• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

热风干燥和真空冷冻干燥对猴头菇不同部位风味物质的影响

张毅航, 方东路, 仲磊, 胡秋辉, 赵立艳

张毅航,方东路,仲磊,等. 热风干燥和真空冷冻干燥对猴头菇不同部位风味物质的影响[J]. 食品工业科技,2022,43(8):58−67. doi: 10.13386/j.issn1002-0306.2021070247.
引用本文: 张毅航,方东路,仲磊,等. 热风干燥和真空冷冻干燥对猴头菇不同部位风味物质的影响[J]. 食品工业科技,2022,43(8):58−67. doi: 10.13386/j.issn1002-0306.2021070247.
ZHANG Yihang, FANG Donglu, ZHONG Lei, et al. Effects of Hot Air-drying and Vacuum Freeze-drying on Flavor Components in Different Parts of Hericium erinaceus[J]. Science and Technology of Food Industry, 2022, 43(8): 58−67. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070247.
Citation: ZHANG Yihang, FANG Donglu, ZHONG Lei, et al. Effects of Hot Air-drying and Vacuum Freeze-drying on Flavor Components in Different Parts of Hericium erinaceus[J]. Science and Technology of Food Industry, 2022, 43(8): 58−67. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070247.

热风干燥和真空冷冻干燥对猴头菇不同部位风味物质的影响

基金项目: 中华传统蔬菜食用菌菜肴工业化加工关键技术研究项目(2016YFD0400405-1)。
详细信息
    作者简介:

    张毅航(1997−),女,硕士研究生,研究方向:食品营养与化学,E-mail:2019808123@njau.edu.cn

    通讯作者:

    赵立艳(1977−),女,博士,教授,研究方向:食用菌保鲜与加工、食品中功能成分的高效制备及其活性评价、食品加工过程中风味物质的变化,E-mail:zhlychen@njau.edu.cn

  • 中图分类号: TS201.2

Effects of Hot Air-drying and Vacuum Freeze-drying on Flavor Components in Different Parts of Hericium erinaceus

  • 摘要: 为探究猴头菇干燥前后风味特征的变化,本研究以新鲜猴头菇为原料,利用高效液相色谱(HPLC)技术和气相离子迁移谱(GC-IMS)技术测定并比较了热风干燥和真空冷冻干燥对猴头菇菇盖和菇柄风味物质的影响。结果表明,新鲜猴头菇经两种方式干燥后,可溶性糖、5’-核苷酸、游离氨基酸的含量均显著降低(P<0.05),其中热风干燥样品损失最多;不同猴头菇样品中有机酸总量为真空冷冻干燥样品>热风干燥样品>新鲜样品;经GC-IMS共鉴定出猴头菇鲜样和干样中64种挥发性风味物质,主要为醇类(17种)和醛类化合物(14种),其次为酮类(11种)和酯类(10种)化合物,总体来看,真空冷冻干燥更有利于保留猴头菇中八碳化合物以及其他醇、醛类风味物质,而热风干燥更易于形成酮、酯类化合物。干燥前后猴头菇菇盖中总可溶性糖、总5’-核苷酸及总游离氨基酸的含量显著高于菇柄(P<0.05),而总有机酸含量呈相反趋势,菇盖和菇柄挥发性风味物质指纹图谱的变化趋势一致。本研究可为猴头菇加工产品的开发提供理论依据。
    Abstract: In order to explore the changes of flavor characteristics of Hericium erinaceus before and after drying, the effects of hot air-drying and vacuum freeze-drying on flavor components of pileus and stipe of H. erinaceus were studied using high performance liquid chromatography (HPLC) and gas chromatography-ion mobility spectrometry (GC-IMS) in this paper. The results showed that the contents of soluble sugar, 5’-nucleotide and free amino acid in H. erinaceus significantly decreased after drying (P<0.05). And the loss of them in hot air-drying samples was higher than that of vacuum freeze-drying samples. The total content of organic acids in different H. erinaceus samples increased in the order of vacuum freeze-drying samples>hot air-drying samples>fresh samples. A total of 64 volatile compounds in fresh and dried H. erinaceus were detected by GC-IMS, mainly alcohols (17) and aldehydes (14), followed by ketones (11) and esters (10). In general, vacuum freeze-drying was more conducive to retain eight carbon atom (C8) compounds and other alcohols and aldehydes of H. erinaceus than hot air-drying, while hot air-drying was easier to form ketones and esters than vacuum freeze-drying. Meanwhile, the content of total soluble sugar, total 5’-nucleotides and total free amino acids in the pileus was significantly higher than that of stipe (P<0.05), but the total content of organic acids was on the contrary. The variation trend of volatile compounds fingerprint spectra of pileus consists with that of stipe. This study provided reference for the processing of the H. erinaceus.
  • 猴头菇(Hericium erinaceus)属担子菌门、伞菌纲、红菇目、猴头菌科[1],因表面长有1~3 cm长的毛绒状肉刺,形似猴子脑袋而得名[2]。猴头菇,又称狮子鬃菇或刺猬菇,在中国被称为“猴头”,在日本被称为“山梨菜”[3]。新鲜猴头菇子实体呈乳白色,圆润厚实,干燥后呈浅黄褐色,末端稍有短柄。猴头菇喜湿凉的气候,分布广泛,在我国的黑龙江、福建、河南、山东、云南、四川等多省市均有种植。自古以来,猴头菇就被认为是营养功能性食品和生理有益药物的来源,是“药食同源”的体现[4],在中医药中有着悠久的应用历史[5],对保护心血管[6]、保护神经[7]、抗氧化抗衰老[8]、抗疲劳[9]、抗菌[10]、抗癌[3]及免疫调节[11]等方面都有重要作用。

    因鲜猴头菇易腐烂和破损,所以市场上的流通方式主要以干猴头菇为主[12]。干燥是猴头菇加工的主要方法之一,其中热风干燥因易操作、成本低、加工量大等优点被广泛应用于工业化加工,而真空冷冻干燥对物料的外观等品质有较好的保留作用[13]。在干燥过程中,由于美拉德反应和风味化合物的降解,猴头菇中的风味成分不稳定[14]。猴头菇中的风味物质主要由八碳化合物、醇类、醛酮类、酯类、酸类等挥发性呈香物质和可溶性糖和糖醇、呈味核苷酸、有机酸、游离氨基酸等非挥发性呈味物质组成[15],两者分别影响猴头菇的香味和滋味。近年来,干燥对食用菌中风味物质影响的相关研究越来越多,但其中有关猴头菇以及猴头菇不同部位的研究较少,准确了解干燥对猴头菇风味的影响,对猴头菇的产业发展具有重要意义。

    本研究分别对新鲜猴头菇采用热风干燥和真空冷冻干燥处理,并采用高效液相色谱(HPLC)技术和气相离子迁移谱(GC-IMS)技术对干燥前后菇盖和菇柄的风味物质进行研究,以期为猴头菇的加工产业提供一定的理论依据和技术支持,促进猴头菇产业化发展。

    新鲜猴头菇(采收周期一个月左右) 黑龙江省牡丹江市海林市;标准品(可溶性糖和糖醇、核苷酸、有机酸) 上海源叶生物科技有限公司;氨基酸混合标液 日本Wako公司;所有分离用有机溶剂 均为国产色谱纯。

    DHG-9030A电热恒温鼓风干燥箱 上海一恒科技有限公司;LyoBeta 15真空冷冻干燥机 西班牙Telstar科技公司;H-400A高速多功能粉碎机 永康市哈瑞工贸有限公司;TDL-5型台式离心机 上海安亭科学仪器厂;KQ-250数控超声波清洗器 昆山市超声仪器有限公司;HH-6数显恒温水浴锅 江苏国华电器有限公司;Agilent1200高效液相色谱仪 美国Agilent公司;L-8900全自动氨基酸分析仪 日立高新技术公司;H1-00053型气相色谱-离子迁移谱仪 德国GAS公司。

    挑选外形饱满、大小均一的新鲜猴头菇,清洗沥干后分为菇盖和菇柄两部分,并分别切分成约1 cm×1 cm的块状,混合均匀,取适量新鲜猴头菇块用作鲜样,液氮冻存于−80 ℃超低温冰箱中备用,其余作干燥处理后避光保存于干燥器中备用。

    热风干燥:取适量猴头菇块状样品平铺于干燥盘中,并置于干燥箱中于50 ℃、风速1 m/s干燥至最终水分含量低于12%(猴头菇干品水分含量指标参照NY/T 3220-2018《食用菌包装及储运技术规程》标准中理化指标规定,下同),取出后高速打粉90 s制成粉末状,过60目筛备用;真空冷冻干燥:取适量猴头菇块状样品,先于−20 ℃冰箱中预冻12 h,再将预冻后的样品移入真空冷冻干燥设备中,腔内压强10~12 Pa,低温−50 ℃,连续干燥至最终水分含量低于12%,取出后高速打粉90 s制成粉末状,过60目筛备用。

    参考Li等[16]的方法稍作修改。分别称取干重为0.500 g的猴头菇样品(样品干重基于各样品水分含量计算),加入30 mL乙醇溶液(体积分数80%),于60 ℃水浴条件下提取30 min后,4000 r/min离心20 min,取上清液,残渣依上述步骤再提取两次,将三次上清液合并转入旋转蒸发仪中浓缩,用75%的乙腈溶液定容至10 mL,0.45 μm滤膜过滤后待测。

    色谱柱Sugar-D(250 mm×4.6 mm,5 μm);柱温25 ℃;流动相乙腈-水(75:25,v/v);流速1.0 mL/min;采用蒸发光散射检测器(ELSD);氮气流速2.1 L/min;漂移管温度81 ℃;进样20 μL。

    参考Pei等[17]的方法稍作修改。分别称取干重为0.500 g的猴头菇样品,研磨均匀后加入超纯水30 mL,用电炉煮沸1 min,冷却后于4000 r/min离心20 min,取上清液,残渣依上述步骤再提取两次,将三次上清液合并转入旋转蒸发仪中浓缩,用超纯水定容至10 mL,0.45 μm滤膜过滤后待测。

    色谱柱:Zorbax-Eclipse XDB-C18(250 mm×4.6 mm,5 μm);柱温:25 ℃;流动相:超纯水-甲醇-冰乙酸-四丁基氢氧化铵(447.25:50:2.5:0.25,V/V);流速:0.5 mL/min;采用紫外检测器,检测波长:254 nm;进样20 μL。

    参考Li等[16]的方法稍作修改。分别称取干重为0.500 g的猴头菇样品,研磨均匀后加入KH2PO4溶液(pH2.8,0.01 mol/L)10 mL,于45 ℃超声提取1 h,4000 r/min离心20 min后,分别定容至10 mL,0.45 μm滤膜过滤后待测。

    色谱柱:Zorbax-Eclipse XDB-C18(250 mm×4.6 mm,5 μm);柱温:25 ℃;流动相:KH2PO4(pH=2.8,0.01 mol/L)-甲醇(95:5,V/V);流速:0.5 mL/min;采用紫外检测器,检测波长:210 nm;进样20 μL。

    参考卢晓烁等[18]的方法。分别称取干重为0.500 g的猴头菇样品,依次加入2 mL磺基水杨酸溶液(10 g/L)和1 mL EDTANa2溶液(10 g/L)并混匀,超声提取1 h后静置12 h,再用0.02 mol/L的盐酸复溶定容至25 mL,溶解液经0.45 μm滤膜过滤后,于氨基酸自动分析仪上样检测。

    分别称取干重为0.200 g的猴头菇样品,研磨均匀后置于顶空固相瓶中并用带有聚四氟乙烯涂层的盖子密封,进行GC-IMS检测。

    顶空进样条件:顶空孵化温度50 ℃,时间15 min,转速250 r/min;进样针温度80 ℃,进样体积500 μL,速度10 mL/min;不分流模式。GC-IMS条件:色谱柱温度75 ℃;载气高纯氮气(纯度≥99.999%);分析时间30 min;载气流速:2 mL/min(0~2 min)、2~10 mL/min(2~10 min)、10~50 mL/min(10~20 min)、50~150 mL/min(20~30 min)。

    采用Microsoft Office Excel 2019和IBM SPSS Statistics 24.0软件对数据进行统计学分析,采用ANOVA方差分析、Duncan多重比较分析,每组样品平行测定3次,显著性水平0.05,数据表示为平均值±标准差。

    可溶性糖(醇)含量与食用菌的滋味密切相关。新鲜猴头菇和两种干猴头菇中可溶性糖(醇)的含量见表1。由表1可知,猴头菇中的可溶性糖(醇)主要是果糖,其次是甘露醇和阿拉伯糖,海藻糖含量最低。谷镇[20]对12种食用菌的可溶性糖(醇)进行检测,发现只有3种食用菌(香菇、牛肝菌、猴头菇)含有阿拉伯糖,其中猴头菇中的阿拉伯糖含量最高,但甘露醇含量较低。研究表明甘露醇含量较高的食用菌,吃起来会有令人爽口的甜味[21]。由表可以看出新鲜猴头菇经干燥后,可溶性糖(醇)总量显著减少(P<0.05),菇盖所含可溶性糖(醇)总量显著高于菇柄(P<0.05),这些可溶性糖(醇)引起的甜味可以在一定程度上掩盖猴头菇自身的苦味,由此推测这可能与干猴头菇及猴头菇菇柄苦味大有关。

    表  1  两种干燥方式对猴头菇可溶性糖(醇)的影响(mg/g干基)
    Table  1.  Effect of two drying methods on soluble sugar (alcohol) of Hericium erinaceus (mg/g dry weight)
    状态部位 可溶性糖(醇)
    阿拉伯糖果糖甘露醇海藻糖总量
    新鲜菇盖75.24±2.30a277.88±5.48a55.10±3.20b24.86±0.70a433.07±5.68a
    菇柄13.14±0.44d180.33±5.46c41.92±1.36cd7.87±0.25c243.26±4.79d
    热风
    干燥
    菇盖58.72±3.22b248.90±6.77b45.66±2.56c7.63±0.27c360.90±1.26c
    菇柄9.79±0.67d151.36±5.57d33.86±3.59d4.19±0.68d199.20±3.33e
    真空冷冻
    干燥
    菇盖35.47±3.34c272.07±2.57a79.75±0.88a10.47±0.08b397.76±5.11b
    菇柄7.00±0.06cd172.39±3.47c56.50±1.19b5.62±0.21d241.51±4.93d
    注:同一列不同数值上标字母代表数据差异显著(P<0.05);表2表5同。
    下载: 导出CSV 
    | 显示表格

    在本实验中,经真空冷冻干燥后的猴头菇中果糖含量与鲜样之间无显著性差异(P>0.05),果糖为还原糖,真空冷冻干燥对还原糖有较好的保留作用[22]。Pei等[17]在研究双孢蘑菇冷冻干燥过程中可溶性糖和糖醇的变化规律时,发现经冷冻干燥后双孢蘑菇中甘露醇的含量显著高于鲜样,海藻糖含量显著降低。本研究得出了类似的结果,甘露醇含量增加可能是猴头菇中的大分子糖类在加工过程中分解生成甘露醇所致[23]。新鲜猴头菇经热风干燥后,菇盖中四种可溶性糖(醇)含量均显著降低(P<0.05),这可能是因为可溶性糖(醇)在热加工过程中发生美拉德反应和热降解反应,从而导致其含量在热风干燥后减少[17]。此外,热风干燥样品中总可溶性糖(醇)损失显著多于真空冷冻干燥样品(P<0.05),原因可能为在热风干燥过程中,热处理与充足氧气的同时作用使猴头菇中的糖类发生了较为剧烈的美拉德反应,从而使其损失较多[24],而真空冷冻干燥温度和氧气含量低,糖类发生美拉德反应及降解相对较弱。

    呈味核苷酸对食品的鲜味呈现有重要的作用[25]。新鲜猴头菇和两种干猴头菇中呈味核苷酸的含量见表2。由表可知,猴头菇中的主要5’-核苷酸为5’-CMP,其次为5’-AMP和5’-GMP。研究表明5’-AMP是一种能赋予食用菌甜的特征风味、减弱酸涩苦味等不良味道的苦味抑制剂[26],5’-AMP和5’-GMP有很强的助鲜作用,在与呈味氨基酸等的协同作用下可以使鲜度提高几十倍几百倍之高[27]。新鲜猴头菇经干燥后,5’-核苷酸总含量显著降低(P<0.05),因为食用菌中的5’-核苷酸对热较为敏感,热风干燥温度较高,长时间的高温处理可使5’-核苷酸发生一定程度的降解[28],冷冻干燥过程中猴头菇内部形成冰晶,也会损坏组织细胞从而造成核苷酸的流失[29]。此外,猴头菇菇盖中5’-核苷酸总量显著高于菇柄(P<0.05)。

    表  2  两种干燥方式对猴头菇呈味核苷酸的影响(mg/g干基)
    Table  2.  Effect on flavor nucleotides of Hericium erinaceus by two drying methods (mg/g dry weight)
    状态部位 5’-核苷酸
    5’-CMP5’-AMP5’-GMP5’-UMP总量
    新鲜菇盖5.68±0.45a1.49±0.12a0.59±0.08a0.50±0.01a8.27±0.39a
    菇柄2.33±0.03c1.08±0.05b0.43±0.02b0.29±0.04c4.13±0.03c
    热风
    干燥
    菇盖4.81±0.28b0.70±0.03cd0.38±0.03bcd0.36±0.05b6.25±0.31b
    菇柄1.79±0.05d0.69±0.01d0.31±0.02d0.20±0.02d3.00±0.03d
    真空冷冻干燥菇盖4.96±0.30b0.81±0.04c0.41±0.03bc0.30±0.04bc6.48±0.26b
    菇柄2.15±0.13cd0.80±0.04cd0.34±0.01cd0.18±0.00d3.47±0.14d
    下载: 导出CSV 
    | 显示表格

    Yang等[30]的研究中,将食用菌中的5’-核苷酸含量分为了三个水平范围:高范围(>5 mg/g)、中范围(1~5 mg/g)和低范围(<1 mg/g),根据这一分类,猴头菇菇盖中的5’-核苷酸含量属于高范围,菇柄含量处于中范围。

    食用菌中的有机酸有助于形成其复杂独特的风味[31]。新鲜猴头菇和两种干猴头菇中有机酸的含量见表3。由表3可知,不同猴头菇样品中有机酸总量为真空冷冻干燥样品>热风干燥样品>新鲜样品。本实验测得猴头菇中的主要有机酸为琥珀酸,其次为柠檬酸和乙酸。新鲜猴头菇经干燥后,琥珀酸含量显著降低(P<0.05),乙酸含量显著增加(P<0.05),卢晓烁等[18]在研究香菇真空冷冻干燥过程中发现乙酸含量也呈增加趋势,说明干燥有利于乙酸的释放[28]。经真空冷冻干燥后猴头菇中柠檬酸含量显著高于热风干燥样品(P<0.05),于慧萍等[32]研究了干燥后大球盖菇滋味物质的变化,发现冷冻干燥大球盖菇样品中柠檬酸的含量也显著高于热风样品(P<0.05)。干燥后猴头菇菇盖中总有机酸含量显著增加(P<0.05),且真空冷冻干燥样品中有机酸总量显著高于热风干燥样品(P<0.05),热风干燥后有机酸含量增加可能是因为较高的温度使相关酶系被激活,从而促进了猴头菇中有机酸的形成[33],在真空冷冻干燥过程中,样品处于一个低温环境,从而促使各类有机酸的合成和转化[34]。此外,猴头菇菇盖中的总有机酸含量显著低于菇柄(P<0.05)。

    表  3  两种干燥方式对猴头菇有机酸的影响(mg/g干基)
    Table  3.  Effect on organic acid of Hericium erinaceus by two drying methods (mg/g dry weight)
    有机酸新鲜 热风干燥 真空冷冻干燥
    菇盖菇柄菇盖菇柄菇盖菇柄
    酒石酸16.98±0.24b30.53±0.24a 18.10±1.01b31.10±0.31a 18.68±0.52b30.97±0.35a
    苹果酸20.76±0.86d23.24±1.15cd34.06±1.27a25.26±0.28bc27.53±0.58b27.10±0.93b
    乙酸33.35±1.49d41.78±1.32c47.49±1.03b58.63±1.15a45.40±1.54bc54.10±0.86a
    柠檬酸64.44±1.38e84.05±2.03c55.09±2.00f76.15±2.10d90.13±0.26b106.86±1.98a
    富马酸0.79±0.00e0.92±0.00d1.41±0.00a0.97±0.03d1.27±0.03b1.14±0.02c
    琥珀酸114.78±1.41a92.93±2.38c105.34±0.99b86.67±1.51d93.17±0.83c76.37±1.73e
    总量251.10±2.41d273.46±2.36b261.98±2.29c278.78±1.13b276.18±2.09b296.53±1.88a
    注:同一行不同数值上标字母代表数据差异显著(P<0.05);表4表6同。
    下载: 导出CSV 
    | 显示表格

    游离态氨基酸是食用菌中重要的呈味活性物质,特别是天冬氨酸和谷氨酸,是引起食用菌鲜味的重要物质[35]。新鲜猴头菇和两种干猴头菇中游离氨基酸的含量见表4。由表4可知,新鲜猴头菇菇盖中含量最高的游离氨基酸为丙氨酸(5.97 mg/g干基)和苏氨酸(5.48 mg/g干基),两者均为甜味氨基酸。本实验中测得猴头菇中含人体必需氨基酸(Essential amino acid,EAA)总量在8.0~20.13 mg/g之间。新鲜猴头菇经干燥后,EAA含量显著降低(P<0.05),菇盖含量显著高于菇柄(P<0.05),总氨基酸(Total amino acid,TAA)含量也呈现同样的趋势,说明菇盖中氨基酸含量更丰富,而干燥在一定程度上会造成氨基酸的损失。在热风干燥过程中,加热有助于促进猴头菇中的氨基酸和还原糖发生美拉德反应或Strecker降解反应,从而造成游离氨基酸的损失[17]。经真空冷冻干燥后猴头菇中氨基酸含量降低的原因可能为冷冻干燥可在一定程度上防止蛋白质降解释放氨基酸[36]。同时,干燥过程中猴头菇的失水也会导致氨基酸含量的减少[37]

    表  4  两种干燥方式对猴头菇游离氨基酸的影响(mg/g干基)
    Table  4.  Effect on amino acid of Hericium erinaceus by two drying methods (mg/g dry weight)
    游离氨基酸新鲜 热风干燥 真空冷冻干燥
    菇盖菇柄菇盖菇柄菇盖菇柄
    天冬氨酸2.82±0.01a1.71±0.01c 1.68±0.00d1.45±0.00e 1.92±0.00b1.43±0.01f
    苏氨酸5.48±0.01a2.28±0.14c2.60±0.02b0.96±0.00e2.81±0.07b1.58±0.00d
    丝氨酸2.71±0.02a1.23±0.00b1.17±0.01c0.62±0.00f1.12±0.01d0.76±0.00e
    谷氨酸4.42±0.01a2.38±0.02c2.79±0.01b1.41±0.01e2.78±0.03b1.52±0.01d
    甘氨酸1.72±0.02a0.70±0.01b0.59±0.00c0.37±0.00e0.50±0.01d0.37±0.00e
    丙氨酸5.97±0.01a3.04±0.01c3.24±0.01b2.33±0.00e2.86±0.01d2.26±0.01f
    半胱氨酸0.57±0.01c0.37±0.00d0.60±0.00b0.29±0.00e0.67±0.00a0.40±0.01d
    缬氨酸2.26±0.01a1.70±0.00b1.64±0.00c1.11±0.00e1.59±0.01d1.09±0.00e
    甲硫氨酸0.73±0.02a0.42±0.01c0.32±0.00d0.23±0.00e0.46±0.00b0.30±0.00d
    异亮氨酸1.62±0.02a1.57±0.01b1.50±0.00c1.38±0.00d1.22±0.00e0.91±0.00f
    亮氨酸3.89±0.01a3.15±0.01b2.73±0.00d1.98±0.00f2.91±0.02c2.07±0.01e
    酪氨酸2.97±0.03a1.63±0.00f2.45±0.00c1.98±0.00d2.74±0.02b1.77±0.01e
    苯丙氨酸2.21±0.04b1.87±0.02c2.18±0.00b1.59±0.01d2.75±0.04a1.82±0.00c
    赖氨酸3.93±0.01a2.11±0.01b1.71±0.01d0.83±0.00f2.02±0.04c1.38±0.00e
    组氨酸1.11±0.01a0.54±0.02c0.55±0.00c0.17±0.00e0.69±0.01b0.39±0.00d
    精氨酸2.87±0.02a2.37±0.01b2.00±0.01d1.14±0.00f2.20±0.04c1.41±0.01e
    脯氨酸3.02±0.06a1.37±0.01c1.79±0.01b0.97±0.00d1.75±0.01b1.01±0.00d
    必需氨基酸(EAA)20.13±0.08a13.10±0.12c12.67±0.04d8.08±0.02f13.77±0.19b9.15±0.01e
    总氨基酸48.29±0.15a28.45±0.11d29.52±0.09c18.82±0.04f31.00±0.33b20.47±0.04e
    下载: 导出CSV 
    | 显示表格

    根据不同口感风味特征,研究者将常见的游离氨基酸分为鲜味、苦味、甜味和无味游离氨基酸[30,38]。其中,鲜味氨基酸包括天冬氨酸和谷氨酸,甜味氨基酸包括苏氨酸、丝氨酸、甘氨酸、丙氨酸和脯氨酸,苦味氨基酸包括缬氨酸、甲硫氨酸、异亮氨酸、亮氨酸、苯丙氨酸、组氨酸和精氨酸。鲜味和甜味氨基酸的滋味活度值(Taste active value,TAV)较高,对猴头菇的特征风味有重要贡献,而苦味氨基酸的TAV相对较低[39]。由表5可知,猴头菇中的风味氨基酸主要为苦味和甜味氨基酸,新鲜猴头菇经干燥后,风味游离氨基酸含量均显著降低(P<0.05),菇盖中风味氨基酸总量显著高于菇柄(P<0.05)。

    表  5  两种干燥方式对猴头菇特征风味游离氨基酸的影响(mg/g干基)
    Table  5.  Effect on taste characteristic of free amino acid of Hericium erinaceus by two drying methods (mg/g dry weight)
    状态部位 风味游离氨基酸
    鲜味苦味甜味
    新鲜菇盖7.24±0.01a14.69±0.05a15.87±0.04a
    菇柄4.10±0.03d11.62±0.01c7.25±0.14c
    热风干燥菇盖4.48±0.01c10.91±0.02d7.59±0.03b
    菇柄2.87±0.01f7.61±0.02f4.28±0.01e
    真空冷冻干燥菇盖4.70±0.03b11.83±0.14b7.29±0.10c
    菇柄2.95±0.01e7.99±0.02e4.98±0.01d
    下载: 导出CSV 
    | 显示表格

    气相离子迁移谱(GC-IMS)是一种基于气相色谱(GC)和离子迁移谱(IMS)的联用技术,灵敏度和分辨率高,且操作简易,现已广泛应用于食品研究[40]。为了更直观地观察干燥方式对猴头菇挥发性风味物质的影响,利用GC-IMS的LAV软件中的Gallery Plot插件,对定性出的离子峰生成指纹图谱,如图1所示。图中每个亮点均代表着一种挥发性风味化合物,点的颜色越深,说明此挥发性风味化合物的含量越高[41]。由于各化合物的性质和含量,一种化合物可能会在同一水平上产生多个亮点,这分别代表该物质的单体和多聚体[42]。本实验中经GC-IMS共鉴定出猴头菇中64种挥发性风味物质,其中醇类17种,醛类14种,酮类11种,酯类10种,酸类6种,烯烃类3种,杂环类3种。由图1可以看出,新鲜猴头菇经干燥后,挥发性化合物的含量有着明显的变化,干燥后猴头菇醇类及醛类化合物损失较多,但同时酯类化合物含量增加。两种干猴头菇以及干燥前后猴头菇菇盖和菇柄之间挥发性风味物质的GC-IMS指纹图谱变化趋势一致。

    图  1  干燥前后猴头菇挥发性风味物质的GC-IMS分析
    Figure  1.  GC-IMS analysis of volatile flavor substances in Hericium erinaceus before and after drying

    为了定量区分干燥前后猴头菇挥发性成分的差异,根据各挥发性化合物的保留时间和漂移时间,基于信号强度对指纹图谱中的64种挥发性物质进行了表征,如表6所示。由表可知,新鲜猴头菇的主要挥发性成分为正辛醇、异辛醇、1-辛烯-3醇、反-2-辛烯醛、正辛醛、1-辛烯-3酮、3-辛酮等八碳化合物,八碳化合物是食用菌中关键的挥发性成分[43-44],其中,1-辛烯-3醇又叫“蘑菇醇”,它是蘑菇香味的重要贡献者,是脂肪氧化酶催化亚油酸而来[45],在食用菌中广泛存在。除了八碳化合物外,新鲜猴头菇中的挥发性成分主要还有正己醇、正戊醇、壬醛、异戊醛、苯甲醛等,其中壬醛有柑橘和玫瑰香气,异戊醛有苹果香气[46],苯甲醛有特殊苦杏仁味,这些物质与八碳化合物共同构成新鲜猴头菇的风味。

    表  6  两种干燥方式对猴头菇挥发性风味物质的信号强度影响
    Table  6.  Effect on signal intensities of volatile flavor compounds of Hericium erinaceus by two drying methods
    化合物名称新鲜 热风干燥 真空冷冻干燥
    菇盖菇柄菇盖菇柄菇盖菇柄
    醇类(17种)
    正辛醇166.06±11.73a164.16±2.02a80.31±8.27b88.85±4.30b83.71±11.27b90.02±5.61b
    异辛醇167.40±5.92a119.52±8.02b85.48±7.08de83.03±2.82e97.17±5.61c94.92±3.11cd
    1-辛烯-3-醇1311.80±133.91a1119.29±79.79a569.98±43.73b572.38±6.36b554.52±32.33b586.86±33.82b
    1-辛烯-3-醇二聚体546.00±77.20a513.92±85.87a42.91±3.65b45.16±5.25b65.34±13.13b50.38±7.16b
    正庚醇158.55±11.89a117.94±2.47b77.72±4.98c54.14±0.37d60.19±3.82d62.27±6.54d
    正己醇1068.67±27.52a677.12±0.55b57.67±2.75d57.68±5.23d78.62±4.70cd99.11±15.00c
    正己醇二聚体509.65±32.97a262.14±23.47b33.97±2.23c28.35±2.65c31.34±1.46c33.80±1.63c
    2-己醇1621.67±24.42a1488.65±47.50b540.55±40.76c337.40±4.77d263.30±21.70e316.56±19.42de
    正戊醇1614.98±13.02a1313.43±24.98b415.75±24.68c310.39±9.16d307.13±34.10d345.68±15.19d
    3-甲基-3-丁烯-1-醇839.28±20.53a321.54±2.19b193.35±8.51c125.69±3.69e186.50±6.45c150.11±6.45d
    3-甲基-3-丁烯-1-醇二聚体456.47±3.82a87.00±19.55b59.62±1.14c29.33±2.87d49.91±3.41c28.13±3.06d
    正丁醇4496.61±31.35bc4559.64±218.21bc4767.84±52.03b3122.05±83.64d5341.42±88.13a4385.59±224.83c
    丙醇721.92±4.94a374.85±43.92b236.45±14.57c135.04±6.50d395.93±35.91b254.63±46.69c
    丙醇二聚体755.06±33.92d695.01±30.56d1222.69±47.12c1867.09±79.11b1817.84±56.14b2296.36±39.66a
    异丁醇364.83±8.49c229.55±17.36d884.95±39.39b1221.27±7.02a887.77±102.71b870.13±32.40b
    2,3-丁二醇292.64±22.00d326.19±48.73d1747.24±196.81c1963.21±16.51b2697.36±101.19a2789.23±20.57a
    异丙醇213.75±7.95d319.20±63.99c501.95±39.97b784.11±38.93a322.33±23.94c379.56±42.58c
    醛类(14种)
    (E)-2-辛烯醛307.78±54.81b469.51±90.88a47.22±4.06c44.88±8.14c45.93±8.21c46.30±4.06c
    (E)-2-辛烯醛二聚体1223.86±115.14b1400.27±112.67a76.12±14.86c82.68±4.56c157.81±54.90c130.32±25.37c
    壬醛1073.48±71.49a1365.58±46.32b205.08±15.48d241.18±7.73cd232.02±35.69cd281.92±19.62c
    正辛醛358.40±16.35b463.33±42.08a84.68±13.83c78.27±0.60c80.69±6.45c101.20±3.36c
    (E)-2-庚烯醛1368.89±93.39b1672.07±61.28a105.68±7.65c105.37±10.93c131.38±18.09c138.12±11.19c
    (E)-2-庚烯醛二聚体3437.33±278.87b4128.79±189.70a98.19±6.39c101.97±8.93c144.95±47.48c123.35±19.82c
    庚醛1150.71±21.02a1103.60±52.18a248.52±30.32d327.22±6.31c570.99±15.82b541.94±10.32b
    庚醛二聚体511.13±22.18b617.18±118.60a47.28±8.45c49.91±3.86c56.35±7.09c53.62±4.94c
    异戊醛1268.15±33.05a797.14±48.23b477.22±27.14cd501.95±8.26c444.51±13.33d525.86±1.26c
    异戊醛二聚体1486.72±24.62d1581.92±46.39cd2658.12±225.73a1741.93±9.13c2670.73±120.57a2193.59±84.17b
    异丁醛1786.73±36.27a628.08±16.79b553.51±23.35c206.76±6.57e560.75±20.28c311.29±51.10d
    戊醛2885.00±72.67b3509.80±174.31a522.74±10.50e320.87±1.47f741.27±74.06d947.86±48.30c
    苯甲醛1344.82±62.26a1142.87±32.44b672.72±19.91e864.34±13.08c778.93±62.29d814.78±50.96cd
    苯甲醛二聚体3741.14±239.35a1774.09±97.93b366.60±30.16c266.55±2.83d314.57±13.12c322.64±19.49c
    酮类(11种)
    呋喃酮356.06±2.27a306.23±13.44b228.78±11.89d218.26±7.66d274.84±33.25c272.65±6.23c
    1-辛烯-3-酮2587.02±144.80a2341.29±127.25a161.32±6.75b138.20±22.03b221.41±43.33b187.13±3.20b
    1-辛烯-3-酮二聚体2907.67±272.97a3540.30±339.49a95.79±4.62b110.96±5.50b130.20±28.81b117.52±16.71b
    3-辛酮5771.94±277.36a3760.15±186.81b223.73±3.22c200.06±16.44c198.97±14.84c225.43±17.94c
    2-庚酮236.78±8.23b276.66±46.46a69.33±3.41c73.38±5.69c62.90±6.95c72.21±7.65c
    2,3-丁二酮173.28±11.49e358.83±75.56d1680.02±59.31a1428.95±89.40b772.21±134.41c483.95±29.86d
    3-戊酮65.09±1.46e61.44±4.72e133.93±11.39c101.75±5.56d244.02±25.33a183.59±22.41b
    环己酮73.01±5.86c94.89±24.87c630.31±42.67a630.92±14.45a671.92±19.13a577.66±8.92b
    2,3-戊二酮896.35±41.30e1189.09±44.87d1377.86±31.63c1382.45±4.62c1654.30±11.57b1795.91±65.94a
    2-丙酮10391.79±87.25a10471.17±198.09a6685.68±129.79d4738.03±120.26e9901.63±179.42b9046.33±363.51c
    3-羟基-2-丁酮652.32±72.99d1587.57±156.15a1304.76±51.13b1646.20±11.38a1082.83±31.60c1356.67±113.10b
    酯类(10种)
    γ-丁内酯143.74±4.32d162.65±12.32d2538.00±223.73a2458.97±38.28a1121.45±26.42b788.18±40.92c
    γ-丁内酯二聚体62.78±2.92e70.22±21.96e911.09±16.85a746.07±3.16b443.40±13.83c351.32±20.42d
    苯甲酸甲酯289.36±14.43a228.47±25.28b184.81±18.60c175.33±4.86c169.49±3.48c182.81±3.99c
    乙酸异戊酯98.86±13.63a66.70±6.31b33.03±10.08c45.45±1.83c36.17±2.51c35.77±2.06c
    2-甲基丙酸乙酯132.52±22.08a80.30±13.30b11.18±1.79c12.89±3.07c11.41±2.07c12.82±1.28c
    2-甲基丙酸乙酯二聚体255.99±10.98bc284.85±19.28b230.09±3.74c325.56±22.84a174.63±15.37d199.20±14.58d
    乙酸乙酯10994.87±338.55a8352.80±410.99b 547.05±12.19e374.11±16.96e 2231.33±141.25c1021.65±178.59d
    乙酸乙酯二聚体1665.26±25.55b1789.86±69.30a930.29±129.17c949.82±47.52c977.39±40.75c1001.67±34.14c
    丙酸乙酯262.04±2.92d127.89±11.97e685.01±74.64a710.08±30.81a497.56±76.06b388.50±27.79c
    丁酸乙酯9201.66±63.97b11183.13±269.59a624.29±63.71c342.46±11.16c297.47±21.31c556.60±17.66c
    酸类(6种)
    正己酸2361.60±71.13a1325.32±136.18b185.83±25.72c153.55±14.10c237.35±27.16c235.76±26.57c
    异丁酸668.11±46.37a388.69±34.16c516.09±9.45b545.67±18.38b381.36±33.54cd331.39±10.11d
    异丁酸二聚体177.49±17.57d307.43±37.54d2952.91±158.56c3252.21±31.80b4609.30±224.52a4600.83±15.33a
    丁酸78.65±8.82b103.33±2.20b670.19±60.79a623.87±9.97a615.88±28.12a653.16±31.82a
    正戊酸93.59±13.13c119.72±6.19c941.83±85.06b1207.67±9.91a1212.66±31.21a1174.94±69.37a
    乙酸1125.60±71.01d2091.10±29.00c3419.24±167.62a3221.83±64.87b3086.82±42.23b3492.40±68.13a
    烯烃类(3种)
    罗勒烯1004.62±40.74a348.50±32.05b150.17±4.70c164.98±9.04c159.07±32.62c183.47±24.32c
    苯乙烯222.34±11.21b379.55±56.98a72.92±2.79c69.98±2.45c70.85±9.56c71.82±3.13c
    2-蒎烯55.69±4.00d73.31±4.63d448.89±42.91c573.25±5.62b593.45±4.97ab614.04±3.20a
    杂环类(3种)
    2-戊基呋喃377.99±30.77b1185.53±115.88a54.15±8.91c35.59±3.44c53.75±2.21c57.62±4.08c
    2-甲基-3-甲硫基呋喃840.01±15.45a621.69±38.90b254.86±10.97c358.78±15.93c325.18±20.80c329.21±25.64c
    1,4-二氧六环621.39±40.66a394.76±20.73b116.30±4.89d117.11±7.83d154.64±4.72c121.56±1.74cd
    下载: 导出CSV 
    | 显示表格

    干燥处理对猴头菇中1-辛烯-3醇等八碳化合物以及醇、醛、酮、酯类物质的影响显著。新鲜猴头菇经过干燥后,1-辛烯-3醇的信号强度显著降低(P<0.05),因为干燥过程对1-辛烯-3醇的破坏很大,随着干燥的进行,这种香气逐渐减弱[47]。干燥后猴头菇中的其他八碳化合物如正辛醇、异辛醇、反-2-辛烯醛、正辛醛、1-辛烯-3酮、3-辛酮等以及正己醇、正戊醇、壬醛、异戊醛、苯甲醛等醇、醛类化合物的信号强度均显著降低(P<0.05),说明干燥过程会对八碳化合物以及醇、醛类等挥发性物质造成一定的破坏,长时间的干燥处理会使其挥发损失[48]。新鲜猴头菇经热风干燥后,异辛醇、丙醇等醇类物质的损失显著多于经真空冷冻干燥后的猴头菇,表明热风干燥易造成猴头菇中醇类物质的损失[49]。酮类物质能赋予猴头菇花香和果香,且香味持久[50]。干燥后猴头菇中的2,3-丁二酮、3-羟基-2-丁酮等酮类化合物的信号强度显著增加,且热风干燥样品的信号强度显著高于真空冷冻干燥样品(P<0.05),原因可能为热干燥过程有利于形成酮类风味物质,而真空低温环境不易形成酮类化合物[51]。干燥后猴头菇中的酯类化合物,如γ-丁内酯、丙酸乙酯等,信号强度显著增加(P<0.05),这可能是在干燥过程中,猴头菇中由脂质降解的醇、酸类物质的酯化反应所致[52]。内酯类化合物能够赋予猴头菇以果香气,其中丁内酯有椰子香气[53],热风干燥猴头菇中的γ-丁内酯信号强度显著高于真空冷冻干燥猴头菇(P<0.05),这可能是因为热处理有利于促进内酯类化合物的合成[51]

    新鲜猴头菇经热风干燥和真空冷冻干燥后,非挥发性风味物质中的可溶性糖、5’-核苷酸、游离氨基酸含量均显著降低(P<0.05),其中热风干燥样品损失最多,相比真空冷冻干燥样品损失分别为:可溶性糖10.21%(菇盖)、21.24%(菇柄);5’-核苷酸3.68%(菇盖)、15.67%(菇柄);游离氨基酸5.42%(菇盖)、6.37%(菇柄)。不同猴头菇样品中有机酸总量为真空冷冻干燥样品>热风干燥样品>新鲜样品,其中酒石酸含量在干燥前后无显著性差异(P>0.05),柠檬酸经两种方式干燥后呈现相反的变化趋势,在热风干燥样品中含量最低。经GC-IMS共鉴定出猴头菇鲜样和干样中64种挥发性风味物质,主要为醇类(17种)、醛类(14种)、酮类(11种)和酯类(10种)化合物,这些物质呈现猴头菇的主体风味,总体来看,真空冷冻干燥更有利于保留猴头菇中八碳化合物以及其他醇、醛类风味物质,而热风干燥更易于形成酮、酯类化合物。此外,猴头菇菇盖中总可溶性糖、总5’-核苷酸及总游离氨基酸的含量显著高于菇柄,总有机酸含量显著低于菇柄(P<0.05),菇盖和菇柄挥发性风味物质指纹图谱的变化趋势一致。

    综上所述,热风干燥和真空冷冻干燥对猴头菇的风味特征均有显著影响,其中真空冷冻干燥更能有效保留新鲜猴头菇的滋味特征,不同干燥方式对猴头菇香味特征的影响是多方面的,考虑到各挥发性风味物质的阈值不同,且产生香味各异,具体干燥方式可根据实际情况具体选择。同时,猴头菇菇盖和菇柄之间的风味特征也存在差异,菇盖的风味总体上优于菇柄,因此食用时一般去除菇柄,考虑到回收利用可将菇柄用作其他用途。本研究为猴头菇产品的进一步开发利用提供了有效的参考依据,也可为干燥方式对食用菌风味影响的深入研究提供一定的借鉴意义。

  • 图  1   干燥前后猴头菇挥发性风味物质的GC-IMS分析

    Figure  1.   GC-IMS analysis of volatile flavor substances in Hericium erinaceus before and after drying

    表  1   两种干燥方式对猴头菇可溶性糖(醇)的影响(mg/g干基)

    Table  1   Effect of two drying methods on soluble sugar (alcohol) of Hericium erinaceus (mg/g dry weight)

    状态部位 可溶性糖(醇)
    阿拉伯糖果糖甘露醇海藻糖总量
    新鲜菇盖75.24±2.30a277.88±5.48a55.10±3.20b24.86±0.70a433.07±5.68a
    菇柄13.14±0.44d180.33±5.46c41.92±1.36cd7.87±0.25c243.26±4.79d
    热风
    干燥
    菇盖58.72±3.22b248.90±6.77b45.66±2.56c7.63±0.27c360.90±1.26c
    菇柄9.79±0.67d151.36±5.57d33.86±3.59d4.19±0.68d199.20±3.33e
    真空冷冻
    干燥
    菇盖35.47±3.34c272.07±2.57a79.75±0.88a10.47±0.08b397.76±5.11b
    菇柄7.00±0.06cd172.39±3.47c56.50±1.19b5.62±0.21d241.51±4.93d
    注:同一列不同数值上标字母代表数据差异显著(P<0.05);表2表5同。
    下载: 导出CSV

    表  2   两种干燥方式对猴头菇呈味核苷酸的影响(mg/g干基)

    Table  2   Effect on flavor nucleotides of Hericium erinaceus by two drying methods (mg/g dry weight)

    状态部位 5’-核苷酸
    5’-CMP5’-AMP5’-GMP5’-UMP总量
    新鲜菇盖5.68±0.45a1.49±0.12a0.59±0.08a0.50±0.01a8.27±0.39a
    菇柄2.33±0.03c1.08±0.05b0.43±0.02b0.29±0.04c4.13±0.03c
    热风
    干燥
    菇盖4.81±0.28b0.70±0.03cd0.38±0.03bcd0.36±0.05b6.25±0.31b
    菇柄1.79±0.05d0.69±0.01d0.31±0.02d0.20±0.02d3.00±0.03d
    真空冷冻干燥菇盖4.96±0.30b0.81±0.04c0.41±0.03bc0.30±0.04bc6.48±0.26b
    菇柄2.15±0.13cd0.80±0.04cd0.34±0.01cd0.18±0.00d3.47±0.14d
    下载: 导出CSV

    表  3   两种干燥方式对猴头菇有机酸的影响(mg/g干基)

    Table  3   Effect on organic acid of Hericium erinaceus by two drying methods (mg/g dry weight)

    有机酸新鲜 热风干燥 真空冷冻干燥
    菇盖菇柄菇盖菇柄菇盖菇柄
    酒石酸16.98±0.24b30.53±0.24a 18.10±1.01b31.10±0.31a 18.68±0.52b30.97±0.35a
    苹果酸20.76±0.86d23.24±1.15cd34.06±1.27a25.26±0.28bc27.53±0.58b27.10±0.93b
    乙酸33.35±1.49d41.78±1.32c47.49±1.03b58.63±1.15a45.40±1.54bc54.10±0.86a
    柠檬酸64.44±1.38e84.05±2.03c55.09±2.00f76.15±2.10d90.13±0.26b106.86±1.98a
    富马酸0.79±0.00e0.92±0.00d1.41±0.00a0.97±0.03d1.27±0.03b1.14±0.02c
    琥珀酸114.78±1.41a92.93±2.38c105.34±0.99b86.67±1.51d93.17±0.83c76.37±1.73e
    总量251.10±2.41d273.46±2.36b261.98±2.29c278.78±1.13b276.18±2.09b296.53±1.88a
    注:同一行不同数值上标字母代表数据差异显著(P<0.05);表4表6同。
    下载: 导出CSV

    表  4   两种干燥方式对猴头菇游离氨基酸的影响(mg/g干基)

    Table  4   Effect on amino acid of Hericium erinaceus by two drying methods (mg/g dry weight)

    游离氨基酸新鲜 热风干燥 真空冷冻干燥
    菇盖菇柄菇盖菇柄菇盖菇柄
    天冬氨酸2.82±0.01a1.71±0.01c 1.68±0.00d1.45±0.00e 1.92±0.00b1.43±0.01f
    苏氨酸5.48±0.01a2.28±0.14c2.60±0.02b0.96±0.00e2.81±0.07b1.58±0.00d
    丝氨酸2.71±0.02a1.23±0.00b1.17±0.01c0.62±0.00f1.12±0.01d0.76±0.00e
    谷氨酸4.42±0.01a2.38±0.02c2.79±0.01b1.41±0.01e2.78±0.03b1.52±0.01d
    甘氨酸1.72±0.02a0.70±0.01b0.59±0.00c0.37±0.00e0.50±0.01d0.37±0.00e
    丙氨酸5.97±0.01a3.04±0.01c3.24±0.01b2.33±0.00e2.86±0.01d2.26±0.01f
    半胱氨酸0.57±0.01c0.37±0.00d0.60±0.00b0.29±0.00e0.67±0.00a0.40±0.01d
    缬氨酸2.26±0.01a1.70±0.00b1.64±0.00c1.11±0.00e1.59±0.01d1.09±0.00e
    甲硫氨酸0.73±0.02a0.42±0.01c0.32±0.00d0.23±0.00e0.46±0.00b0.30±0.00d
    异亮氨酸1.62±0.02a1.57±0.01b1.50±0.00c1.38±0.00d1.22±0.00e0.91±0.00f
    亮氨酸3.89±0.01a3.15±0.01b2.73±0.00d1.98±0.00f2.91±0.02c2.07±0.01e
    酪氨酸2.97±0.03a1.63±0.00f2.45±0.00c1.98±0.00d2.74±0.02b1.77±0.01e
    苯丙氨酸2.21±0.04b1.87±0.02c2.18±0.00b1.59±0.01d2.75±0.04a1.82±0.00c
    赖氨酸3.93±0.01a2.11±0.01b1.71±0.01d0.83±0.00f2.02±0.04c1.38±0.00e
    组氨酸1.11±0.01a0.54±0.02c0.55±0.00c0.17±0.00e0.69±0.01b0.39±0.00d
    精氨酸2.87±0.02a2.37±0.01b2.00±0.01d1.14±0.00f2.20±0.04c1.41±0.01e
    脯氨酸3.02±0.06a1.37±0.01c1.79±0.01b0.97±0.00d1.75±0.01b1.01±0.00d
    必需氨基酸(EAA)20.13±0.08a13.10±0.12c12.67±0.04d8.08±0.02f13.77±0.19b9.15±0.01e
    总氨基酸48.29±0.15a28.45±0.11d29.52±0.09c18.82±0.04f31.00±0.33b20.47±0.04e
    下载: 导出CSV

    表  5   两种干燥方式对猴头菇特征风味游离氨基酸的影响(mg/g干基)

    Table  5   Effect on taste characteristic of free amino acid of Hericium erinaceus by two drying methods (mg/g dry weight)

    状态部位 风味游离氨基酸
    鲜味苦味甜味
    新鲜菇盖7.24±0.01a14.69±0.05a15.87±0.04a
    菇柄4.10±0.03d11.62±0.01c7.25±0.14c
    热风干燥菇盖4.48±0.01c10.91±0.02d7.59±0.03b
    菇柄2.87±0.01f7.61±0.02f4.28±0.01e
    真空冷冻干燥菇盖4.70±0.03b11.83±0.14b7.29±0.10c
    菇柄2.95±0.01e7.99±0.02e4.98±0.01d
    下载: 导出CSV

    表  6   两种干燥方式对猴头菇挥发性风味物质的信号强度影响

    Table  6   Effect on signal intensities of volatile flavor compounds of Hericium erinaceus by two drying methods

    化合物名称新鲜 热风干燥 真空冷冻干燥
    菇盖菇柄菇盖菇柄菇盖菇柄
    醇类(17种)
    正辛醇166.06±11.73a164.16±2.02a80.31±8.27b88.85±4.30b83.71±11.27b90.02±5.61b
    异辛醇167.40±5.92a119.52±8.02b85.48±7.08de83.03±2.82e97.17±5.61c94.92±3.11cd
    1-辛烯-3-醇1311.80±133.91a1119.29±79.79a569.98±43.73b572.38±6.36b554.52±32.33b586.86±33.82b
    1-辛烯-3-醇二聚体546.00±77.20a513.92±85.87a42.91±3.65b45.16±5.25b65.34±13.13b50.38±7.16b
    正庚醇158.55±11.89a117.94±2.47b77.72±4.98c54.14±0.37d60.19±3.82d62.27±6.54d
    正己醇1068.67±27.52a677.12±0.55b57.67±2.75d57.68±5.23d78.62±4.70cd99.11±15.00c
    正己醇二聚体509.65±32.97a262.14±23.47b33.97±2.23c28.35±2.65c31.34±1.46c33.80±1.63c
    2-己醇1621.67±24.42a1488.65±47.50b540.55±40.76c337.40±4.77d263.30±21.70e316.56±19.42de
    正戊醇1614.98±13.02a1313.43±24.98b415.75±24.68c310.39±9.16d307.13±34.10d345.68±15.19d
    3-甲基-3-丁烯-1-醇839.28±20.53a321.54±2.19b193.35±8.51c125.69±3.69e186.50±6.45c150.11±6.45d
    3-甲基-3-丁烯-1-醇二聚体456.47±3.82a87.00±19.55b59.62±1.14c29.33±2.87d49.91±3.41c28.13±3.06d
    正丁醇4496.61±31.35bc4559.64±218.21bc4767.84±52.03b3122.05±83.64d5341.42±88.13a4385.59±224.83c
    丙醇721.92±4.94a374.85±43.92b236.45±14.57c135.04±6.50d395.93±35.91b254.63±46.69c
    丙醇二聚体755.06±33.92d695.01±30.56d1222.69±47.12c1867.09±79.11b1817.84±56.14b2296.36±39.66a
    异丁醇364.83±8.49c229.55±17.36d884.95±39.39b1221.27±7.02a887.77±102.71b870.13±32.40b
    2,3-丁二醇292.64±22.00d326.19±48.73d1747.24±196.81c1963.21±16.51b2697.36±101.19a2789.23±20.57a
    异丙醇213.75±7.95d319.20±63.99c501.95±39.97b784.11±38.93a322.33±23.94c379.56±42.58c
    醛类(14种)
    (E)-2-辛烯醛307.78±54.81b469.51±90.88a47.22±4.06c44.88±8.14c45.93±8.21c46.30±4.06c
    (E)-2-辛烯醛二聚体1223.86±115.14b1400.27±112.67a76.12±14.86c82.68±4.56c157.81±54.90c130.32±25.37c
    壬醛1073.48±71.49a1365.58±46.32b205.08±15.48d241.18±7.73cd232.02±35.69cd281.92±19.62c
    正辛醛358.40±16.35b463.33±42.08a84.68±13.83c78.27±0.60c80.69±6.45c101.20±3.36c
    (E)-2-庚烯醛1368.89±93.39b1672.07±61.28a105.68±7.65c105.37±10.93c131.38±18.09c138.12±11.19c
    (E)-2-庚烯醛二聚体3437.33±278.87b4128.79±189.70a98.19±6.39c101.97±8.93c144.95±47.48c123.35±19.82c
    庚醛1150.71±21.02a1103.60±52.18a248.52±30.32d327.22±6.31c570.99±15.82b541.94±10.32b
    庚醛二聚体511.13±22.18b617.18±118.60a47.28±8.45c49.91±3.86c56.35±7.09c53.62±4.94c
    异戊醛1268.15±33.05a797.14±48.23b477.22±27.14cd501.95±8.26c444.51±13.33d525.86±1.26c
    异戊醛二聚体1486.72±24.62d1581.92±46.39cd2658.12±225.73a1741.93±9.13c2670.73±120.57a2193.59±84.17b
    异丁醛1786.73±36.27a628.08±16.79b553.51±23.35c206.76±6.57e560.75±20.28c311.29±51.10d
    戊醛2885.00±72.67b3509.80±174.31a522.74±10.50e320.87±1.47f741.27±74.06d947.86±48.30c
    苯甲醛1344.82±62.26a1142.87±32.44b672.72±19.91e864.34±13.08c778.93±62.29d814.78±50.96cd
    苯甲醛二聚体3741.14±239.35a1774.09±97.93b366.60±30.16c266.55±2.83d314.57±13.12c322.64±19.49c
    酮类(11种)
    呋喃酮356.06±2.27a306.23±13.44b228.78±11.89d218.26±7.66d274.84±33.25c272.65±6.23c
    1-辛烯-3-酮2587.02±144.80a2341.29±127.25a161.32±6.75b138.20±22.03b221.41±43.33b187.13±3.20b
    1-辛烯-3-酮二聚体2907.67±272.97a3540.30±339.49a95.79±4.62b110.96±5.50b130.20±28.81b117.52±16.71b
    3-辛酮5771.94±277.36a3760.15±186.81b223.73±3.22c200.06±16.44c198.97±14.84c225.43±17.94c
    2-庚酮236.78±8.23b276.66±46.46a69.33±3.41c73.38±5.69c62.90±6.95c72.21±7.65c
    2,3-丁二酮173.28±11.49e358.83±75.56d1680.02±59.31a1428.95±89.40b772.21±134.41c483.95±29.86d
    3-戊酮65.09±1.46e61.44±4.72e133.93±11.39c101.75±5.56d244.02±25.33a183.59±22.41b
    环己酮73.01±5.86c94.89±24.87c630.31±42.67a630.92±14.45a671.92±19.13a577.66±8.92b
    2,3-戊二酮896.35±41.30e1189.09±44.87d1377.86±31.63c1382.45±4.62c1654.30±11.57b1795.91±65.94a
    2-丙酮10391.79±87.25a10471.17±198.09a6685.68±129.79d4738.03±120.26e9901.63±179.42b9046.33±363.51c
    3-羟基-2-丁酮652.32±72.99d1587.57±156.15a1304.76±51.13b1646.20±11.38a1082.83±31.60c1356.67±113.10b
    酯类(10种)
    γ-丁内酯143.74±4.32d162.65±12.32d2538.00±223.73a2458.97±38.28a1121.45±26.42b788.18±40.92c
    γ-丁内酯二聚体62.78±2.92e70.22±21.96e911.09±16.85a746.07±3.16b443.40±13.83c351.32±20.42d
    苯甲酸甲酯289.36±14.43a228.47±25.28b184.81±18.60c175.33±4.86c169.49±3.48c182.81±3.99c
    乙酸异戊酯98.86±13.63a66.70±6.31b33.03±10.08c45.45±1.83c36.17±2.51c35.77±2.06c
    2-甲基丙酸乙酯132.52±22.08a80.30±13.30b11.18±1.79c12.89±3.07c11.41±2.07c12.82±1.28c
    2-甲基丙酸乙酯二聚体255.99±10.98bc284.85±19.28b230.09±3.74c325.56±22.84a174.63±15.37d199.20±14.58d
    乙酸乙酯10994.87±338.55a8352.80±410.99b 547.05±12.19e374.11±16.96e 2231.33±141.25c1021.65±178.59d
    乙酸乙酯二聚体1665.26±25.55b1789.86±69.30a930.29±129.17c949.82±47.52c977.39±40.75c1001.67±34.14c
    丙酸乙酯262.04±2.92d127.89±11.97e685.01±74.64a710.08±30.81a497.56±76.06b388.50±27.79c
    丁酸乙酯9201.66±63.97b11183.13±269.59a624.29±63.71c342.46±11.16c297.47±21.31c556.60±17.66c
    酸类(6种)
    正己酸2361.60±71.13a1325.32±136.18b185.83±25.72c153.55±14.10c237.35±27.16c235.76±26.57c
    异丁酸668.11±46.37a388.69±34.16c516.09±9.45b545.67±18.38b381.36±33.54cd331.39±10.11d
    异丁酸二聚体177.49±17.57d307.43±37.54d2952.91±158.56c3252.21±31.80b4609.30±224.52a4600.83±15.33a
    丁酸78.65±8.82b103.33±2.20b670.19±60.79a623.87±9.97a615.88±28.12a653.16±31.82a
    正戊酸93.59±13.13c119.72±6.19c941.83±85.06b1207.67±9.91a1212.66±31.21a1174.94±69.37a
    乙酸1125.60±71.01d2091.10±29.00c3419.24±167.62a3221.83±64.87b3086.82±42.23b3492.40±68.13a
    烯烃类(3种)
    罗勒烯1004.62±40.74a348.50±32.05b150.17±4.70c164.98±9.04c159.07±32.62c183.47±24.32c
    苯乙烯222.34±11.21b379.55±56.98a72.92±2.79c69.98±2.45c70.85±9.56c71.82±3.13c
    2-蒎烯55.69±4.00d73.31±4.63d448.89±42.91c573.25±5.62b593.45±4.97ab614.04±3.20a
    杂环类(3种)
    2-戊基呋喃377.99±30.77b1185.53±115.88a54.15±8.91c35.59±3.44c53.75±2.21c57.62±4.08c
    2-甲基-3-甲硫基呋喃840.01±15.45a621.69±38.90b254.86±10.97c358.78±15.93c325.18±20.80c329.21±25.64c
    1,4-二氧六环621.39±40.66a394.76±20.73b116.30±4.89d117.11±7.83d154.64±4.72c121.56±1.74cd
    下载: 导出CSV
  • [1] 王俊, 图力古尔, 高兴喜, 等. 中国猴头菌属真菌分子系统学研究[J]. 中国食用菌,2011,30(4):51−53. [WANG J, TOLGOR B, GAO X X, et al. The molecular systematics research of Hericium in China[J]. Edible Fungi of China,2011,30(4):51−53. doi: 10.3969/j.issn.1003-8310.2011.04.014
    [2] 王薇. 猴头菇的营养保健功能及其在食品工业中的应用[J]. 食品与药品,2006,8(4):24−26. [WANG W. Nutritional and healthy function of Hericium erinaceus and its application in food industry[J]. Food and Drug,2006,8(4):24−26. doi: 10.3969/j.issn.1672-979X.2006.04.007
    [3]

    THONGBAI B, RAPIOR S, HYDE K D, et al. Hericium erinaceus, an amazing medicinal mushroom[J]. Mycological Progress,2015,14(10):91−113. doi: 10.1007/s11557-015-1105-4

    [4]

    KHAN M A, TANIA M, LIU R, et al. Hericium erinaceus: An edible mushroom with medicinal values[J]. Journal of Complementary and Integrative Medicine,2013,10(1):253−258.

    [5]

    FENG T, SHUI M Z, CHEN Z Q, et al. Hericium erinaceus β-glucan modulates in vitro wheat starch digestibility[J]. Food Hydrocolloids,2019,96(11):424−432.

    [6]

    MORI K, KIKUCHI H, OBARA Y, et al. Inhibitory effect of hericenone B from Hericium erinaceus on collagen-induced platelet aggregation[J]. Phytomedicine International Journal of Phytotherapy and Phytopharmacology,2010,17(14):1082−1085. doi: 10.1016/j.phymed.2010.05.004

    [7]

    FURUTA S, KUWAHARA R, HIRAKI E, et al. Hericium erinaceus extracts alter behavioral rhythm in mice[J]. Biomedical Research,2016,37(4):227−232. doi: 10.2220/biomedres.37.227

    [8]

    HAN Z H, YE J M, WANG G F. Evaluation of in vivo antioxidant activity of Hericium erinaceus polysaccharides[J]. International Journal of Biological Macromolecules,2013,52(1):66−71.

    [9]

    LIU J Q, DU C X, WANG Y F, et al. Anti-fatigue activities of polysaccharides extracted from Hericium erinaceus[J]. Experimental and Therapeutic Medicine,2015,9(2):483−487. doi: 10.3892/etm.2014.2139

    [10]

    WONG K H, SABARATNAM V, ABDULLAH N, et al. Effects of cultivation techniques and processing on antimicrobial and antioxidant activities of Hericium erinaceus (Bull.: Fr.) Pers. extracts[J]. Food Technology and Biotechnology,2009,47(1):47−55.

    [11]

    WANG J Q, HU S H, SU Q H, et al. Antitumor and immunoenhancing activities of polysaccharide from culture broth of Hericium spp[J]. The Kaohsiung Journal of Medical Sciences,2001,17(9):461−467.

    [12] 任浩, 于官楚, 孙炳新, 等. 食用菌贮藏保鲜技术研究进展[J]. 包装工程,2019,40(13):11−21. [REN H, YU G C, SUN B X, et al. Research advances on the storage and preservation of edible fungi[J]. Packaging Engineering,2019,40(13):11−21.
    [13] 卜庆状. 真空冷冻干燥和热风干燥对猴头菇营养品质的影响[J]. 食品科技,2018,43(5):104−108. [BU Q Z. Effects of vacuum freeze drying and heat air drying on nutrition and quality of Hericium erinaceus[J]. Food Science and Technology,2018,43(5):104−108.
    [14]

    GARCÍA S P, ANDRÉS B A, MARTÍNEZ M J. Rehydration of air-dried Shiitake mushroom (Lentinus edodes) caps: Comparison of conventional and vacuum water immersion processes[J]. LWT-Food Science and Technology,2011,44(2):480−488. doi: 10.1016/j.lwt.2010.08.010

    [15] 余雄涛, 潘鸿辉, 谢意珍. 食用菌风味物质的研究及应用进展[J]. 中国食用菌,2013,32(3):4−7. [YU X T, PAN H H, XIE Y Z. Research and application progress on flavor substances of edible mushrooms[J]. Edible Fungi China,2013,32(3):4−7.
    [16]

    LI B, KIMATU B M, PEI F, et al. Non-volatile flavour components in Lentinus edodes after hot water blanching and microwave blanching[J]. International Journal of Food Properties,2017,20(sup3):1−11.

    [17]

    PEI F Y S, GAO X, et al. Changes in non-volatile taste components of button mushroom (Agaricus bisporus) during different stages of freeze drying and freeze drying combined with microwave vacuum drying[J]. Food Chemistry,2014,165(15):547−554.

    [18] 卢晓烁. 香菇真空冷冻干燥过程中滋味物质动态变化及鲜味评价 [J/OL]. 食品科学, [2021-04-07]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201228.1539.008.html.

    LU X S. Dynamic changes of taste compounds and evaluation on umami during vacuum freeze-drying of Lentinula edodes [J/OL]. Food Science, [2021-04-07]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201228.1539.008.html.

    [19]

    HOU H, LIU C, LU X S, et al. Characterization of flavor frame in shiitake mushrooms (Lentinula edodes) detected by HS-GC-IMS coupled with electronic tongue and sensory analysis: Influence of drying techniques[J]. LWT-Food Science and Technology,2021,146(17):111402.

    [20] 谷镇. 食用菌呈香呈味物质分析及制备工艺研究 [D]. 上海: 上海师范大学, 2012.

    GU Z. Analysis and preparation technology in flavor components of edible fungus [D]. Shanghai: Shanghai Normal University, 2012.

    [21] 陈万超, 杨焱, 于海龙, 等. 七种干香菇主要营养成分与可溶性糖对比及电子舌分析[J]. 食用菌学报,2015,22(1):61−67. [CHEN W C, YANG Y, YU H L, et al. Nutritional component and soluble saccharide levels in dried Lentinula edodes fruit bodies, and sensory analysis using an electronic tongue[J]. Acta Edulis Fungi,2015,22(1):61−67.
    [22] 李佩璇. 不同干燥方法对牡丹花营养成分含量及抗氧化活性的影响 [J/OL]. 湖北农业科学, [2021-10-06]. http://kns.cnki.net/kcms/detail/42.1255.S.20210430.1129.002.html.

    LI P X. The effects of different drying methods on nutrient content and antioxidant activity of peony flowers [J/OL]. Hubei Agricultural Sciences, [2021-10-06]. http://kns.cnki.net/kcms/detail/42.1255.S.20210430.1129.002.html.

    [23]

    NAGODAWITHANA T W. Savory flavors[M]. Esteekay Associates, Incorporated, 1995.

    [24] 杜冉, 郑新雷, 王世雄, 等. 真空微波干燥技术对食用菌粉品质的影响[J]. 食品科技,2018,43(7):76−82. [DU R, ZHENG X L, WANG S X, et al. Effect of microwave vacuum drying technology on quality of edible mushrooms powder[J]. Food Science and Technology,2018,43(7):76−82.
    [25]

    CHO I H, CHOI H K, KIM Y S. Comparison of umami-taste active components in the pileus and stipe of pine-mushrooms (Tricholoma matsutake Sing. ) of different grades[J]. Food Chemistry,2010,118(3):804−807. doi: 10.1016/j.foodchem.2009.05.084

    [26]

    LEKSRISOMPONG P, GERARD P, LOPETCHARAT K, et al. Bitter taste inhibiting agents for whey protein hydrolysate and whey protein hydrolysate beverages[J]. Journal of Food Science,2012,77(8):S282−S287. doi: 10.1111/j.1750-3841.2012.02800.x

    [27] 邹耀洪. 香菇中5’-核苷酸的高效液相色谱-质谱分析[J]. 食品科学,2005,26(1):196−198. [ZOU Y H. Analysis of 5’-nucleotide in Lentinus edodes with high performance liquid chromatography-mass spectrometry[J]. Food Science,2005,26(1):196−198. doi: 10.3321/j.issn:1002-6630.2005.01.045
    [28]

    LI X, FENG T, FENG Z, et al. Effects of drying methods on the tasty compounds of Pleurotus eryngii[J]. Food Chemistry,2015,166(1):358−364.

    [29] 刘含龙, 万金庆, 杨帆, 等. 不同干燥方式对草菇切片品质的影响[J]. 食品与发酵工业,2021,47(6):160−168. [LIU H L, WAN J Q, YANG F, et al. The effect of different drying methods on the slice quality of Volvariella volvacea[J]. Food and Fermentation Industries,2021,47(6):160−168.
    [30]

    YANG J H, LIN H C, MAU J L. Non-volatile taste components of several commercial mushrooms[J]. Food Chemistry,2001,72(4):465−471. doi: 10.1016/S0308-8146(00)00262-4

    [31]

    LITCHFIELD J H. Morel mushroom mycelium as a food- material[J]. Biotechnology and Bioengineering,1967,9(3):289−304. doi: 10.1002/bit.260090303

    [32] 于慧萍, 胡思, 黄文, 等. 干制方式对大球盖菇滋味物质的影响[J]. 食品工业科技,2021,42(9):251−256. [YU H P, HU S, HUANG W, et al. Effects of drying process on the tasty components in Stropharia rugoso-annulata[J]. Science and Technology of Food Industry,2021,42(9):251−256.
    [33]

    HIRAI M, UENO I. Development of citrus fruits: Fruit development and enzymatic changes in juice vesicle tissue[J]. Plant and Cell Physiology,1977,18(4):791−799.

    [34] 吴方宁. 干燥方法对白玉蕈(white Hypsizygus marmoreus)风味物质的影响[D]. 南京: 南京农业大学, 2014.

    WU F N. The influence of drying methods of flavor components of white Hypsizygus marmoreus[D]. Nanjing: Nanjing Agricultural University, 2014.

    [35]

    YAMAGUCHI S, YOSHIKAWA T, IKEDA S, et al. Measurement of the relative taste intensity of some L-α-amino acids and 5’-nucleotides[J]. Journal of Food Science,2010,36(6):846−849.

    [36]

    FERNANDES A, BARROS L, BARREIRA J, et al. Effects of different processing technologies on chemical and antioxidant parameters of Macrolepiota procera wild mushroom[J]. LWT-Food Science and Technology,2013,54(2):493−499. doi: 10.1016/j.lwt.2013.06.027

    [37] 李晓贝. 杏鲍菇品种、栽培工艺及干制方式对其风味物质产生的影响研究[D]. 上海: 上海应用技术学院, 2015.

    LI X B. Effect of strains, cultivation process and drying methods on flavor compounds of Pleurotus eryngii[D]. Shanghai: Shanghai Institute of Technology, 2015.

    [38]

    MAU J L, LIN H C, CHEN C C. Non-volatile components of several medicinal mushrooms[J]. Food Research International,2001,34(6):521−526. doi: 10.1016/S0963-9969(01)00067-9

    [39]

    LIN S Y. Studies on the characteristics of taste-active components in shiitake mushroom and the powderization of its concentrate[J]. Physica B:Condensed Matter,1988,288(2):1870−1871.

    [40] 王辉, 田寒友, 李文采, 等. 基于顶空气相色谱-离子迁移谱技术的冷冻猪肉贮藏时间快速判别方法[J]. 食品科学,2019,40(2):277−282. [WANG H, TIAN H Y, LI W C, et al. Fast discrimination of frozen pork stored for different periods using headspace-gas chromatography-ion mobility spectroscopy (HS-GC-IMS)[J]. Food Science,2019,40(2):277−282.
    [41] 刘常园, 方东路, 汤静, 等. 基于电子鼻和GC-IMS分析复热对香菇汤挥发性风味物质的影响[J]. 食品科学技术学报,2020,38(4):46−53. [LIU C Y, FANG D L, TANG J, et al. Based on electronic nose and GC-IMS to study effect of reheating on volatile flavor substances ofLentinus edodes soups[J]. Journal of Food Science and Technology,2020,38(4):46−53. doi: 10.3969/j.issn.2095-6002.2020.04.006
    [42] 杜超, 戚军, 姚文生, 等. 基于气相-离子迁移谱分析反复炖煮过程中鸡肉风味物质的变化规律[J]. 食品与发酵工业,2020,46(9):265−271. [DU C, QI J, YAO W S, et al. Detection of volatile compounds in re-stewed chicken by GC-IMS[J]. Food and Fermentation Industries,2020,46(9):265−271.
    [43]

    ROSARIA C, SELENIA D G, ELISA G, et al. Headspace-solid-phase microextraction-gas chromatography as analytical methodology for the determination of volatiles in wild mushrooms and evaluation of modifications occurring during storage[J]. Journal of Analytical Methods in Chemistry,2015,2015(4):1−10.

    [44]

    CSÓKA M, GEOSEL A, AMTMANN M, et al. Volatile composition of some cultivated and wild culinary-medicinal mushrooms from Hungary[J]. International Journal of Medicinal Mushrooms,2017,19(5):433−443. doi: 10.1615/IntJMedMushrooms.v19.i5.50

    [45]

    DEVECI E, TEL C G, DURU M E, et al. Characterization of aromatic volatile compounds of eight wild mushrooms by headspace GC-MSD[J]. Chemistry of Natural Compounds,2017,53(2):383−385. doi: 10.1007/s10600-017-1999-y

    [46] 张宪臣, 刘恭源, 张静, 等. 五种食用菌挥发性成分比较分析[J]. 现代食品科技,2019,35(8):226−235. [ZHANG X C, LIU G Y, ZHANG J, et al. Comparative analysis of volatile components of five kinds of edible fungi[J]. Modern Food Science and Technology,2019,35(8):226−235.
    [47] 郭凯, 芮汉明, 周礼娟. 香菇热风干燥过程中香气形成机理初探[J]. 食品与发酵工业,2007,33(10):62−65. [GUO K, RUI H M, ZHOU L J. Study on formation of Lentinus edodes’ aroma during hot-air drying[J]. Food and Fermentation Industries,2007,33(10):62−65.
    [48]

    Li Q, Zhang H H, Claver I P, et al. Effect of different cooking methods on the flavour constituents of mushroom (Agaricus bisporus (Lange) Sing) soup[J]. International Journal of Food Science and Technology,2011,46(5):1100−1108. doi: 10.1111/j.1365-2621.2011.02592.x

    [49] 侯会, 陈鑫, 方东路, 等. 干燥方式对食用菌风味物质影响研究进展[J]. 食品安全质量检测学报,2019,10(15):4877−4883. [HOU H, CHEN X, FANG D L, et al. Research progress on influence of drying methods on flavor compounds of edible fungus[J]. Journal of Food Safety and Quality,2019,10(15):4877−4883. doi: 10.3969/j.issn.2095-0381.2019.15.008
    [50] 麦雅彦, 杨锡洪, 连鑫, 等. SDE/GC-MS测定南美白对虾的挥发性香气成分[J]. 现代食品科技,2014,30(1):206−210. [MAI Y Y, YANG X H, LIAN X, et al. Determination of volatile aroma compounds of P. vannamei by SDE/GC-MS[J]. Modern Food Science and Technology,2014,30(1):206−210.
    [51] 唐秋实, 陈智毅, 刘学铭, 等. 几种干燥方式对金针菇子实体挥发性风味成分的影响[J]. 食品工业科技,2015,36(10):119−124. [TANG Q S, CHEN Z Y, LIU X M, et al. Influence of drying methods on volatile components of Flammulina velutipe[J]. Science and Technology of Food Industry,2015,36(10):119−124.
    [52]

    CHEN G T, WU F N, PEI F, et al. Volatile components of white Hypsizygus marmoreus detected by electronic nose and HS-SPME-GC-MS: Influence of four drying methods[J]. International Journal of Food Properties,2017,20(12):2901−2910. doi: 10.1080/10942912.2016.1258575

    [53]

    GARCIA E A, ANSORENA D, ASTIASARAN I, et al. Study of the effect of different fiber coatings and extraction conditions on dry cured ham volatile compounds extracted by solid-phase microextraction (SPME)[J]. Talanta,2004,64(2):458−466. doi: 10.1016/j.talanta.2004.03.007

图(1)  /  表(6)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-21
  • 网络出版日期:  2022-02-10
  • 刊出日期:  2022-04-14

目录

/

返回文章
返回