的浓度与其香味检测阈值的比值)大于1,是陕西勉县红茶的关键性香气成分,其中,2-甲基丁酸乙酯气味阈值低(0.15 µg/L)、浓度高(82.5 µg/L),OVA最大;其次为E,Z-2,6-壬二烯醛(OAV 395)和β-紫罗酮(OAV 379)。

    GC-O法虽然可以用于活性香气物质的鉴定,但风味物质具有含量低、不稳定等特点;且组成成分越复杂,嗅闻判断分析越困难[58-59]。通过与参考气味特征进行比对或比较保留指数(RI)只能对化合物进行初步鉴定,因此,仍需借助气相色谱-质谱、红外光谱、核磁共振等技术对关键呈香物质进行进一步分析,以获取更为精准的信息。

    考虑到食品中风味物质组成的复杂性,一维气相色谱有时难以将各组分充分分离,造成检测结果的偏差。全二维气相色谱法(GC×GC)通过使用两根性质不同的色谱柱分离样品,将第一维气相色谱柱分离的组分通过中心切割(heart-cut)导入第二维气相色谱柱中再次进行分离,进而提高了待分析物的峰容量和分辨率,减少了背景干扰[60-61]。GC×GC还能与质谱(TOFMS、qMS)、紫外检测器(FPD、FID)、嗅闻检测(Olfactometry)等技术联用,提供更为准确、全面的风味物质信息。Zhu等[62]采用GC-MS、GC×GC-qMS、OVA和香气重组法对崂山绿茶中的特征香气成分进行了分析,其中GC-MS法鉴定出25种风味物质(OVA>1),而采用GC×GC-qMS法共鉴定出了38种。香气重组实验的结果也表明,与GC-MS相比,GC×GC-qMS鉴定出的香气物质能更准确地反映原始的风味特征。全二维气相色谱具有分辨率高、灵敏性好、峰容量大等优势,适用于复杂组分的分离与鉴定,但系统结构和参数较为复杂。为拓宽其在香气物质分析领域的应用,应将挥发性组分提取前处理过程、后续检测过程和该项技术充分结合,建立更合理、快速、准确的分析方法。

    电子鼻(electronic nose,E-nose)是一种模仿人类嗅觉对挥发物质进行识别分类的检测方法[63]。与GC、HPLC等常用化学仪器分析法不同,E-nose技术不涉及组分的分离,获得的是样品中所有挥发性物质的整体信息,而非样品中某一种或几种化合物的定性或定量测定结果,具有成本低、耗时少等突出优势[64]。E-nose主要由样本收集系统、化学传感器和模式识别系统组成;传感器与挥发性分子相互作用后,传感材料相关特性发生变化,这些变化被识别后经模式算法进一步鉴别分类,进而实现香气的表征[65]

    李大雷等[66]采用HS-SPME结合E-nose对三种不同品牌普洱茶(大益普洱茶、老同志普洱茶、澜沧古茶普洱茶)香气成分的差异进行分析;E-nose主成分分析(PCA)结果显示三个品牌普洱茶整体香气成分差异显著;E-nose能对不同品牌普洱茶香气进行准确区分。为探究(E)-2-己烯醛与乌龙茶香气的协同作用,Zhu等[64]首先在乌龙茶汤中加入了低于其气味阈值浓度的(E)-2-己烯醛(0.03 ppm),并通过E-nose金属氧化半导体(MOS)传感器探究了其对茶汤整体气味的影响;感官评定结果表明,加入(E)-2-己烯醛后,茶样的焙烤气和硫磺气强度有所降低,茶样的甜香气、青草气、花香气强度有所增强;MOS的18个传感器测试结果进一步证实,两种乌龙茶汤中香气物质的指纹图谱存在明显的差异;香气成分间存在的协同或掩蔽作用会对整体风味感知产生影响。

    作为一种新型、快速、高效的挥发性成分检测技术,E-nose具有非常广泛的应用前景;但由于E-nose无法对复杂成分中各种挥发性风味物质进行定性定量分析,其仍需与GC-MS、GC-O等技术联用。此外,E-nose的精确性在很大程度上取决于传感器的灵敏稳定性、数据处理方式以及预测的模型准确性。因此,寻找构建新型传感材料、开发合适的数据处理方法和建立新型预测模型将是E-nose未来发展的研究重点[63,65,67]

    根据加工方式不同,茶叶分为绿茶、红茶、乌龙茶、白茶、黑茶和黄茶六大类,且不同类型茶叶香型各具其特色[68]。通过对挥发性成分提取、鉴定分析,我们能更全面地掌握不同类型茶叶中关键呈香物质种类及其香气特征。

    绿茶中芳香物质组成包括碳氢化合物、醇类、酮类、酸类、脂类、酚类、醛类、内脂类、过氧化物类、含硫化合物类。由于原料来源、加工工艺、提取方法、鉴定分析方法的不同,不同类型绿茶中的呈香物质存在较大的差异(表1)。总体上来说,绿茶的典型香气类型主要有栗香型、清香型和花香型,不同香型中呈香物质构成各有差异。在栗香型绿茶中,醛类、烯类、酮类和芳香烃类香气物质含量较高[69-70];1-辛烯-3-醇、异丁醛、己醛、苯乙醛、壬醛、癸醛、1-辛烯-3-酮、芳樟醇、β-紫罗酮、庚醛、对伞花烃、己酸乙酯等被认为是栗香型绿茶的关键香气成分[71]。清香型绿茶挥发性成分中醛类、醚类、醇类、烷烃类、芳香烃化合物以及酯类化合物占比较高,其中芳樟醇、香叶醇、叶绿醇、乙醛、吲哚、乙苯、2-乙氧基丁烷和乙丙醚等是香气成分含量较高[72-73]。而在花香型绿茶中,主要香气成分为芳樟醇及其氧化物、水杨酸甲酯、香叶醇、己酸-顺-3-乙己烯酯、丁香烯、α-法呢烯、橙花叔醇、茉莉酮酸甲酯、6,10,14-三甲基十五烷酮及邻苯二甲酸二丁酯等[74]。绿茶香型特征与其加工工艺有密切关联。黄海涛等[72]采用同一茶树品种分别采制了花香型和清香型茶样,结果发现不同香型茶样的香气组分组成与含量具有较大差异,花香型茶样酯类物质含量高于清香型,而清香型绿茶中醇类、烯烃类物质含量高;两种香型中顺-己酸-3-己烯酯、β-紫罗酮、苯甲醛、萘、3,5-辛二烯-2-酮、α-雪松烯、吲哚、茉莉内酯等香气物质存在显著差异。

    表  1  不同类型绿茶的香气特征及关键呈香物质
    Table  1.  Aroma characteristics and key aroma compounds in different types of green tea
    类型提取方法鉴定方法香气特征关键呈香物质参考文献
    龙井SBSEGC-MS、GC-O、OAV青草香、甜香、花香、
    果香、烘烤香
    2-甲基丁醛,二甲亚砜,庚醛,苯甲醛,1-辛烯-3-醇,(E, E)-2,4-二烯醛,苯乙醛,芳樟醇及其氧化物,(E,E)-3,5-辛二烯-2-酮,壬醛,水杨酸甲酯,香叶醇,β-紫罗酮[75]
    西湖龙井SDEGC×GC-TOFMS、
    GC-MS
    花香、果香、清香顺-3-己烯醇、芳樟醇、α-松油醇、香叶醇、壬醛、顺-己酸-3-己烯酯、吲哚、芳樟醇氧化物(吡喃型)[76]
    洞庭碧螺春HDEGC-MS、GC-O、OAV清香、青气2-戊基呋喃、6-甲基-5-庚烯-2-酮、1-辛烯-3-醇、1,5-辛二烯-3-醇、乙位环高柠檬醛、α-紫罗兰酮、β-紫罗兰酮、5,6-环氧紫罗兰酮、柏木脑、二氢猕猴桃内酯[77]
    六安霍山SDGC-MS、OVA、感官评价木香、果香、青香、
    花香、烘烤香
    β-大马酮、反式-β紫罗兰酮、芳樟醇、香叶丙酮、反式-β-罗勒烯、橙花醇、1-辛醇、2-乙基-3,5-二甲基吡嗪[78]
    薄纱绿茶SBSEGC-MS、感官评价栗香、清香、果香、
    坚果香、烘烤香
    芳樟醇、α-水芹烯、蒎烯、香叶醇、茶吡咯、2-甲基丁醛[79]
    信阳毛尖SDEGC-MS、感官评价清香Β-芳樟醇、壬醛、环氧芳樟醇、反式香叶醇、δ-杜松烯、反式橙花叔醇、棕榈酸、反式植醇[80]
    黄山毛峰SDEGC-MS、感官评价香气馥郁带兰花香棕榈酸、β-芳樟醇、反式香叶醇、壬醛、己醛、反式植醇、环氧芳樟醇、庚醛[80]
    注:SBSE搅拌棒吸附萃取(stir bar sorptive extraction);HDE顶空蒸馏萃取(headspace distillation extraction)。
    下载: 导出CSV 
    | 显示表格

    红茶中香气成分种类繁多,其主要香气成分是在鲜茶发酵过程中产生的;迄今为止,已从红茶中检测出了400多种呈香成分[81-82]。醇类、酯类、醛类、酮类和烯类、烷烃类等是红茶中主要香气物质,其中,芳樟醇、橙花醇、水杨酸甲酯、壬醛和苯乙醛等香气成分在红茶中含量较高[83]。花香、甜香、果香是红茶的典型香气特征。徐元骏等[84]分析了3种花香型红茶(香凝红、金观音红茶、黄观音红茶)的香气化合物组成及香气特征差异。结果表明,花香型红茶中醇类、烷烃类、脂类和酮类化合物含量较高,橙花叔醇、α-法尼烯、吲哚为花香型红茶的特征香气物质。葛晓杰等[85]采用HS-SPME/GC-O-MS对红茶花香和甜香香型的关键呈香物质进行了分析与鉴定;反式-芳樟醇氧化物、芳樟醇、香叶醇、苯甲醇为花香型和甜香型红茶中所共有的主要挥发性成分;水杨酸甲酯(香草味)、橙花醇(花香)、苯甲醛(草药味)、氧化芳樟醇(草药味)在花香型红茶中呈香更显著,而脱氢芳樟醇(油臭味)、(E,E)-2,4-庚二烯醛(辛臭味)、(E,E)-3,5-辛二烯-2-酮(草药味)在甜香型红茶中呈香更显著,这7种呈香成分是决定香型差异的关键因子。除上述文献报道外,其他类型红茶的香气特征及关键呈香物质汇总见表2

    表  2  不同类型红茶的香气特征及关键呈香物质
    Table  2.  Aroma characteristics and key aroma compounds in different types of black tea
    名称提取方法鉴定方法香气特征关键呈香物质参考文献
    英德红茶HS-SPMEGC-MS、GC-O、OAV果香、花香、焦糖香、
    青香、木质香
    β-大马酮、β-紫罗兰酮、芳樟醇、己酸乙酯、二甲基硫醚、三甲基硫醚、壬醛、水杨酸甲酯、异戊酸3-己烯酯、雪松醇、长叶烯[86]
    滇红冲泡提取GC-E-nose甜香、花香、果香、
    木香、焙烤香
    3-甲基戊烷、3-乙基戊烷、月桂烯、芳樟醇、橙花醇、反式-2-己烯和α-萜品烯[87]
    福鼎红茶HS-SPMEGC-MS青香气、花
    香、甜香、果香
    芳樟醇及芳樟醇氧化物、β-环柠檬醛、β-紫罗酮、香叶基丙酮、二氢猕猴桃内酯、β-柏木烯、2,2,6-三甲基-6-乙烯基四氢-2H-呋喃-3-醇、水杨酸甲酯[88]
    祁门红茶SPEGC-MS、GC-O、OVA花香、焦糖香、甜香1-辛烯-3-酮、芳樟醇氧化物、愈创木酚、(E,Z)-2,6-壬二烯醛、4,5-二甲基-3-羟基-2,5-二氢呋喃-2-酮、(E,E)-2,4-壬二烯醛、2-甲基丁酸乙酯、2-戊基呋喃、苯乙醛、2-乙酰噻唑、α-紫罗兰酮、香叶醇[89]
    大吉岭SAFEGC-O、ADEA花香、蜜香、焦糖香、
    甜香
    香兰素、苯乙酸、3-羟基-4,5-二甲基-3(2H)-呋喃酮、4-羟基-2,5-二甲基-2(5H)-呋喃酮、β-紫罗酮、E,E,Z-2,4,6-壬三烯醛[90]
    信阳红茶HS-SPMEGC-MS、OVA花果香香叶醇、芳樟醇、苯乙醛、己酸顺-3-己烯酯、β-大马烯酮、β-紫罗酮、香叶醇、癸醛、苯乙醛、反-氧化芳樟醇、壬醛[91]
    注:SPE固相萃取法(solid phase extraction);SAFE溶剂辅助蒸发(solvent assisted flavor evaporation)。
    下载: 导出CSV 
    | 显示表格

    乌龙茶因其独特香气和醇厚口感而被称为“茶中香槟”[64]。香气物质类别上,萜烯类、酯类、烯醇类化合物在乌龙茶中含量较高且具有良好的呈香特性[92-93]。橙花叔醇、α-法尼烯、香叶醇、苯甲醇、2-苯乙醇、顺-茉莉酮和吲哚等物质被认为是其关键香气成分[94]。花香、果香是乌龙茶的代表性香气特征。受产地、品种、加工工艺影响,香气物质组成与含量存在的差异也使得乌龙茶香气类型丰富多样,各具特色(表3)。吴函殷等[95]采用HS-SPME和GC-MS技术联用,并结合感官评价,对银花香(浓花型)、柚花香(花蜜协调型)、肉桂香(浓蜜型)单丛茶叶进行分析;芳樟醇及其氧化物是所有茶样的主要香气成分(相对含量22.14%~68.42%)。随着蜜香增强,具有花香青香的橙花叔醇、己醛、吲哚和苯乙腈相对含量降低,而吡咯类、柠檬烯相对含量增加。低温做青处理能促使铁观音乌龙茶中吲哚(橙子、茉莉花香)、橙花叔醇(花香)、芳樟醇(百合、玉兰花香)、氧化芳樟醇(鲜花、草本香)、己酸叶醇酯(清果香)等花香型香气组分的形成;而随着做青温度增加,法呢烯(果香、草香、木香)和甲基庚烯酮(水果香、清香)等果香型香气组分含量会增加[96]

    表  3  不同类型乌龙茶的香气特征及关键呈香物质
    Table  3.  Aroma characteristics and key aroma compounds in different types of oolong tea
    茶叶类型提取方法鉴定方法香气特征关键呈香物质参考文献
    大红袍SDEGC-MS花香、果香、烘烤香、
    焦香、蜜香
    橙花叔醇、苯乙腈、苯乙醇、α-法呢烯、顺-己酸-3-己烯酯、己酸正己酯、吲哚、脱氢芳樟醇及苯乙醛[97]
    铁观音HS-SPMEGC-MS火香、蜜香、花香、
    果香
    橙花叔醇、脱氢芳樟醇、吲哚、α-法呢烯、罗勒烯、苯乙腈、茉莉内酯、苯乙醛、苯乙醇、顺-茉莉酮、3-呋喃甲醛、芳樟醇、苯甲醛[98]
    凤凰水相SDEGC-MS果香、玫香、兰香、
    木香、药香
    苯乙醛、茶吡咯、(S)-氧化芳樟醇、E-氧化芳樟醇(呋喃型)、芳樟醇、脱氢芳樟醇、β-紫罗兰酮、橙花叔醇、邻苯二甲酸二乙酯[99]
    凤凰单丛HS-SPMEGC-MS花果香、甜香、清香、
    木香、烤香
    脱氢芳樟醇、芳樟醇、芳樟醇氧化物、D-柠檬烯、β-月桂烯、吲哚、茉莉酮、橙花叔醇、苯乙腈、伞花烃[100]
    金萱乌龙SPME/SDEGC-MS、GC-O果香、花香、甜香、
    坚果香、青香、烟熏气
    SDE:乙酸异戊酯、二氢甲基环戊吡嗪、γ-杜松烯;
    SPME:戊酮、(Z)-2-戊-1-醇、3,5-辛二烯酮、(-)-(Z)-玫瑰氧化物
    [101]
    白芽奇兰HS-SPMEGC-MS、GC-MS-O、OVA兰花香、花香、
    青草香、甜香
    6-甲基-5-庚烯-2-酮、苯乙醛、E,E-3,5-辛二烯-2-酮、3-乙基-2,5-二甲基-吡嗪、反式-芳樟醇氧化物、脱氢芳樟醇、藏花醛、香叶醇、吲哚、E,E-2,4-癸二烯醛、反式-β-大马士酮、顺式-3-己烯基己酸酯、反式-α-紫罗兰酮、顺式-香叶基丙酮、反式-β-紫罗兰酮、顺式-茉莉内酯[102]
    下载: 导出CSV 
    | 显示表格

    黑茶呈香物质主要包括醇类、醛类、酮类、酯类、酚类、碳氢类、含氮类、杂氧类物质等[103]。黑茶香气特征在于其独特的陈香、菌花香等属性;其陈香特征与1,2,3及1,2,4-三甲氧基苯等烷氧基苯类化合物相关,而烯醛类化合物则与菌花香存在一定关联[104]。不同产区黑茶香气特征及组成也存在着明显差异,青砖茶陈香纯正,以醛类和酮类化合物为主,包括(E,E)-2,4-庚二烯醛、β-紫罗酮、己醛等;茯砖茶菌花香突出,以醇类和芳香烃为主,包括芳樟醇、甲苯和1,3-二甲氧基苯;六堡茶香气纯正,以醇类和醛类为主,包括芳樟醇、α-雪松醇、柠檬烯;普洱茶陈香持久,以醛类和醇类为主,包括己醛、1,2,3-三甲氧基苯、芳樟醇氧化物;康砖茶香气纯正,以酮类和醛类为主,包括己醛、α-紫罗酮、反-香叶基丙酮和β-紫罗酮[105]。此外,一些常见类型黑茶的香气特征及关键呈香物质汇总见表4

    表  4  不同类型黑茶的香气特征及关键呈香物质
    Table  4.  Aroma characteristics and key aroma compounds in different types of dark green tea
    茶叶类型提取方法鉴定方法香气特征关键呈香物质参考文献
    六堡黑茶SDEGC×GC-TOFMS果香、花香、陈香棕榈酸、乙苯、1,2,3-三甲氧基苯、2-萘甲醚、苯甲醛、3-甲基丁醛、α-紫罗兰酮[106]
    普洱HS-SPMEGC-MS、GC-O陈香、木香1,2-二甲氧基苯、1,2,3-三甲氧基苯、4-乙基-1,2-二甲氧基苯、1,2,4-三甲氧基苯、1,2,3-三甲氧基-5-甲基-苯、α-紫罗酮、β-紫罗酮、α-雪松醇、α-雪松烯、β-愈创烯、二氢猕猴桃内酯[107]
    四川黑茶HS-SPMEGC-MS、GC-O木香、果香、脂肪香β-紫罗兰酮、芳樟醇、乙酸苄酯、1-辛烯-3-醇、β-环柠檬醛、(E,E)-2,4-庚二烯醛、香叶醇、芳樟醇氧化物II、壬醛、橙花醇、芳樟醇氧化物I、水杨酸甲酯[108]
    青砖茶HS-SPMEGC-MS、GC-O花香、木香、陈香(E,E)-2,4-庚二烯醛、β-紫罗酮、芳樟醇、(Z)-4-庚烯醛、(E)-2-壬烯醛、香叶醇[109]
    安化茯砖茶HS-SPMEGC-MS花香、清香、陈香芳樟醇、反式-β-紫罗兰酮、己醛、二氢猕猴桃内酯、α-萜品醇、壬醛、反式α-紫罗酮[110]
    四川茯砖茶HS-SPMEGC-MS、GC-O花香、甜香、果香β-紫罗兰酮、芳樟醇、乙酸苄酯、β-环柠檬醛、(E,E)-2,4-庚二烯醛、1-辛烯-3-醇、芳樟醇氧化物II、芳樟醇氧化物I、水杨酸甲酯、壬醛[108]
    下载: 导出CSV 
    | 显示表格

    除了常见的四大类茶叶外,白茶、黄茶等其他茶类的香气物质研究也获得了相关报道。白茶的加工过程最少,主工序为长时间的枯萎和干燥过程;新白茶有毫香型、花香型、青草香型、清香型和嫩香型等香型,而陈年老白茶则有枣香型、药香型、粽叶香型和梅子香型等香型[111]。白茶中的香气物质主要为己醛、(E)-2-己烯醛、苯甲醛、苯乙醛、(E)-香叶醇、苯乙醇、芳樟醇及其氧化物[112-113]。随着贮藏时间的延长,白茶香气特征会发生显著变化。快速陈化白茶香气则以浓甜香气和淡草本香为特征,己酸、2-癸酮、3-壬烯-2-酮、4-甲基-3-戊烯-2-酮为其甜香和果香的关键呈香物质。而在自然陈化过程中α-紫罗酮、β-紫罗酮、己酸甲酯、植酮、丁羟甲苯、3-甲基十三烷和6-异雪松醇的含量均有所上升,赋予白茶浓郁的草本香和淡甜香[114]

    黄茶中挥发性成分以碳氢化合物、醇类、酮类和酯类为主,其中具有愉快香气的芳樟醇氧化物、香叶醇、β-紫罗兰酮氧化物、二氢猕猴桃内酯和β-柠檬醛等化合物促进了黄茶良好香气品质的形成[115]。黄茶其独特的“闷黄”工序和“先低后高”的干燥方式造就了黄茶特殊的“鲜甜”或“锅巴香”香型[116-117]。具有清香特征的芽型黄茶以具有清香属性的苯乙醛为主要特征香气成分;清甜香型的芽叶型黄茶以具有花香、果香、甜香属性的己酸乙酯、苯甲醇、香叶醇、苯乙醇、柠檬醛、橙花醛和月桂烯为主要特征香气成分;锅巴香型的多叶型黄茶以具有烘烤香属性的N-甲基-2-吡咯甲醛、3-乙基-2,5-二甲基吡嗪、2-乙基-5-甲基吡嗪和2,3-二乙基-5-甲基吡嗪为主要特征香气成分[118]。目前,关于其他类型茶叶香气的研究报道较少,仍有待对其香气特征进行深入研究与充分解析。

    本文系统性地介绍了茶叶中挥发性成分提取及鉴定分析方法,并对不同类型茶叶香气特征及关键呈香物质进行了综述。从总结的提取方法中可看出,不同提取方法获得的茶叶挥发性成分组成和含量存在较大差异。因此,在不改变茶叶原有香气特征前提下优化提取参数、改进提取技术、提高香气物质提取率和真实性将是未来的一大研究重点。而针对一些具有较高气味强度的挥发性成分,其浓度过低无法被检出的现象,则有待将更多精准、灵敏的新型检测技术应用于茶叶中香气物质的检测鉴定中。同时更应采用多种表征手段联用的方式,进一步丰富香气特征信息。不同类型茶叶的香气特征受品种、产地、加工工艺的影响而各具特色。因此,通过对香气特征进行充分解析,建立起科学、完善的香气特征评价体系和数据库将为调控和提升茶叶风味品质提供更全面的解决方案。

  • 图  1   同时蒸馏萃取法(SDE)实验仪器原理图[8]

    Figure  1.   Schematic diagram of the simultaneous distillation and extraction (SDE) experimental apparatus[8]

    图  2   旋转锥体柱(SCC)结构示意图[25]

    Figure  2.   Schematic diagram of spinning cone column (SCC)[25]

    图  3   顶空固相微萃取(HS-SPME)及气相色谱(GC)分析过程示意图[39]

    Figure  3.   Schematic diagram of the headspace solid phase micro-extraction (HS-SPME) and gas chromatography (GC) process[39]

    表  1   不同类型绿茶的香气特征及关键呈香物质

    Table  1   Aroma characteristics and key aroma compounds in different types of green tea

    类型提取方法鉴定方法香气特征关键呈香物质参考文献
    龙井SBSEGC-MS、GC-O、OAV青草香、甜香、花香、
    果香、烘烤香
    2-甲基丁醛,二甲亚砜,庚醛,苯甲醛,1-辛烯-3-醇,(E, E)-2,4-二烯醛,苯乙醛,芳樟醇及其氧化物,(E,E)-3,5-辛二烯-2-酮,壬醛,水杨酸甲酯,香叶醇,β-紫罗酮[75]
    西湖龙井SDEGC×GC-TOFMS、
    GC-MS
    花香、果香、清香顺-3-己烯醇、芳樟醇、α-松油醇、香叶醇、壬醛、顺-己酸-3-己烯酯、吲哚、芳樟醇氧化物(吡喃型)[76]
    洞庭碧螺春HDEGC-MS、GC-O、OAV清香、青气2-戊基呋喃、6-甲基-5-庚烯-2-酮、1-辛烯-3-醇、1,5-辛二烯-3-醇、乙位环高柠檬醛、α-紫罗兰酮、β-紫罗兰酮、5,6-环氧紫罗兰酮、柏木脑、二氢猕猴桃内酯[77]
    六安霍山SDGC-MS、OVA、感官评价木香、果香、青香、
    花香、烘烤香
    β-大马酮、反式-β紫罗兰酮、芳樟醇、香叶丙酮、反式-β-罗勒烯、橙花醇、1-辛醇、2-乙基-3,5-二甲基吡嗪[78]
    薄纱绿茶SBSEGC-MS、感官评价栗香、清香、果香、
    坚果香、烘烤香
    芳樟醇、α-水芹烯、蒎烯、香叶醇、茶吡咯、2-甲基丁醛[79]
    信阳毛尖SDEGC-MS、感官评价清香Β-芳樟醇、壬醛、环氧芳樟醇、反式香叶醇、δ-杜松烯、反式橙花叔醇、棕榈酸、反式植醇[80]
    黄山毛峰SDEGC-MS、感官评价香气馥郁带兰花香棕榈酸、β-芳樟醇、反式香叶醇、壬醛、己醛、反式植醇、环氧芳樟醇、庚醛[80]
    注:SBSE搅拌棒吸附萃取(stir bar sorptive extraction);HDE顶空蒸馏萃取(headspace distillation extraction)。
    下载: 导出CSV

    表  2   不同类型红茶的香气特征及关键呈香物质

    Table  2   Aroma characteristics and key aroma compounds in different types of black tea

    名称提取方法鉴定方法香气特征关键呈香物质参考文献
    英德红茶HS-SPMEGC-MS、GC-O、OAV果香、花香、焦糖香、
    青香、木质香
    β-大马酮、β-紫罗兰酮、芳樟醇、己酸乙酯、二甲基硫醚、三甲基硫醚、壬醛、水杨酸甲酯、异戊酸3-己烯酯、雪松醇、长叶烯[86]
    滇红冲泡提取GC-E-nose甜香、花香、果香、
    木香、焙烤香
    3-甲基戊烷、3-乙基戊烷、月桂烯、芳樟醇、橙花醇、反式-2-己烯和α-萜品烯[87]
    福鼎红茶HS-SPMEGC-MS青香气、花
    香、甜香、果香
    芳樟醇及芳樟醇氧化物、β-环柠檬醛、β-紫罗酮、香叶基丙酮、二氢猕猴桃内酯、β-柏木烯、2,2,6-三甲基-6-乙烯基四氢-2H-呋喃-3-醇、水杨酸甲酯[88]
    祁门红茶SPEGC-MS、GC-O、OVA花香、焦糖香、甜香1-辛烯-3-酮、芳樟醇氧化物、愈创木酚、(E,Z)-2,6-壬二烯醛、4,5-二甲基-3-羟基-2,5-二氢呋喃-2-酮、(E,E)-2,4-壬二烯醛、2-甲基丁酸乙酯、2-戊基呋喃、苯乙醛、2-乙酰噻唑、α-紫罗兰酮、香叶醇[89]
    大吉岭SAFEGC-O、ADEA花香、蜜香、焦糖香、
    甜香
    香兰素、苯乙酸、3-羟基-4,5-二甲基-3(2H)-呋喃酮、4-羟基-2,5-二甲基-2(5H)-呋喃酮、β-紫罗酮、E,E,Z-2,4,6-壬三烯醛[90]
    信阳红茶HS-SPMEGC-MS、OVA花果香香叶醇、芳樟醇、苯乙醛、己酸顺-3-己烯酯、β-大马烯酮、β-紫罗酮、香叶醇、癸醛、苯乙醛、反-氧化芳樟醇、壬醛[91]
    注:SPE固相萃取法(solid phase extraction);SAFE溶剂辅助蒸发(solvent assisted flavor evaporation)。
    下载: 导出CSV

    表  3   不同类型乌龙茶的香气特征及关键呈香物质

    Table  3   Aroma characteristics and key aroma compounds in different types of oolong tea

    茶叶类型提取方法鉴定方法香气特征关键呈香物质参考文献
    大红袍SDEGC-MS花香、果香、烘烤香、
    焦香、蜜香
    橙花叔醇、苯乙腈、苯乙醇、α-法呢烯、顺-己酸-3-己烯酯、己酸正己酯、吲哚、脱氢芳樟醇及苯乙醛[97]
    铁观音HS-SPMEGC-MS火香、蜜香、花香、
    果香
    橙花叔醇、脱氢芳樟醇、吲哚、α-法呢烯、罗勒烯、苯乙腈、茉莉内酯、苯乙醛、苯乙醇、顺-茉莉酮、3-呋喃甲醛、芳樟醇、苯甲醛[98]
    凤凰水相SDEGC-MS果香、玫香、兰香、
    木香、药香
    苯乙醛、茶吡咯、(S)-氧化芳樟醇、E-氧化芳樟醇(呋喃型)、芳樟醇、脱氢芳樟醇、β-紫罗兰酮、橙花叔醇、邻苯二甲酸二乙酯[99]
    凤凰单丛HS-SPMEGC-MS花果香、甜香、清香、
    木香、烤香
    脱氢芳樟醇、芳樟醇、芳樟醇氧化物、D-柠檬烯、β-月桂烯、吲哚、茉莉酮、橙花叔醇、苯乙腈、伞花烃[100]
    金萱乌龙SPME/SDEGC-MS、GC-O果香、花香、甜香、
    坚果香、青香、烟熏气
    SDE:乙酸异戊酯、二氢甲基环戊吡嗪、γ-杜松烯;
    SPME:戊酮、(Z)-2-戊-1-醇、3,5-辛二烯酮、(-)-(Z)-玫瑰氧化物
    [101]
    白芽奇兰HS-SPMEGC-MS、GC-MS-O、OVA兰花香、花香、
    青草香、甜香
    6-甲基-5-庚烯-2-酮、苯乙醛、E,E-3,5-辛二烯-2-酮、3-乙基-2,5-二甲基-吡嗪、反式-芳樟醇氧化物、脱氢芳樟醇、藏花醛、香叶醇、吲哚、E,E-2,4-癸二烯醛、反式-β-大马士酮、顺式-3-己烯基己酸酯、反式-α-紫罗兰酮、顺式-香叶基丙酮、反式-β-紫罗兰酮、顺式-茉莉内酯[102]
    下载: 导出CSV

    表  4   不同类型黑茶的香气特征及关键呈香物质

    Table  4   Aroma characteristics and key aroma compounds in different types of dark green tea

    茶叶类型提取方法鉴定方法香气特征关键呈香物质参考文献
    六堡黑茶SDEGC×GC-TOFMS果香、花香、陈香棕榈酸、乙苯、1,2,3-三甲氧基苯、2-萘甲醚、苯甲醛、3-甲基丁醛、α-紫罗兰酮[106]
    普洱HS-SPMEGC-MS、GC-O陈香、木香1,2-二甲氧基苯、1,2,3-三甲氧基苯、4-乙基-1,2-二甲氧基苯、1,2,4-三甲氧基苯、1,2,3-三甲氧基-5-甲基-苯、α-紫罗酮、β-紫罗酮、α-雪松醇、α-雪松烯、β-愈创烯、二氢猕猴桃内酯[107]
    四川黑茶HS-SPMEGC-MS、GC-O木香、果香、脂肪香β-紫罗兰酮、芳樟醇、乙酸苄酯、1-辛烯-3-醇、β-环柠檬醛、(E,E)-2,4-庚二烯醛、香叶醇、芳樟醇氧化物II、壬醛、橙花醇、芳樟醇氧化物I、水杨酸甲酯[108]
    青砖茶HS-SPMEGC-MS、GC-O花香、木香、陈香(E,E)-2,4-庚二烯醛、β-紫罗酮、芳樟醇、(Z)-4-庚烯醛、(E)-2-壬烯醛、香叶醇[109]
    安化茯砖茶HS-SPMEGC-MS花香、清香、陈香芳樟醇、反式-β-紫罗兰酮、己醛、二氢猕猴桃内酯、α-萜品醇、壬醛、反式α-紫罗酮[110]
    四川茯砖茶HS-SPMEGC-MS、GC-O花香、甜香、果香β-紫罗兰酮、芳樟醇、乙酸苄酯、β-环柠檬醛、(E,E)-2,4-庚二烯醛、1-辛烯-3-醇、芳樟醇氧化物II、芳樟醇氧化物I、水杨酸甲酯、壬醛[108]
    下载: 导出CSV
  • [1] 沈力飞, 刘更生, 张聪, 等. 茶叶香气的形成及检测研究进展[J]. 农产品加工(学刊),2014(21):58−61. [SHEN L F, LIU G S, ZHANG C, et al. Research of formation mechanism and detection technology on aroma in tea[J]. Farm Products Processing,2014(21):58−61.

    SHEN L F, LIU G S, ZHANG C, et al. Research of formation mechanism and detection technology on aroma in tea[J]. Farm Products Processing, 2014(21): 58-61.

    [2]

    YANI S, GAO X, GRAYLING P, et al. Steam distillation of mallee leaf: Extraction of 1, 8-cineole and changes in the fuel properties of spent biomass[J]. Fuel,2014,133:341−349. doi: 10.1016/j.fuel.2014.05.030

    [3] 罗维巍, 吕琳琳, 孙丽阳, 等. 不同方法提取香叶树叶挥发性成分的GC-MS分析[J]. 特产研究,2018,40(1):39−43. [LUO W W, LYU L L, SUN L Y, et al. Analysis of volatile components in the leaves of Lindera communis Hemsl with different extraction methods by GC-MS[J]. Special Wild Economic Animal and Plant Research,2018,40(1):39−43.

    LUO W W, LYU L L, SUN L Y, et al. Analysis of volatile components in the leaves of Lindera communis Hemsl with different extraction methods by GC-MS[J]. Special Wild Economic Animal and Plant Research, 2018, 40(1): 39-43.

    [4]

    GAO X, LYU S, WU Y, et al. Volatile components of essential oils extracted from Pu-erh ripe tea by different extraction methods[J]. International Journal of Food Properties,2017,20(sup1):S240−S253. doi: 10.1080/10942912.2017.1295256

    [5] 胡均鹏, 贾盟盟, 朱良. 不同提取方法对安化茯砖茶挥发油成分的影响[J]. 食品科技,2018,43(5):270−274. [HU J P, JIA M M, ZHU L. Effects of different extraction methods on chemical composition of volatile oils from Anhua Fuzhuan tea[J]. Food Science and Technology,2018,43(5):270−274.

    HU J P, JIA M M, ZHU L. Effects of different extraction methods on chemical composition of volatile oils from Anhua Fuzhuan tea[J]. Food Science and Technology, 2018, 43(5): 270-274.

    [6]

    ZHANG Q, HUO R, MA Y, et al. A novel microwave-assisted steam distillation approach for separation of essential oil from tree peony (Paeonia suffruticosa Andrews) petals: Optimization, kinetic, chemical composition and antioxidant activity[J]. Industrial Crops and Products,2020,154:112669. doi: 10.1016/j.indcrop.2020.112669

    [7]

    CHEN F, DU X, ZU Y, et al. A new approach for preparation of essential oil, followed by chlorogenic acid and hyperoside with microwave-assisted simultaneous distillation and dual extraction (MSDDE) from Vaccinium uliginosum leaves[J]. Industrial Crops and Products,2015,77:809−826. doi: 10.1016/j.indcrop.2015.09.058

    [8]

    CHEN F, ZU Y, YANG L. A novel approach for isolation of essential oil from fresh leaves of Magnolia sieboldii using microwave-assisted simultaneous distillation and extraction[J]. Separation and Purification Technology,2015,154:271−280. doi: 10.1016/j.seppur.2015.09.066

    [9]

    SUTTIARPORN P, WONGKATTIYA N, BUABAN K, et al. Process optimization of microwave assisted simultaneous distillation and extraction from Siam cardamom using response surface methodology[J]. Processes,2020,8(4):449−449.

    [10] 廖素兰, 翁器林, 唐云云, 等. 不同萃取方式分析武夷水仙茶挥发性成分[J]. 食品工业科技,2017,38(12):7−16. [LIAO S L, WENG Q L, TANG Y Y, et al. Analysis of volatile components in Wuyi narcissus tea by different extracted methods[J]. Science and Technology of Food Industry,2017,38(12):7−16.

    LIAO S L, WENG Q L, TANG Y Y, et al. Analysis of volatile components in Wuyi narcissus tea by different extracted methods[J]. Science and Technology of Food Industry, 2017, 38(12): 7-16.

    [11]

    LIN Q, NI H, WU L, et al. Analysis of aroma-active volatiles in an SDE extract of white tea[J]. Food Science & Nutrition,2021,9(1):605−615.

    [12] 安红梅, 尹建军, 张晓磊, 等. 同时蒸馏萃取技术在食品分析中的应用[J]. 食品研究与开发,2011,32(12):216−220. [AN H M, YIN J J, ZHANG X L, et al. Application of simultaneous distillation extraction in food analysis[J]. Food Research and Development,2011,32(12):216−220. doi: 10.3969/j.issn.1005-6521.2011.12.063

    AN H M, YIN J J, ZHANG X L, et al. Application of simultaneous distillation extraction in food analysis[J]. Food Research and Development, 2011, 32(12): 216-220. doi: 10.3969/j.issn.1005-6521.2011.12.063

    [13] 朱晓凤, 刘政权, 宛晓春, 等. SDE和HS-SPME结合GC-MS分析霍山黄大茶香气成分的比较[J]. 食品科学,2020,41(4):214−221. [ZHU X F, LIU Z Q, WAN X C, et al. Comparison of simultaneous distillation and extraction and headspace-solid phase microextraction for analysis of aroma components of Huoshan large-leaf yellow tea by gas chromatography-mass spectrometry[J]. Food Sceince,2020,41(4):214−221. doi: 10.7506/spkx1002-6630-20190110-136

    ZHU X F, LIU Z Q, WAN X C, et al. Comparison of simultaneous distillation and extraction and headspace-solid phase microextraction for analysis of aroma components of Huoshan large-leaf yellow tea by gas chromatography-mass spectrometry[J]. Food Sceince, 2020, 41(4): 214-221. doi: 10.7506/spkx1002-6630-20190110-136

    [14] 周玉凤, 张海东, 熊昆, 等. 超临界CO2萃取植物功能性油脂的研究进展[J]. 食品工业科技,2019,40(20):334−339. [ZHOU Y F, ZHANG H D, XIONG K, et al. Research progress in supercritical CO2 extraction of functional oils of plant[J]. Science and Technology of Food Industry,2019,40(20):334−339.

    ZHOU Y F, ZHANG H D, XIONG K, et al. Research progress in supercritical CO2 extraction of functional oils of plant[J]. Science and Technology of Food Industry, 2019, 40(20): 334-339.

    [15] 孙艳宾, 张慧婧, 景大为, 等. 超临界CO2萃取技术在海洋生物活性物质的应用研究进展[J]. 食品工业,2019,40(1):286−290. [SUN Y B, ZHANG H J, JING D W, et al. Advance in supercritical carbon dioxide extraction of bioactive substance from marine life[J]. The Food Industry,2019,40(1):286−290.

    SUN Y B, ZHANG H J, JING D W, et al. Advance in supercritical carbon dioxide extraction of bioactive substance from marine life[J]. The Food Industry, 2019, 40(1): 286-290.

    [16]

    GALLEGO R, BUENO M, HERRERO M. Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae-An update[J]. Trac Trends in Analytical Chemistry,2019,116:198−213. doi: 10.1016/j.trac.2019.04.030

    [17]

    KNEZ Ž, ŠKERGET M, KNEZHRNČIČ M. 1-Principles of supercritical fluid extraction and applications in the food, beverage and nutraceutical industries[M]//Rizvi S S H. Separation, Extraction and Concentration Processes in the Food, Beverage and Nutraceutical Industries. Woodhead Publishing, 2013: 3−38.

    [18]

    ESSIEN S O, YOUNG B, BAROUTIAN S. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials[J]. Trends in Food Science & Technology,2020,97:156−169.

    [19]

    YOUSEFI M, RAHIMI-NASRABADI M, POURMORTAZAVI S M, et al. Supercritical fluid extraction of essential oils[J]. TrAC Trends in Analytical Chemistry,2019,118:182−193. doi: 10.1016/j.trac.2019.05.038

    [20] 李卓, 郭玉蓉, 邓红. 超临界CO2流体萃取天然植物香精研究进展[J]. 农产品加工(学刊),2012(9):19−24. [LI Z, GUO Y R, DENG H. The review of supercritical CO2 extraction of plant essences[J]. Academic Periodical of Farm Products Processing,2012(9):19−24.

    LI Z, GUO Y R, DENG H. The review of supercritical CO2 extraction of plant essences[J]. Academic Periodical of Farm Products Processing, 2012(9): 19-24.

    [21]

    TIRADO D F, CALVO L. The Hansen theory to choose the best cosolvent for supercritical CO2 extraction of β-carotene from Dunaliella salina[J]. The Journal of Supercritical Fluids,2019,145:211−218. doi: 10.1016/j.supflu.2018.12.013

    [22] 黄长修, 王宏涛, 蓝洪桥, 等. 超临界CO2萃取铁观音茶叶香气成分[J]. 化学工程,2010,38(12):1−4. [HUANG C X, WANG H T, LAN H Q, et al. Extraction of aroma components from Tieguanyin tea by using supercritical CO2[J]. Chemical Engineering,2010,38(12):1−4. doi: 10.3969/j.issn.1005-9954.2010.12.001

    HUANG C X, WANG H T, LAN H Q, et al. Extraction of aroma components from Tie Guanyin tea by using supercritical CO2[J]. CHEMICAL ENGINEERING, 2010, 38(12): 1-4. doi: 10.3969/j.issn.1005-9954.2010.12.001

    [23]

    De MELO M M R, CARIUS B, SIMÕES M M Q, et al. Supercritical CO2 extraction of V. vinifera leaves: Influence of cosolvents and particle size on removal kinetics and selectivity to target compounds[J]. The Journal of Supercritical Fluids,2020,165:104959. doi: 10.1016/j.supflu.2020.104959

    [24] 张琪, 刘珺, 吕玉宪, 等. 超临界流体工艺萃取茶叶香气成分[J]. 食品研究与开发,2019,40(6):105−110. [ZHANG Q, LIU J, LÜ Y X, et al. Supercritical fluid technology extraction of tea aroma components[J]. Food Research and Development,2019,40(6):105−110. doi: 10.3969/j.issn.1005-6521.2019.06.019

    ZHANG Q, LIU J, LYU Y X, et al. Supercritical fluid technology extraction of tea aroma components[J]. Food Research and Development, 2019, 40(6): 105-110. doi: 10.3969/j.issn.1005-6521.2019.06.019

    [25] 余汉谋, 姜兴涛, 肖海鸿. 旋转锥体柱技术及其在食品和香精香料行业中的应用进展[J]. 食品工业科技,2013,34(24):372−375. [YU H M, JIANG X T, XIAO H H. Spinning cone column and its recent application in food and fragrance perfume industry: A review[J]. Science and Technology of Food Industry,2013,34(24):372−375.

    YU H M, JIANG X T, XIAO H H. Spinning cone column and its recent application in food and fragrance perfume industry: A review[J]. Science and Technology of Food Industry, 2013, 34(24): 372-375.

    [26] 王淑华. 旋转带蒸馏塔的流体力学性能测试[D]. 天津: 天津大学, 2008.

    WANG S H. Test of hydromechanical properties of rotary belt distillation column[D]. Tianjin: Tianjin University, 2008.

    [27]

    HUERTA-PÉREZ F, PÉREZ-CORREA J R. Optimizing ethanol recovery in a spinning cone column[J]. Journal of the Taiwan Institute of Chemical Engineers,2018,83:1−9. doi: 10.1016/j.jtice.2017.11.030

    [28]

    GRABER M F, PÉREZ-CORREA J R, VERDUGO G, et al. Spinning cone column isolation of rosemary essential oil[J]. Food Control,2010,21(5):615−619. doi: 10.1016/j.foodcont.2009.09.005

    [29] 高阳, 赵生, 许式强, 等. 龙井茶挥发油的旋转锥体柱提取及其应用研究[J]. 食品工业,2015,36(5):120−124. [GAO Y, ZHAO S, XU S Q, et al. Study on Longjing tea essential oil extracted by spinning cone column and its application[J]. The Food Industry,2015,36(5):120−124.

    GAO Y, ZHAO S, XU S Q, et al. Study on Longjing tea essential oil extracted by spinning cone column and its application[J]. The Food Industry, 2015, 36(5): 120-124.

    [30]

    GLANCY G. Systems and methods for the preparation of tablets of botanical extracts including tea: US, 2021127700[P]. 2021-05-06.

    [31] 叶田, 周洋, 崔帅, 等. 一种制备四季春茶香气提取液的方法: 中国, 201911265578.9[P]. 2020-03-27.

    YE T, ZHOU Y, CUI S, et al. A method for preparation of aroma extract of four seasons spring tea: China, 201911265578.9[P]. 2020-03-27.

    [32]

    MARÍN-SAN ROMÁN S, RUBIO-BRETÓN P, PÉREZ-ÁLVAREZ E P, et al. Advancement in analytical techniques for the extraction of grape and wine volatile compounds[J]. Food Research International,2020,137:109712. doi: 10.1016/j.foodres.2020.109712

    [33]

    WEI Z, LIU X, HUANG Y, et al. Volatile aroma compounds in wines from Chinese wild/hybrid species[J]. Journal of Food Biochemistry,2019,43(10):e12684.

    [34]

    LIANG D, LIU W, RAZA R, et al. Applications of solid-phase micro-extraction with mass spectrometry in pesticide analysis[J]. Journal of Separation Science,2019,42(1):330−341. doi: 10.1002/jssc.201800804

    [35]

    STASHENKO E E, MARTÍNEZ J R. Sampling volatile compounds from natural products with headspace/solid-phase micro-extraction[J]. Journal of Biochemical and Biophysical Methods,2007,70(2):235−242. doi: 10.1016/j.jbbm.2006.08.011

    [36] 余泽红, 贺小贤, 丁勇, 等. 固相微萃取在食品挥发性组分测定方面研究进展[J]. 粮食与油脂,2010(7):44−46. [YU Z H, HE X X, DING Y, et al. Research progress on solid phase micro-extraction determination of volatile components in foods[J]. Journal of Cereals & Oils,2010(7):44−46. doi: 10.3969/j.issn.1008-9578.2010.07.014

    YU Z H, HE X X, DING Y, et al. Research progress on solid phase micro-extraction determination of volatile components in foods[J]. Journal of Cereals & Oils, 2010(7): 44-46. doi: 10.3969/j.issn.1008-9578.2010.07.014

    [37]

    PÉTEL C, ONNO B, PROST C. Sourdough volatile compounds and their contribution to bread: A review[J]. Trends in Food Science & Technology,2017,59:105−123.

    [38]

    CUEVAS-GLORY L F, PINO J A, SANTIAGO L S, et al. A review of volatile analytical methods for determining the botanical origin of honey[J]. Food Chemistry,2007,103(3):1032−1043. doi: 10.1016/j.foodchem.2006.07.068

    [39]

    KATAOKA H, LORD H L, PAWLISZYN J. Applications of solid-phase microextraction in food analysis[J]. Journal of Chromatography A,2000,880(1):35−62.

    [40]

    CHEN Q, ZHU Y, YAN H, et al. Identification of aroma composition and key odorants contributing to aroma characteristics of white teas[J]. Molecules,2020,25:605024.

    [41] 陈娇娇, 鲁成银, 王国庆, 等. 3种方法吸附绿茶、黄茶与白茶香气成分的比较[J]. 浙江大学学报(农业与生命科学版),2020,46(4):449−458. [CHEN J J, LU C Y, WANG G Q, et al. Comparison of three different methods for adsorption of aroma compounds for green tea, yellow tea and white tea[J]. Journal of Zhejiang University (Agriculture & Life Sciences),2020,46(4):449−458.

    CHEN J J, LU C Y, WANG G Q, et al. Comparison of three different methods for adsorption of aroma compounds for green tea, yellow tea and white tea[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2020, 46(4): 449-458.

    [42] 谢文钢, 范仕胜, 刘燕, 等. HS-SPME/GC-MS分析“乌牛早”绿茶香气[J]. 茶叶通讯,2019,46(4):448−454. [XIE W G, FAN S S, LIU Y, et al. Analysis of aroma components of Guizhou high-quality “Wuniuzao” green tea by HS-SPME/GC-MS[J]. Tea Communication,2019,46(4):448−454. doi: 10.3969/j.issn.1009-525X.2019.04.012

    XIE W G, FAN S S, LIU Y, et al. Analysis of aroma components of Guizhou high-quality “Wuniuzao” green tea by HS-SPME/GC-MS[J]. Tea Communication, 2019, 46(4): 448-454. doi: 10.3969/j.issn.1009-525X.2019.04.012

    [43] 刘妍, 杨富巍, 田锐, 等. 固相微萃取涂层的研究进展[J]. 资源开发与市场,2011,27(11):981−984. [LIU Y Y, YANG F R, TIAN R, et al. Research progress of solid phase microextraction coating[J]. Resource Development & Market,2011,27(11):981−984. doi: 10.3969/j.issn.1005-8141.2011.11.007

    LIU Y Y, YANG F R, TIAN R, et al. Research progress of solid phase microextraction coating[J]. Resource Development & Market, 2011, 27(11): 981-984. doi: 10.3969/j.issn.1005-8141.2011.11.007

    [44]

    WANG X, WANG S, CAI Z. The latest developments and applications of mass spectrometry in food-safety and quality analysis[J]. TrAC Trends in Analytical Chemistry,2013,52:170−185. doi: 10.1016/j.trac.2013.08.005

    [45]

    WANG C, LÜ S, WU Y, et al. Study of aroma formation and transformation during the manufacturing process of Biluochun green tea in Yunnan Province by HS-SPME and GC-MS[J]. Journal of the Science of Food and Agriculture,2016,96(13):4492−4498. doi: 10.1002/jsfa.7663

    [46]

    WANG W, JIN S, GUO Y. Exploration of a method of distinguishing different Nongxiang Tieguanyin tea grades based on aroma determined by GC-MS combined with chemometrics[J]. Molecules, 2019, 24(17079).

    [47] 张瑞廷, 程江辉, 徐佳. 气相离子迁移谱在食品风味研究中的应用[J]. 现代食品,2020(10):167−169. [ZHANG R T, CHENG J H, XU J. Application of gas chromatography ionmobility spectrometry in the study of food flavor[J]. Modern Food,2020(10):167−169.

    ZHANG R T, CHENG J H, XU J. Application of gas chromatography ionmobility spectrometry in the study of food flavor[J]. Modern Food, 2020(10): 167-169.

    [48]

    LI W, CHEN Y P, BLANK I, et al. GC×GC-ToF-MS and GC-IMS based volatile profile characterization of the Chinese dry-cured hams from different regions[J]. Food Research International,2021,142:110222. doi: 10.1016/j.foodres.2021.110222

    [49] 李娟, 任芳, 甄大卫, 等. 气相色谱-离子迁移谱分析乳制品挥发性风味化合物[J]. 食品科学,2021,42(10):235−240. [LI J, REN F, ZHEN D W, et al. Analysis of volatile flavor compounds dairy products by gas chromatography-ion mobility spectrometry[J]. Food Science,2021,42(10):235−240. doi: 10.7506/spkx1002-6630-20200503-020

    LI J, REN F, ZHEN D W, et al. Analysis of volatile flavor compounds dairy products by gas chromatography-ion mobility spectrometry[J]. Food Science, 2021, 42(10): 235-240. doi: 10.7506/spkx1002-6630-20200503-020

    [50]

    WANG S, CHEN H, SUN B. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS)[J]. Food Chemistry,2020,315:126158. doi: 10.1016/j.foodchem.2019.126158

    [51] 金文刚, 陈小华, 耿敬章, 等. 基于气相-离子迁移谱分析不同产地“汉中仙毫”气味指纹差异[J]. 食品与发酵工业,2021,47(5):231−237. [JIN W G, CHEN X H, GENG J Z, et al. Analysis of “Hanzhong Xianhao” odor fingerprints from different places based on GC-IMS[J]. Food and Fermentation Industries,2021,47(5):231−237.

    JIN W G, CHEN X H, GENG J Z, et al. Analysis of “Hanzhong Xianhao” odor fingerprints from different places based on GC-IMS[J]. Food and Fermentation Industries, 2021, 47(5): 231-237.

    [52] 李俊杰, 徐元昊, 陈梦娟, 等. 手筑茯砖茶加工过程中挥发性组分变化分析[J]. 食品科学,2020,41(24):144−154. [LI J J, XU Y H, CHEN M J, et al. Analysis of changes in volatile components during processing of handmade Fuzhuan tea[J]. Food Science,2020,41(24):144−154. doi: 10.7506/spkx1002-6630-20191226-316

    LI J J, XU Y H, CHEN M J, et al. Analysis of changes in volatile components during processing of handmade Fuzhuan Tea[J]. Food Science, 2020, 41(24): 144-154. doi: 10.7506/spkx1002-6630-20191226-316

    [53]

    D ACAMPORA ZELLNER B, DUGO P, DUGO G, et al. Gas chromatography-olfactometry in food flavour analysis[J]. Journal of Chromatography A,2008,1186(1):123−143.

    [54]

    VERMA D K, SRIVASTAV P P. A paradigm of volatile aroma compounds in rice and their product with extraction and identification methods: A comprehensive review[J]. Food Research International,2020,130:108924. doi: 10.1016/j.foodres.2019.108924

    [55]

    BALDOVINI N, CHAINTREAU A. Identification of key odorants in complex mixtures occurring in nature[J]. Natural Product Reports,2020,37(12):1589−1626. doi: 10.1039/D0NP00020E

    [56] 叶国注, 何群仙, 李楚芳, 等. GC-O检测技术应用研究进展[J]. 食品与发酵工业,2010,36(4):154−160. [YE G Z, HE Q X, LI C F, et al. Research progress on the application of GC-O detection technology[J]. Food and Fermentation Industries,2010,36(4):154−160.

    YE G Z, HE Q X, LI C F, et al. Research progress on the application of GC-O detection technology[J]. Food and Fermentation Industries, 2010, 36(4): 154-160.

    [57]

    CHEN X, SUN H, QU D, et al. Identification and characterization of key aroma compounds in Chinese high altitude and northernmost black tea (Camellia sinensis) using distillation extraction and sensory analysis methods[J]. Flavour and Fragrance Journal,2020,35(6):666−673. doi: 10.1002/ffj.3605

    [58] 吴容, 陶宁萍, 刘源, 等. GC-O-AEDA法在食品风味分析中的应用[J]. 食品与机械,2011,27(4):163−168. [WU R, TAO N P, LIU Y, et al. Applications of aroma extract dilution analysis of gas chromatography-olfactometry in food flavor analysis[J]. Food & Machinery,2011,27(4):163−168. doi: 10.3969/j.issn.1003-5788.2011.04.048

    WU R, TAO N P, LIU Y, et al. Applications of aroma extract dilution analysis of gas chromatography-olfactometry in food flavor analysis[J]. Food & Machinery, 2011, 27(4): 163-168. doi: 10.3969/j.issn.1003-5788.2011.04.048

    [59]

    SONG H, LIU J. GC-O-MS technique and its applications in food flavor analysis[J]. Food Research International,2018,114:187−198. doi: 10.1016/j.foodres.2018.07.037

    [60] 肖雪, 吴惠勤, 陈啸天, 等. 全二维气相色谱在食品风味化学成分分析中的应用[J]. 分析测试学报,2019,38(1):122−128. [XIAO X, WU H Q, CHEN X T, et al. Application of comprehensive two-dimensional gas chromatography in analysis on chemical components of food flavor[J]. Journal of Instrumental Analysis,2019,38(1):122−128. doi: 10.3969/j.issn.1004-4957.2019.01.020

    XIAO X, WU H Q, CHEN X T, et al. Application of comprehensive two-dimensional gas chromatography in analysis on chemical components of food flavor[J]. Journal of Instrumental Analysis, 2019, 38(1): 122-128. doi: 10.3969/j.issn.1004-4957.2019.01.020

    [61]

    NOLVACHAI Y, KULSING C, MARRIOTT P J. Multidimensional gas chromatography in food analysis[J]. TrAC Trends in Analytical Chemistry,2017,96:124−137. doi: 10.1016/j.trac.2017.05.001

    [62]

    ZHU J, NIU Y, XIAO Z. Characterization of the key aroma compounds in Laoshan green teas by application of odour activity value (OAV), gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-qMS)[J]. Food Chemistry,2021,339:128136.

    [63]

    HU X, LU L, GUO Z, et al. Volatile compounds, affecting factors and evaluation methods for rice aroma: A review[J]. Trends in Food Science & Technology,2020,97:136−146.

    [64]

    ZHU J, CHEN F, WANG L, et al. Evaluation of the synergism among volatile compounds in Oolong tea infusion by odour threshold with sensory analysis and E-nose[J]. Food Chemistry,2017,221:1484−1490. doi: 10.1016/j.foodchem.2016.11.002

    [65]

    TAN J, XU J. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review[J]. Artificial Intelligence in Agriculture,2020,4:104−115. doi: 10.1016/j.aiia.2020.06.003

    [66] 李大雷, 翁彦如, 杜丽平, 等. 电子鼻和气质联用法分析普洱茶香气成分[J]. 食品与发酵工业,2019,45(3):237−245. [LI D L, WENG Y R, DU L P, et al. Detection of volatile compounds in different brands of Pu-erh tea using electronic nose and GC-MS[J]. Food and Fermentation Industries,2019,45(3):237−245.

    LI D L, WENG Y R, DU L P, et al. Detection of volatile compounds in different brands of Pu-erh tea using electronic nose and GC-MS[J]. Food and Fermentation Industries, 2019, 45(3): 237-245.

    [67]

    MOHD ALI M, HASHIM N, ABD AZIZ S, et al. Principles and recent advances in electronic nose for quality inspection of agricultural and food products[J]. Trends in Food Science & Technology,2020,99:1−10.

    [68] 余立平. 茶叶的分类与品质特点探讨[J]. 种子科技,2019,37(3):85−86. [YU L P. Study on classification and quality characteristics of tea[J]. Seed Science and Technology,2019,37(3):85−86.

    YU L P. Study on classification and quality characteristics of tea[J]. Seed Science and Technology, 2019, 37(3): 85-86.

    [69]

    ZHU Y, LÜ H, SHAO C, et al. Identification of key odorants responsible for chestnut-like aroma quality of green teas[J]. Food Research International,2018,108:74−82. doi: 10.1016/j.foodres.2018.03.026

    [70] 尹鹏, 肖智中, 于飞, 等. 栗香型绿茶研究进展[J]. 食品研究与开发,2020,41(3):219−224. [YIN P, XIAO Z Z, YU F, et al. Research progress of chestnut-like aroma quality of green tea[J]. Food Research and Development,2020,41(3):219−224.

    YIN P, XIAO Z Z, YU F, et al. Research progress of chestnut-like aroma quality of green tea[J]. Food Research and Development, 2020, 41(3): 219-224.

    [71] 尹洪旭. 栗香绿茶特征香气成分研究[D]. 北京: 中国农业科学院, 2018.

    YIN H X. Study on characteristic aroma components of chestnut green tea[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018.

    [72] 黄海涛, 敖存, 郭敏明, 等. 花香与清香绿茶的香气组分及品种相关性分析[J]. 浙江农业科学,2018,59(5):738−741. [HUANG H T, AO C, GUO M M, et al. Correlation analysis of aroma components and varieties of floral and fragrant green tea[J]. Journal of Zhejiang Agricultural Sciences,2018,59(5):738−741.

    HUANG H T, AO C, GUO M M, et al. Correlation analysis of aroma components and varieties of floral and fragrant green tea[J]. Journal of Zhejiang Agricultural Sciences, 2018, 59(5): 738-741.

    [73] 王梦琪, 朱荫, 张悦, 等. “清香”绿茶的挥发性成分及其关键香气成分分析[J]. 食品科学,2019,40(22):219−228. [WANG M Q, ZHU Y, ZHANG Y, et al. Analysis of volatile composition and key aroma compounds of green teas with fresh scent flavor[J]. Food Science,2019,40(22):219−228. doi: 10.7506/spkx1002-6630-20181229-349

    WANG M Q, ZHU Y, ZHANG Y, et al. Analysis of volatile composition and key aroma compounds of green teas with fresh scent flavor[J]. Food Science, 2019, 40(22): 219-228. doi: 10.7506/spkx1002-6630-20181229-349

    [74] 周春明, 袁海波, 秦志荣, 等. 花香绿茶的香气成分分析[J]. 广州食品工业科技,2004(2):101−104. [ZHOU C M, YUAN H B, QING Z R, et al. Analysis on aromatic constituents of fragrant green teas[J]. Guangzhou Food Science and Technology,2004(2):101−104. doi: 10.3969/j.issn.1673-9078.2004.02.041

    ZHOU C M, YUAN H B, QING Z R, et al. Analysis on aromatic constituents of fragrant green teas[J]. Guangzhou Food Science and Technology, 2004(2): 101-104. doi: 10.3969/j.issn.1673-9078.2004.02.041

    [75]

    WANG M, MA W, SHI J, et al. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination[J]. Food Research International,2020,130:108908. doi: 10.1016/j.foodres.2019.108908

    [76] 朱荫, 杨停, 施江, 等. 西湖龙井茶香气成分的全二维气相色谱-飞行时间质谱分析[J]. 中国农业科学,2015,48(20):4120−4146. [ZHU Y, YANG T, SHI J, et al. Analysis of aroma components in Xihu Longjing tea by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry[J]. Scientia Agricultura Sinica,2015,48(20):4120−4146. doi: 10.3864/j.issn.0578-1752.2015.20.013

    ZHU Y, YANG T, SHI J, et al. Analysis of aroma components in Xihu Longjing Tea by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry[J]. Scientia Agricultura Sinica, 2015, 48(20): 4120-4146. doi: 10.3864/j.issn.0578-1752.2015.20.013

    [77] 陈合兴. 碧螺春茶特征香气成分研究[D]. 上海: 上海应用技术学院, 2016.

    CHEN H X. Study on characteristic aroma components of Biluochun tea[D]. Shanghai: Shanghai Institute of Technology, 2016.

    [78]

    GUO X, HO C, SCHWAB W, et al. Aroma profiles of green tea made with fresh tea leaves plucked in summer[J]. Food Chemistry,2021,363:130328. doi: 10.1016/j.foodchem.2021.130328

    [79] 彭群华, 周怀胜, 段学俊, 等. 海南薄纱绿茶加工过程中主要品质成分变化规律研究[J]. 中国茶叶,2021,43(2):45−49. [PENG Q H, ZHOU H S, DUAN X J, et al. Changes of main quality components of Hainan Bosha green tea during processing[J]. China Tea,2021,43(2):45−49.

    PENG Q H, ZHOU H S, DUAN X J, et al. Changes of main quality components of Hainan Bosha green tea during processing[J]. China Tea, 2021, 43(2): 45-49.

    [80] 刘建军, 黄建安, 李美凤, 等. 信阳毛尖与黄山毛峰及西湖龙井的香气成分分析[J]. 湖南农业大学学报(自然科学版),2016,42(6):658−662. [LIU J J, HUANG J A, LI M F, et al. Analysis on aroma components of Xinyang Maojian tea and Huangshan Maofeng tea and Xihu Longjing tea[J]. Journal of Hunan Agricultural University (Natural Sciences),2016,42(6):658−662.

    LIU J J, HUANG J A, LI M F, et al. Analysis on aroma components of Xinyangmaojian tea and Huangshanmaofeng tea and Xihulongjing tea[J]. Journal of Hunan Agricultural University (Natural Sciences), 2016, 42(6): 658-662.

    [81]

    JIANG H, XU W, CHEN Q. Evaluating aroma quality of black tea by an olfactory visualization system: Selection of feature sensor using particle swarm optimization[J]. Food Research International,2019,126:108605. doi: 10.1016/j.foodres.2019.108605

    [82] 张娅楠, 欧伊伶, 覃丽, 等. 红茶中香气物质的形成及工艺对其影响的研究进展[J]. 食品工业科技,2019,40(11):351−357. [ZHANG Y N, OU Y L, QIN L, et al. Research progress on the formation of aroma substances and its influence of processes in black tea[J]. Science and Technology of Food Industry,2019,40(11):351−357.

    ZHANG Y N, OU Y L, QIN L, et al. Research progress on the formation of aroma substances and its influence of processes in black tea[J]. Science and Technology of Food Industry, 2019, 40(11): 351-357.

    [83] 王秋霜, 陈栋, 许勇泉, 等. 中国名优红茶香气成分的比较研究[J]. 中国食品学报,2013,13(1):195−200. [WANG Q S, CHEN D, XU Y Q, et al. Study on the aroma components in chinese famous black tea[J]. Journal of Chinese Institute of Food Science and Technology,2013,13(1):195−200.

    WANG Q S, CHEN D, XU Y Q, et al. Study on the aroma components in chinese famous black tea[J]. Journal of Chinese Institute of Food Science and Technology, 2013, 13(1): 195-200.

    [84] 徐元骏, 何靓, 贾玲燕, 等. 不同地区及特殊品种红茶香气的差异性[J]. 浙江大学学报(农业与生命科学版),2015,41(3):323−330. [XU Y J, HE J, JIA L Y, et al. Differentiation of aroma compositions in different regions and special varieties of black tea[J]. Journal of Zhejiang University (Agriculture & Life Sciences),2015,41(3):323−330.

    XU Y J, HE J, JIA L Y, et al. Differentiation of aroma compositions in different regions and special varieties of black tea[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2015, 41(3): 323-330.

    [85] 葛晓杰, 苏祝成, 狄德荣, 等. 基于顶空固相微萃取/气质联用的红茶特征香型呈香活性成分研究[J]. 食品工业科技,2016,37(23):304−310. [GE X J, SU Z C, DI D R, et al. Comparison of odor-active components of two different odor type ‘black tea’ based on HS-SPME/GC-O-MS[J]. Science and Technology of Food Industry,2016,37(23):304−310.

    GE X J, SU Z C, DI D R, et al. Comparison of odor-active components of two different odor type ‘Black Tea’ based on HS-SPME/GC-O-MS[J]. Science and Technology of Food Industry, 2016, 37(23): 304-310.

    [86]

    LIU H, XU Y, WEN J, et al. A comparative study of aromatic characterization of Yingde black tea infusions in different steeping temperatures[J]. LWT,2021:110860.

    [87]

    CHEN J, YANG Y, DENG Y, et al. Aroma quality evaluation of Dianhong black tea infusions by the combination of rapid gas phase electronic nose and multivariate statistical analysis[J]. LWT,2022,153:112496. doi: 10.1016/j.lwt.2021.112496

    [88] 彭云, 李果, 刘学艳, 等. 不同产地红茶香气品质的SPME/GC-MS分析[J]. 食品工业科技,2021,42(9):237−244. [PENG Y, LI G, LIU X Y, et al. SPME/GC-MS analysis of aroma quality of black tea from different producing areas[J]. Science and Technology of Food Industry,2021,42(9):237−244.

    PENG Y, LI G, LIU X Y, et al. SPME/GC-MS analysis of aroma quality of black tea from different producing areas[J]. Science and Technology of Food Industry, 2021, 42(9): 237-244.

    [89]

    CHEN X, CHEN D, JIANG H, et al. Aroma characterization of Hanzhong black tea (Camellia sinensis) using solid phase extraction coupled with gas chromatography-mass spectrometry and olfactometry and sensory analysis[J]. Food Chemistry,2019,274:130−136. doi: 10.1016/j.foodchem.2018.08.124

    [90]

    SCHIEBERLE P, SCHUH C. Aroma compounds in black tea powders of different origins-changes induced by preparation of the infusion[J]. Developments in Food Science,2006,43:151−156.

    [91] 尹鹏, 王子浩, 刘盼盼, 等. 信阳红茶香气成分分析[J]. 食品工业,2019,40(3):287−291. [YIN P, WANG Z H, LIU P P, et al. Analysis of aroma constituents in Xinyang black tea[J]. The Food Industry,2019,40(3):287−291.

    YIN P, WANG Z H, LIU P P, et al. Analysis of aroma constituents in Xinyang black tea[J]. The Food Industry, 2019, 40(3): 287-291.

    [92] 钟秋生, 朱荫, 林郑和, 等. 全二维气相色谱-飞行时间质谱鉴定春闺乌龙茶香气成分[J]. 茶叶学报,2020,61(2):45−65. [ZHONG Q S, ZHU Y, LIN Z H, et al. Aromatics in Chungui Oolong tea analyzed by comprehensive 2D gas chromatography cou-pled with time-of-flight mass spectrometry[J]. Tea Science and Technology,2020,61(2):45−65. doi: 10.3969/j.issn.1007-4872.2020.02.003

    ZHONG Q S, ZHU Y, LIN Z H, et al. Aromatics in Chungui Oolong Tea analyzed by comprehensive 2D gas chromatography coupled with time-of-flight mass spectrometry[J]. Tea Science and Technology, 2020, 61(2): 45-65. doi: 10.3969/j.issn.1007-4872.2020.02.003

    [93] 周玲. 乌龙茶香气挥发性成分及其感官性质分析[D]. 重庆: 西南大学, 2006.

    ZHOU L. Analysis of aroma volatile components and sensory properties of Oolong tea[D]. Chongqing: Southwest University, 2006.

    [94] 辛董董, 张浩, 李红波, 等. 不同茶类挥发性成分中主要呈香成分研究进展[J]. 河南科技学院学报(自然科学版),2019,47(6):21−28. [XIN D D, ZHANG H, LI H B, et al. Recent research on the key aroma components of volatile components of different teas[J]. Journal of Henan Institute of Science and Technology (Natural Sciences Edition),2019,47(6):21−28.

    XIN D D, ZHANG H, LI H B, et al. Recent research on the key aroma components of volatile components of different teas[J]. Journal of Henan Institute of Science and Technology (Natural Sciences Edition), 2019, 47(6): 21-28.

    [95] 吴函殷, 刘晓辉, 罗龙新, 等. 12种单丛茶香气成分研究[J]. 食品工业科技,2019,40(19):234−239. [WU H Y, LIU X H, LUO L X, et al. Study on aroma components in twelve kinds of Dancong teas[J]. Science and Technology of Food Industry,2019,40(19):234−239.

    WU H Y, LIU X H, LUO L X, et al. Study on aroma components in twelve kinds of Dancong teas[J]. Science and Technology of Food Industry, 2019, 40(19): 234-239.

    [96] 邓慧莉, 李鑫磊, 毛贻帆, 等. 不同做青温度对乌龙茶滋味与香气品质的影响[J]. 食品安全质量检测学报,2021,12(14):5766−5771. [DENG H L, LI X L, MAO Y F, et al. Effect of different turning-over temperatures on the taste and aroma quality of Oolong tea[J]. Journal of Food Safety & Quality,2021,12(14):5766−5771.

    DENG H L, LI X L, MAO Y F, et al. Effect of different turning-over temperatures on the taste and aroma quality of Oolong tea[J]. Journal of Food Safety & Quality, 2021, 12(14): 5766-5771.

    [97] 陈金华, 王英姿, 黄建安. 不同烘焙温度对大红袍香气成分的影响[J]. 茶叶通讯,2020,47(3):433−442. [CHEN J H, WANG Y Z, HUANG J A. Effect of different baking temperature on aroma components of Dahongpao Oolong tea[J]. Tea Communication,2020,47(3):433−442. doi: 10.3969/j.issn.1009-525X.2020.03.011

    CHEN J H, WANG Y Z, HUANG J A. Effect of different baking temperature on aroma components of Dahongpao oolong tea[J]. Tea Communication, 2020, 47(3): 433-442. doi: 10.3969/j.issn.1009-525X.2020.03.011

    [98] 陈贤明, 冯林, 李腊, 等. 组合式焙火工艺对铁观音品质及挥发性香气组分的影响[J]. 食品科学,2015,36(20):73−78. [CHEN X M, FENG L, LI L, et al. Effects of baking on the changes in sensory evaluation and volatile aroma compounds of Tieguanyin Oolong tea[J]. Food Science,2015,36(20):73−78. doi: 10.7506/spkx1002-6630-201520013

    CHEN X M, FENG L, LI L, et al. Effects of baking on the changes in sensory evaluation and volatile aroma compounds of Tieguanyin oolong tea[J]. Food Science, 2015, 36(20): 73-78. doi: 10.7506/spkx1002-6630-201520013

    [99] 朱慧, 陈树思, 周春娟, 等. 凤凰水仙和武夷水仙茶挥发成分的分析与比较[J]. 西南农业学报,2016,29(3):545−551. [ZHU H, CHEN S S, ZHOU C J, et al. Analysis and comparison of volatile components in Fenghuang and Wuyi Shuixian teas[J]. Southwest China Journal of Agricultural Sciences,2016,29(3):545−551.

    ZHU H, CHEN S S, ZHOU C J, et al. Analysis and comparison of volatile components in Fenghuang and Wuyi Shuixian teas[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(3): 545-551.

    [100] 史敬芳, 陈栋, 黄文洁, 等. 基于HS-SPME-GC-MS技术对凤凰单丛乌龙茶香气成分比较分析[J]. 食品科学,2016,37(24):111−117. [SHI J F, CHEN D, HUANG W J, et al. Analysis of flavor components in Fenghuang Dancong Oolong teas using HS-SPME-GC-MS[J]. Food Science,2016,37(24):111−117. doi: 10.7506/spkx1002-6630-201624017

    SHI J F, CHEN D, HUANG W J, et al. Analysis of flavor components in Fenghuang Dancong oolong teas using HS-SPME-GC-MS[J]. Food Science, 2016, 37(24): 111-117. doi: 10.7506/spkx1002-6630-201624017

    [101]

    SHEIBANI E, DUNCAN S E, KUHN D D, et al. SDE and SPME analysis of flavor compounds in Jin Xuan Oolong tea[J]. Journal of Food Science,2016,81(2):C348−C358. doi: 10.1111/1750-3841.13203

    [102] 蒋青香. 白芽奇兰茶叶关键香气成分的鉴定及其茶粉香气品质的研究[D]. 厦门: 集美大学, 2020.

    JIANG Q X. Identification of key aroma components of Baiya Qilan tea and study on aroma quality of tea powder[D]. Xiamen: Jimei University, 2020.

    [103] 李建勋, 杜丽平, 王超, 等. 顶空固相微萃取-气相色谱-质谱联用法分析黑茶香气成分[J]. 食品科学,2014,35(2):191−195. [LI J X, DU L P, WANG C, et al. Analysis of aroma compounds in dark teas by head space-solid phase micro-extraction coupled with gas chromatography-mass spectrometry[J]. Food Science,2014,35(2):191−195. doi: 10.7506/spkx1002-6630-201402036

    LI J X, DU L P, WANG C, et al. Analysis of aroma compounds in Dark teas by head space-solid phase micro-extraction coupled with gas chromatography-mass spectrometry[J]. Food Science, 2014, 35(2): 191-195. doi: 10.7506/spkx1002-6630-201402036

    [104] 何华锋, 朱宏凯, 董春旺, 等. 黑茶香气化学研究进展[J]. 茶叶科学,2015,35(2):121−129. [HE H F, ZHU H K, DONG C W, et al. Research progress in flavor chemistry of Chinese dark tea[J]. Journal of Tea Science,2015,35(2):121−129. doi: 10.3969/j.issn.1000-369X.2015.02.005

    HE H F, ZHU H K, DONG C W, et al. Research progress in flavor chemistry of Chinese dark tea[J]. Journal of Tea Science, 2015, 35(2): 121-129. doi: 10.3969/j.issn.1000-369X.2015.02.005

    [105] 郑鹏程, 刘盼盼, 王胜鹏, 等. 5种黑茶香气成分的比较分析[J]. 食品工业科技,2018,39(22):82−86. [ZHENG P C, LIU P P, WANG S P, et al. Comparative analysis of the aroma components in five kinds of dark tea[J]. Science and Technology of Food Industry,2018,39(22):82−86.

    ZHENG P C, LIU P P, WANG S P, et al. Comparative analysis of the aroma components in five kinds of dark tea[J]. Science and Technology of Food Industry, 2018, 39(22): 82-86.

    [106] 穆兵, 朱荫, 马士成, 等. 六堡茶香气成分的全二维气相色谱-飞行时间质谱分析[J]. 食品科学,2017,38(22):169−177. [MU B, ZHU Y, MA S C, et al. Analysis of aroma components in Liubao tea by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry[J]. Food Science,2017,38(22):169−177. doi: 10.7506/spkx1002-6630-201722026

    MU B, ZHU Y, MA S C, et al. Analysis of aroma components in Liubao Tea by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry[J]. Food Science, 2017, 38(22): 169-177. doi: 10.7506/spkx1002-6630-201722026

    [107] 钟秋生. 普洱茶香气特征成分的研究[D]. 北京: 中国农业科学院, 2009.

    ZHONG Q S. Study on aroma characteristic components of Pu'er tea[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009.

    [108]

    NIE C, ZHONG X, HE L, et al. Comparison of different aro-maactive compounds of Sichuan dark brick tea (Camellia sinensis) and Sichuan Fuzhuan brick tea using gas chromatography-mass spectrometry (GC-MS) and aroma descriptive profile tests[J]. European Food Research and Technology,2019,245(9):1963−1979. doi: 10.1007/s00217-019-03304-1

    [109] 刘盼盼, 郑鹏程, 龚自明, 等. 青砖茶渥堆工艺优化及风味物质分析[J]. 中国食品学报,2021,21(8):224−234. [LIU P P, ZHENG P C, GONG Z M, et al. Pile-fermentation process optimization and flavor components analysis of Qingzhuan tea[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(8):224−234.

    LIU P P, ZHENG P C, GONG Z M, et al. Pile-fermentation process optimization and flavor components analysis of Qingzhuan tea[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(8): 224-234.

    [110] 李灿, 陈同强, 廖燕芝, 等. 湖南安化茯砖茶与其他地区黑茶香味物质差异性研究[J]. 食品安全质量检测学报,2021,12(13):5449−5454. [LI C, CHEN T Q, LIAO Y Z, et al. Study on the difference of aroma components between Anhua Fu brick tea in Hunan and dark tea in other areas[J]. Journal of Food Safety & Quality,2021,12(13):5449−5454.

    LI C, CHEN T Q, LIAO Y Z, et al. Study on the difference of aroma components between Anhua Fu brick tea in Hunan and dark tea in other areas[J]. Journal of Food Safety & Quality, 2021, 12(13): 5449-5454.

    [111] 傅海峰, 林琼珍, 朱晨, 等. 6种不同香型白茶香气成分的GC-MS分析[J]. 食品与生物技术学报,2020,39(10):91−97. [FU H F, LIN Q Z, ZHU C, et al. GC-MS analysis of aroma components of white tea with six different aroma types[J]. Journal of Food Science and Biotechnology,2020,39(10):91−97. doi: 10.3969/j.issn.1673-1689.2020.10.012

    FU H F, LIN Q Z, ZHU C, et al. GC-MS analysis of aroma components of White tea with six different aroma types[J]. Journal of Food Science and Biotechnology, 2020, 39(10): 91-97. doi: 10.3969/j.issn.1673-1689.2020.10.012

    [112]

    CHEN Q, SHI J, MU B, et al. Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing[J]. Food Chemistry,2020,332:127412. doi: 10.1016/j.foodchem.2020.127412

    [113]

    CHEN Q, ZHU Y, DAI W, et al. Aroma formation and dynamic changes during white tea processing[J]. Food Chemistry,2019,274:915−924. doi: 10.1016/j.foodchem.2018.09.072

    [114] 祁丹丹, 陈维, 苗爱清, 等. 气相色谱-串联质谱结合化学计量学分析快速陈化对白茶香气的影响[J]. 浙江大学学报(农业与生命科学版),2018,44(6):704−710. [QI D D, CHEN W, MIAO A Q, et al. Effects of rapid ageing technology on the aroma quality of white tea using gas chromatography-mass spectrometry/mass spectrometry combined with chemometrics[J]. Journal of Zhejiang University (Agriculture & Life Sciences),2018,44(6):704−710.

    QI D D, CHEN W, MIAO A Q, et al. Effects of rapid ageing technology on the aroma quality of White tea using gas chromatography-mass spectrometry/mass spectrometry combined with chemometrics[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2018, 44(6): 704-710.

    [115] 陈崇俊, 冉莉莎, 唐倩, 等. 闷黄对槠叶齐品种黄小茶品质的影响[J]. 食品工业科技,2021,42(9):51−59. [CHEN C J, RAN L S, TANG Q, et al. Effect of the yellowing on the quality of Zhuyeqi yellow tea[J]. Science and Technology of Food Industry,2021,42(9):51−59.

    CHEN C J, RAN L S, TANG Q, et al. Effect of the yellowing on the quality of Zhuyeqi yellow tea[J]. Science and Technology of Food Industry, 2021, 42(9): 51-59.

    [116] 李瑾, 黎娜, 李照莹, 等. 黄茶品质影响因素及香气研究进展[J]. 茶叶通讯,2015,42(2):3−6. [LI J, LI N, LI Z Y, et al. Research progress on factors effecting the favor and quality of yellow tea[J]. Tea Communication,2015,42(2):3−6. doi: 10.3969/j.issn.1009-525X.2015.02.001

    LI J, LI N, LI Z Y, et al. Research progress on factors effecting the favor and quality of Yellow tea[J]. Tea Communication, 2015, 42(2): 3-6. doi: 10.3969/j.issn.1009-525X.2015.02.001

    [117]

    XU J, WANG M, ZHAO J, et al. Yellow tea (Camellia sinensis L.), a promising Chinese tea: Processing, chemical constituents and health benefits[J]. Food Research International,2018,107:567−577. doi: 10.1016/j.foodres.2018.01.063

    [118] 蒋容港, 黄燕, 金友兰, 等. 不同原料等级黄茶特征香气成分分析[J]. 食品科学,2021,42(16):89−98. [JIANG R G, HUANG Y, JIN Y L, et al. Analysis of characteristic aroma components of different grades of yellow tea[J]. Food Science,2021,42(16):89−98. doi: 10.7506/spkx1002-6630-20200709-137

    JIANG R G, HUANG Y, JIN Y L, et al. Analysis of characteristic aroma components of different grades of Yellow tea[J]. Food Science, 2021, 42(16): 89-98. doi: 10.7506/spkx1002-6630-20200709-137

图(3)  /  表(4)
计量
  • 文章访问数:  1088
  • HTML全文浏览量:  150
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 网络出版日期:  2022-05-23
  • 刊出日期:  2022-07-31

目录

/

返回文章
返回