Loading [MathJax]/jax/output/SVG/fonts/TeX/Size1/Regular/Main.js
  • EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

ARTP诱变法提高蜡状芽孢杆菌中壳聚糖酶的产量

张朝正, 李意, 赵华

张朝正,李意,赵华. ARTP诱变法提高蜡状芽孢杆菌中壳聚糖酶的产量[J]. 食品工业科技,2022,43(1):141−146. doi: 10.13386/j.issn1002-0306.2021040172.
引用本文: 张朝正,李意,赵华. ARTP诱变法提高蜡状芽孢杆菌中壳聚糖酶的产量[J]. 食品工业科技,2022,43(1):141−146. doi: 10.13386/j.issn1002-0306.2021040172.
ZHANG Chaozheng, LI Yi, ZHAO Hua. ARTP Mutagenesis Improves the Production of Chitosanase in Bacillus cereus[J]. Science and Technology of Food Industry, 2022, 43(1): 141−146. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040172.
Citation: ZHANG Chaozheng, LI Yi, ZHAO Hua. ARTP Mutagenesis Improves the Production of Chitosanase in Bacillus cereus[J]. Science and Technology of Food Industry, 2022, 43(1): 141−146. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040172.

ARTP诱变法提高蜡状芽孢杆菌中壳聚糖酶的产量

详细信息
    作者简介:

    张朝正(1977−),男,博士,高级实验师,研究方向:生物工程, E-mail:zhangchaozheng@tust.edu.cn

    通讯作者:

    赵华(1963−),男,博士,教授,研究方向:发酵工程,E-mail:zhaohua@tust.edu.cn

  • 中图分类号: TS202.3

ARTP Mutagenesis Improves the Production of Chitosanase in Bacillus cereus

  • 摘要: 利用常温常压等离子体诱变(Atmospheric and Room Temperature Plasma, ARTP)蜡状芽孢杆菌,筛选获得酶活提升的菌株。结果表明,蜡状芽孢杆菌在种子液中培养6 h可达到对数期中后期,常温常压等离子体诱变时间为60 s时,蜡状芽孢杆菌的致死率达到85%,筛选得到一株壳聚糖酶活性提高13.19%的突变株,然后进行酶活稳定性验证,经六代培养的平均酶活为9.643367 U/mL,波动在5%之内,表明其产酶量高,稳定性强,可用于后续出发菌株。诱变后菌株经电镜观察,发现菌落形态无明显变化,但是菌株的个体形态发生了变化,比原始菌株细长,证明酶活提高是ARTP诱变起到的作用。
    Abstract: Atmospheric and room temperature plasma(ARTP) Bacillus cereus was used to screen the strains with increased enzyme activity. The results showed that culturing Bacillus cereus in the seed solution for 6 hours could reach the middle and late logarithmic phase. When the mutagenesis time of normal temperature and atmospheric pressure plasma was 60 s, the lethality of Bacillus cereus reached 85%. A mutant strain with a 13.19% increase in chitosanase activity was screened. Then the stability of the enzyme activity was verified. The average enzyme activity after six generations of culture was 9.643367 U/mL, and the fluctuation was within 5%, indicating that its enzyme production was high and the stability was strong, and it could be used for subsequent starting strains. After the mutagenesis, the strain was observed by electron microscope, and it was found that the morphology of the colony did not change significantly, but the individual morphology of the strain had changed, and it was slenderer than the original strain, which proved that the increase in enzyme activity was the effect of ARTP mutagenesis.
  • 甲壳素(Chitin)是地球上仅次于纤维素,第二丰富的生物聚合物。其来源非常广泛,常存在于昆虫和无脊椎动物的外骨骼和甲壳动物的壳肥料中,在食品、农业、废水处理、纺织工业、纳米技术、医疗材料等方面被广泛使用[1-2]。但是,甲壳素由于缺乏溶解度和高度有序的晶体结构等原因,其应用受到限制。甲壳素解聚之后得到壳聚糖,壳聚糖在医药、化妆品、纺织印刷、食品等各个领域也都有广泛的应用[3-4]。但是由于壳聚糖的分子量大,溶解性差和溶液黏度大等问题,限制了其在一些方面的应用,壳聚糖和甲壳素均有溶解性差且不易被人体吸收的缺点,不过壳寡糖却克服了这些缺点[5-7],因此开发一种成本低、可工业化和高效生产壳寡糖的工艺,是当前研究的重点。

    如今,传统工艺制备壳寡糖均存在过程难以控制和无特异性等缺点,且会对环境造成一定程度的污染。利用酶降解法制备壳寡糖具有污染小[8-9]、过程易控、反应条件温和、得率高等优点[10],但由于目前壳聚糖酶的价格较高,因此得到一株高产壳聚糖酶的菌株是制备壳寡糖的首要任务。大量的研究已经筛选到很多可以产壳聚糖酶的菌株,但这些野生菌株的壳聚糖酶产量均偏低,难以实现工业生产[11-12]。如今,大量研究利用基因工程技术对不同菌株的壳聚糖酶基因进行异源表达,宿主基本为大肠杆菌和酵母[13-16]

    常温常压等离子体诱变(Atmospheric and Room Temperature Plasma, ARTP)是一种在大气压条件下,利用非平衡放电等离子体源的技术[17-18]。利用ARTP处理,DNA会被化学活性物质破坏,而非高温、紫外线、带电粒子或强电场[19-20]。ARTP是一种新型物理诱变技术,具有比传统诱变更高的突变率[21],多样性诱变体和无污染等特点[18,21-24],同时还能保持较低的处理温度。因此,在微生物突变中的使用越来越广泛[25-26]

    本文采用ARTP诱变野生型菌株蜡状芽孢杆菌提高壳聚糖酶酶活,较基因工程技术具有操作简便、突变率高、无污染等优点,是一种新型的物理诱变技术。本研究通过测其生长曲线先确定蜡状芽孢杆菌对数期中后期的时间,再测定ARTP的最佳致死率时间,对蜡状芽孢杆菌进行诱变,筛选酶活提高的菌株。经稳定性验证后,再通过电镜观察诱变菌株的形态变化,为以后的实际应用提供参考。

    磷酸氢二钾、氯化钠、葡萄糖 分析纯,天津市风船化学试剂科技有限公司;吐温−80 分析纯,天津市大茂化学试剂厂;酵母浸粉 生物试剂,国药集团化学试剂有限公司;磷酸二氢钾、硫酸镁 分析纯,天津市化学试剂一厂;蛋白胨 生物试剂,北京奥博星生物技术有限责任公司;酒石酸钾钠 分析纯,天津市百世化工有限公司;亚硫酸钠、3,5-二硝基水杨酸溶液 化学纯,国药集团化学试剂有限公司;苯酚 分析纯,天津市光复精细化工研究所。

    ARTP-II常压室温等离子体诱变系统 北京思清源生物科技有限公司;Bioscreen-C全自动生长曲线分析仪 芬兰OY Growth Curves;场发射扫描电子显微镜, FEI Apreo HIVac,Czech;ELX800酶标仪 基因有限公司;ZWYR-D2401恒温摇床 上海智城分析仪器制造有限公司。

    种子培养基:蛋白胨10 g/L,酵母浸粉5 g/L,NaCl 5 g/L,葡萄糖10 g/L,pH 为6.5,121 ℃灭菌20 min。

    发酵培养基:酵母浸粉16 g/L,葡萄糖11.5 g/L,吐温−80 1.2 g/L,K2HPO4 1.4 g/L,MgSO4·7H2O 1.2 g/L, KH2PO4 0.6 g/L,NaCl 5 g/L,pH为 6.5, 121 ℃灭菌20 min。

    1% 胶体壳聚糖溶液:量取1 g壳聚糖粉末(脱乙酰度≥90%)于烧杯中,取20 mL蒸馏水倒入烧杯,室温静置2 min使其溶胀,然后倒入30 mL 0.2 mol/L的醋酸溶液中,搅拌至透明后,再加入0.2 mol/L的醋酸钠溶液,调节pH至5.5,再用蒸馏水定容至100 mL。

    3,5-二硝基水杨酸(DNS)试剂:甲液:称取 6.9 g 结晶苯酚溶解于 15.2 mL 10%的 NaOH 溶液中,稀释至 69 mL,在此溶液中加入 6.9 g亚硫酸钠。乙液:称取 255.0 g 酒石酸钾钠,加到 300 mL 10%的 NaOH 溶液中,再加入 1% 的3,5-二硝基水杨酸溶液 880 mL。将甲乙溶液混合,棕色瓶中室温下暗处放置一周后使用。

    为得到处于对数生长中后期的菌株种子发酵液,将保藏在天津科技大学微生物菌种保藏管理中心,编号为:TCCC 150018 的蜡状芽孢杆菌接种到50 mL种子培养基中,30 ℃、160 r/min摇瓶培养,每隔1 h,测定种子液的OD600 nm

    将在4 ℃冰箱平板上保存的菌株活化后,再接入50 mL种子培养基中,在30 ℃、160 r/min的摇床中培养6 h,在8000 r/min条件下,离心5 min,去除上清液,收集菌体,生理盐水清洗2~3次后,再用生理盐水稀释菌液浓度为106~108 CFU/mL,用平板计数法测定菌液浓度。

    吸取10 μL 1.3.2所制菌液,均匀涂于载片表面,利用无菌镊子将载片放于ARTP系统操作室的旋转台上的对应孔位,调整照射距离2 mm,气流量10 L/min,输出功率为100 W,进行诱变,分别处理0、10、20、30、40、50、60和70 s,诱变结束后,将载片放置于装有1 mL无菌生理盐水的1 mL离心管中,剧烈振荡,将菌液洗脱下来,稀释适当的倍数,分别取200 μL涂布于种子液固体培养基上,每个梯度做三个平行,进行活菌计数,计算致死率,并获取致死曲线,致死率公式如下[27]

    致死率(%)=TAT×100
    (1)

    式(1)中:T为ARTP处理0 s时的菌落数(未处理的的总菌落数);A为ARTP处理后存活的菌落数。

    根据致死率曲线选择最佳照射时间进行试验[28],将诱变后的菌液载片置于50 mL发酵培养基中摇匀,接于两块100孔微孔板中,每孔接200 μL,将微孔板置于全自动生长曲线分析仪中[29],培养48 h,选择OD600 nm差值大的微孔,吸取100 μL,按照1.3.5所示的方法测量所选择微孔的酶活,得到酶活/OD600 nm较高的孔。

    将酶活较高的微孔中剩余的100 μL菌液,均匀涂布于种子培养基的平板上,30℃培养24 h,再根据平板上菌落的形态大小,挑选一些单个菌落保存,然后对所挑选菌株,再次进行酶活验证实验,利用发酵培养基,160 r/min,30 ℃摇瓶培养72 h,得到高产酶活的菌株。

    空白组:将0.9 mL缓冲液和0.1 mL上清酶液混合在沸水浴中10 min进行灭酶处理,然后加入1 mL 1%胶体壳聚糖放在35 ℃水浴15 min,

    反应组:将0.9 mL缓冲液、0.1 mL上清酶液和1 mL 1%胶体壳聚糖放在35 ℃水浴15 min,然后沸水浴中10 min,

    将空白组和反应组混合后室温离心8000 r/min 5 min,取2 mL离心液与2 mL DNS试剂反应,沸水浴5 min,然后冷却,最后定容至25 mL,以空白组为对照,测反应组OD490 nm[30]

    蜡状芽孢杆菌发酵液以8000 r/min离心5 min去除菌体,取上清液即发酵粗酶液,按照1.3.5的方法,取稀释后的0.1 mL发酵粗酶液测定发酵液的酶活力。测量反应组和空白组OD490 nm,通过计算差值,根据氨基葡萄糖标准曲线计算还原糖,再根据酶活力定义[31],测定发酵粗酶液的酶活力,从而绘制酶活的标准曲线[32-33]

    将筛选得到的高产菌株连续传代培养6代,对该突变株进行遗传稳定性分析,并将各代进行相应的种子培养和发酵培养,通过比较每代壳聚糖酶酶活力变化,测定菌株的遗传稳定性。

    为观察单个突变菌株和原始菌株在形态大小方面的差异,需使用电镜观察其形态结构。操作方法如下:将突变株和原始菌株在种子培养基中培养6 h,在8000 r/min下,离心5 min,收集菌体,使用无菌水清洗3 次以上,再使用25%的戊二醛固定菌体,在4 ℃冰箱中放置4 h。再使用酒精进行梯度洗脱,先使用30%、50%和70%的酒精各浸泡10 min,离心,再使用80%和90%的酒精浸泡8 min,离心,最后使用100%的酒精浸泡5 min,将菌悬液滴至盖玻片(4~6 mm2)上,挥发干燥后,最后喷金使用电镜观察。

    各实验设置三个平行,数据以“平均值±标准偏差”表示,试验数据采用 Microsoft Excel 2019数据处理系统进行整理及分析。

    根据上述1.3.5和1.3.6的方法以酶活Act为纵坐标,OD490 nm值为横坐标,绘制标准曲线,并进行回归分析,得到如图1所示的回归方程和R2R2=0.9994>0.999,所以此回归方程可用于测定溶液中的酶活。

    图  1  酶活的标准曲线
    Figure  1.  The standard curve of enzyme activity

    蜡状芽孢杆菌的生长曲线如图2所示, 前8 h是对数生长期,8~12 h 是生长周期的稳定期,其中 6~8 h是对数生长的中后期, ARTP诱变需要收集处于对数期中后期的菌液,6~8 h的菌液符合对数期中后期要求,因此,选择第6 h的菌液作为ARTP实验对象。

    图  2  蜡状芽孢杆菌生长曲线
    Figure  2.  Growth curve of Bacillus cereus

    利用ARTP诱变蜡状芽孢杆菌致死率曲线如图3所示,随着诱变时间的增加,菌株致死率逐渐上升。当菌株在照射时间为30 s和50 s时,出现致死率下降的现象,推断原因可能是菌体自身的修复机制作用,使菌体修复了ARTP所造成的损伤[34]。当照射时间为60 s时,菌株的致死率达到85%左右,70 s时菌株存活率几乎为零,有研究表明,在一定的处理条件下,孢子的致死率在70%~85%之间时[35],正突变率较高,随着孢子致死率的增加,正突变率逐渐降低而负突变率急剧上升,无法达到筛选优良目的,故本实验重点选用致死率在70%~85%菌种为筛选菌种。且在此突变率下回复性更小[36],所以选择60 s作为ARTP的照射时间。

    图  3  致死率曲线
    Figure  3.  Curve of lethality rate

    菌株发酵壳聚糖酶的产量与菌株的浓度有着密切联系,因此在进一步诱变处理后,根据高密度培养所得的OD600 nm值,选择了OD600 nm增加值较大的30个孔,吸取100 μL发酵液测定酶活,计算出酶活/OD600 nm,并根据酶活/OD600 nm的大小降序排列,如表1所示。

    表  1  突变菌株的筛选
    Table  1.  The mutant strains screening
    OD600 nm酶活(U/mL)酶活/OD600 nmOD600 nm酶活(U/mL)酶活/OD600 nm
    2023.509±0.0123.728676±0.00321.0626±0.0121423.500±0.0113.320143±0.00330.9486±0.011
    1293.515±0.0123.716221±0.00311.0572±0.0121963.514±0.0123.330107±0.00320.9477±0.012
    1153.524±0.0133.591668±0.00331.0192±0.0131893.506±0.0113.311424±0.00300.9445±0.011
    2213.509±0.0123.548074±0.00301.0111±0.0121093.498±0.0123.105912±0.00320.8879±0.012
    1133.505±0.0153.535619±0.00311.0087±0.0151823.558±0.0133.037408±0.00330.8537±0.013
    1883.517±0.0113.492026±0.00350.9929±0.0111163.523±0.0112.975131±0.00320.8445±0.011
    1263.515±0.0123.485798±0.00310.9917±0.0122953.675±0.0123.093456±0.00310.8418±0.012
    1213.538±0.0113.485798±0.00320.9852±0.0112843.516±0.0142.956448±0.00320.8409±0.014
    2073.505±0.0153.435977±0.00320.9803±0.0152753.599±0.0122.975131±0.00310.8267±0.012
    1313.505±0.0153.429749±0.00330.9785±0.0151223.504±0.0152.881717±0.00340.8224±0.015
    2423.557±0.0123.454660±0.00310.9712±0.0122333.547±0.0112.906627±0.00300.8195±0.011
    1383.503±0.0133.392383±0.00330.9684±0.0132463.531±0.0112.887944±0.00310.8179±0.011
    2763.531±0.0123.398611±0.00320.9625±0.0122453.526±0.0132.869261±0.00330.8137±0.013
    2123.500±0.0103.342562±0.00330.955±0.0101043.503±0.0122.844351±0.00300.8120±0.012
    1173.505±0.0123.342562±0.00310.9537±0.0121933.510±0.0142.638838±0.00350.7518±0.014
    下载: 导出CSV 
    | 显示表格

    根据表1所示,将这30个孔中酶活/OD600 nm值最大的六个孔,即202、129、115、221、113和188六个微孔,涂布于种子培养基平板上培养,使孢子发芽、生长并且大量繁殖菌丝体,使诱变后的菌体长得更加粗壮,活力强[37]。培养6 h后,在选择的这六个孔中分别挑选菌落大小、与形态大小不同的菌株,进行酶活验证实验,结果如表2所示。0号菌株为原菌株,其他为所挑选的诱变之后的菌株,可以明确地看到仅有202-1一株菌株的酶活较原菌株高。经测定,ARTP诱变之前,原始菌株的酶活为8.3581 U/mL,诱变后,酶活提高到9.4606 U/mL,较原菌株酶活提高了13.19%。有研究用紫外诱变菌株,在紫外照射100 s时生产壳聚糖酶,菌株的产酶活力最高为8.92 U/mL;用DES诱变菌株处理 50 min生产壳聚糖酶,菌株壳聚糖酶活最高达到8.12 U/mL[38]。可以发现ARTP诱变可以有效地改变菌株的酶活。还有研究利用ARTP 诱变黑曲霉以提高产单宁酶的能力[39],通过APTP 提高菌株葡萄糖氧化酶的产量[40],这些研究可以发现,ARTP诱变技术还可以有效地改变不同酶的酶活。

    表  2  突变株摇瓶发酵复筛
    Table  2.  The mutants strains in shake flask screening
    编号OD600 nm酶活(U/mL)编号OD600 nm酶活(U/mL)
    03.368±0.0148.3581±0.0031129-33.426±0.0133.3655±0.0031
    113-13.356±0.0135.2745±0.0033129-43.424±0.0114.1878±0.0032
    113-23.635±0.0136.6940±0.0032202-13.465±0.0109.4606±0.0032
    113-33.914±0.0114.3249±0.0033202-23.449±0.0123.3459±0.0033
    113-43.976±0.0127.2521±0.0032202-33.433±0.0115.8913±0.0032
    113-53.708±0.0135.9011±0.0031202-43.408±0.0133.2578±0.0033
    113-63.556±0.0115.0200±0.0031188-13.506±0.0126.7626±0.0031
    115-13.428±0.0143.0326±0.0030188-23.574±0.0106.7528±0.0033
    115-23.438±0.0114.2368±0.0030221-13.428±0.0114.0997±0.0031
    129-13.411±0.0123.0228±0.0032221-23.847±0.0132.1417±0.0034
    129-23.444±0.0114.3640±0.0032221-33.429±0.0145.0591±0.0032
    注:每个孔的菌株数量不一样,所以将其孔中的各个菌株进行编号。113孔有六个菌株,故113-1是113孔的第一个菌株,113-2是113孔的第二株菌株……113-6是113孔的第六株菌株。
    下载: 导出CSV 
    | 显示表格

    以防此突变株在传代过程中发生菌株“衰退”的情况,所以进行突变稳定性的分析。对编号202-1菌株进行传代培养,用种子培养基斜面连续培养6代。将每代菌株制成种子液,接种到发酵培养基中摇瓶发酵,发酵培养之后,结果如图4所示。该菌株进行传代试验之后,测定其酶活力,传代 1~6 次的酶活分别为9.6345、9.2578、9.8158、9.7349、9.3157和10.1015 U/mL,这六代培养的平均酶活为9.643367 U/mL,波动在5%之内,由此可以看出该菌株能稳定产酶。

    图  4  突变株遗传稳定性
    Figure  4.  Genetic stability of mutant strains

    图4可知,壳聚糖酶活力出现上下波动的趋势,在第2代、第5代下降较为明显,而在第3代、第6代明显提高,可能是由于菌体自身的正负调控基因的修复机制 [34]。筛选的编号202-1菌株,在连续传代6次的酶活较稳定。说明该菌株在传代的过程中具有良好的遗传稳定性,从工业化生产的角度分析,该菌株可保证在生产过程中壳聚糖酶产量的稳定性,即在相同条件下该菌株产酶性能不变。因此,编号202-1具有产酶量高,稳定性强的特点,可用于后续的出发菌株。也有研究利用ARTP诱变对番茄枯萎病有拮抗作用的枯草芽孢杆菌,经过6次传代,获得番茄枯萎病高效拮抗突变株,证实该突变株具有良好的遗传稳定性[26]。因此用ARTP诱变技术对培育突变菌株具有遗传稳定性。

    微生物的突变株往往伴随菌落形态的变化[41]图5(a)为菌株的菌落划线图,图5(b)、图5(c)分别为原始菌株和突变菌株单个菌体的电镜扫描图。突变株和原始菌株的菌落形态均为图5(a)所示,菌落形态呈白色圆形状,表面光滑具有粘性。图5(b)、图5(c)所示分别为原始菌株和突变菌株的电镜扫描图,两张电镜扫描图进行比较,单个原始菌株长4.02 μm,宽1.15 μm,单个突变菌株长5.05 μm,宽1.07 μm,突变菌株的单个菌株较原始菌株更加细长。虽然从菌落形态没有发现明显变化,但是从电镜扫描图可看出ARTP对菌体的个体形态造成了明显变化。研究表明,大多数的突变菌株比原始出发菌株偏大,而菌株的大小说明了突变株的生长速度[41],突变菌株比原始菌株偏大,生长速度也较快。

    图  5  蜡状芽孢杆菌菌株形态
    注:a菌落形态;b原始菌株电镜扫描;c突变株电镜扫描。
    Figure  5.  Bacillus cereus strain morphology

    本研究采用 ARTP 诱变野生型菌株蜡状芽孢杆菌提高壳聚糖酶酶活,较基因工程技术具有操作简便,突变率高和无污染等优点,是一种新型的物理诱变技术。本研究以生长6 h的蜡状芽孢杆菌为基础菌株,在ARTP诱变60 s时,其致死率可达到85%,诱变得到一株酶活提高了13.19%的菌株。然后进行酶活稳定性验证,经六代培养的平均酶活为9.643367 U/mL,波动在5%之内,表明其产酶量高,稳定性强。最后对菌株进行电镜观察,发现诱变菌株的个体形态发生变化,较初始菌株细长,证明菌株的生长速度变快,同时也表明酶活提高是ARTP诱变起到的作用。

  • 图  1   酶活的标准曲线

    Figure  1.   The standard curve of enzyme activity

    图  2   蜡状芽孢杆菌生长曲线

    Figure  2.   Growth curve of Bacillus cereus

    图  3   致死率曲线

    Figure  3.   Curve of lethality rate

    图  4   突变株遗传稳定性

    Figure  4.   Genetic stability of mutant strains

    图  5   蜡状芽孢杆菌菌株形态

    注:a菌落形态;b原始菌株电镜扫描;c突变株电镜扫描。

    Figure  5.   Bacillus cereus strain morphology

    表  1   突变菌株的筛选

    Table  1   The mutant strains screening

    OD600 nm酶活(U/mL)酶活/OD600 nmOD600 nm酶活(U/mL)酶活/OD600 nm
    2023.509±0.0123.728676±0.00321.0626±0.0121423.500±0.0113.320143±0.00330.9486±0.011
    1293.515±0.0123.716221±0.00311.0572±0.0121963.514±0.0123.330107±0.00320.9477±0.012
    1153.524±0.0133.591668±0.00331.0192±0.0131893.506±0.0113.311424±0.00300.9445±0.011
    2213.509±0.0123.548074±0.00301.0111±0.0121093.498±0.0123.105912±0.00320.8879±0.012
    1133.505±0.0153.535619±0.00311.0087±0.0151823.558±0.0133.037408±0.00330.8537±0.013
    1883.517±0.0113.492026±0.00350.9929±0.0111163.523±0.0112.975131±0.00320.8445±0.011
    1263.515±0.0123.485798±0.00310.9917±0.0122953.675±0.0123.093456±0.00310.8418±0.012
    1213.538±0.0113.485798±0.00320.9852±0.0112843.516±0.0142.956448±0.00320.8409±0.014
    2073.505±0.0153.435977±0.00320.9803±0.0152753.599±0.0122.975131±0.00310.8267±0.012
    1313.505±0.0153.429749±0.00330.9785±0.0151223.504±0.0152.881717±0.00340.8224±0.015
    2423.557±0.0123.454660±0.00310.9712±0.0122333.547±0.0112.906627±0.00300.8195±0.011
    1383.503±0.0133.392383±0.00330.9684±0.0132463.531±0.0112.887944±0.00310.8179±0.011
    2763.531±0.0123.398611±0.00320.9625±0.0122453.526±0.0132.869261±0.00330.8137±0.013
    2123.500±0.0103.342562±0.00330.955±0.0101043.503±0.0122.844351±0.00300.8120±0.012
    1173.505±0.0123.342562±0.00310.9537±0.0121933.510±0.0142.638838±0.00350.7518±0.014
    下载: 导出CSV

    表  2   突变株摇瓶发酵复筛

    Table  2   The mutants strains in shake flask screening

    编号OD600 nm酶活(U/mL)编号OD600 nm酶活(U/mL)
    03.368±0.0148.3581±0.0031129-33.426±0.0133.3655±0.0031
    113-13.356±0.0135.2745±0.0033129-43.424±0.0114.1878±0.0032
    113-23.635±0.0136.6940±0.0032202-13.465±0.0109.4606±0.0032
    113-33.914±0.0114.3249±0.0033202-23.449±0.0123.3459±0.0033
    113-43.976±0.0127.2521±0.0032202-33.433±0.0115.8913±0.0032
    113-53.708±0.0135.9011±0.0031202-43.408±0.0133.2578±0.0033
    113-63.556±0.0115.0200±0.0031188-13.506±0.0126.7626±0.0031
    115-13.428±0.0143.0326±0.0030188-23.574±0.0106.7528±0.0033
    115-23.438±0.0114.2368±0.0030221-13.428±0.0114.0997±0.0031
    129-13.411±0.0123.0228±0.0032221-23.847±0.0132.1417±0.0034
    129-23.444±0.0114.3640±0.0032221-33.429±0.0145.0591±0.0032
    注:每个孔的菌株数量不一样,所以将其孔中的各个菌株进行编号。113孔有六个菌株,故113-1是113孔的第一个菌株,113-2是113孔的第二株菌株……113-6是113孔的第六株菌株。
    下载: 导出CSV
  • [1]

    BROEK L A M, BOERIU C G. Chitin and chitosan: Properties and applications[M]. John Wiley & Sons, Ltd: 2019-12-31.

    [2]

    ZHANG W B, CHEN S. New progress in chitin/chitosan extraction and its application[J]. Journal of Fuqing Branch of Fujian Normal University,2008(2):18−25.

    [3]

    EL A, GHAOUTH, A J, et al. Use of chitosan coating to reduce water loss and maintain quality of cucumber and bell pepper fruits[J]. Journal of Food Processing & Preservation, 1991, 15(5): 359−368.

    [4]

    HE W Y, TIAN L, FANG F et al. Limited hydrolysis and conjugation of zein with chitosan oligosaccharide by enzymatic reaction to improve functional properties[J]. Food Chemistry,2021,348(prepublish):129035−129035.

    [5]

    ZHAO Q, XIE Q X, XU H Y, et al. Research on the antibacterial properties of oligochitosan[J]. China Brewing,2021,40(3):44−47.

    [6]

    FERNANDAEZ D C L, MENGIBAR M, et al. Films of chitosan and chitosan-oligosaccharide neutralized and thermally treated: Effects on its antibacterial and other activities[J]. Lwt-Food Science and Technology,2016,73:368−374. doi: 10.1016/j.lwt.2016.06.038

    [7]

    XIONG A J, ZHANG Z Y, ZOU X H, et al. The biological functions of oligochitosan and its application in livestock production[J]. Animal Husbandry and Veterinary Today,2020,36(11):64−66.

    [8]

    SUN C S, WANG S, WANG Y D, et al. Research progress on the functional properties of chitooligosaccharides[J/OL]. Food Industry Science and Technology: 1−15 [2021-04-09]. https://doi.org/10.13386/ j.issn1002-0306. 2020090280.

    [9]

    KIM, SE K. Chitin, chitosan, oligosaccharides and their derivatives; biological activities and applications[M]. Continuous Production of Chitooligosaccharides by Enzymatic Hydrolysis, 2010.

    [10]

    YU Y, LIU X F, MIAO J K, et al. Preparation and quality identification of Antarctic krill chitosan and chitosan oligosaccharide [J/OL]. Food Industry Science and Technology: 1−15 [2021-04-09]. https://doi.org/10.13386/j.issn1002-0306.2020100096.

    [11]

    HU Y L, HONG W, TAN G X. Screening and identification of chitosanase-producing strains[J]. Journal of South-Central University for Nationalities(Natural Science Edition),2016,35(2):42−45.

    [12]

    LIU Y, ZHAO H, ZHENG Y Y, et al. Screening, identification and fermentation conditions optimization of chitosanase-producing strains[J]. China Food Additives,2017(2):106−111.

    [13]

    YUAN J Q, LIANG S, SUN Y X, et al. Progress in the preparation and biological activity of chitosan oligosaccharides[J]. Chemistry of Life,2019,39(4):759−765.

    [14]

    CHEN X, CHAO Z, KANG L, et al. High-level expression and characterization of a highly thermostable chitosanase from Aspergillus fumigatusin Pichia pastoris[J]. 2012, 34(4): 689-694.

    [15]

    CHENG G, JIAO S M, FENG C, et al. Pichia pastoris expression of Bacillus amyloliquefaciens chitosanase and its hydrolysis to prepare controllable chito-oligosaccharides[J]. Food Science,2019,40(8):73−78.

    [16]

    DOAN C T, THI N T, VAN B N, et al. Production of a thermostable chitosanase from shrimp heads via Paenibacillus mucilaginosus TKU032 conversion and its application in the preparation of bioactive chitosan oligosaccharides[J]. Marine Drugs,2019,17(4):217. doi: 10.3390/md17040217

    [17]

    LI H P, SUN W T, WANG H B, et al. Electrical features of radio-frequency, atmospheric-pressure, bare-metallic-electrode glow discharges[J]. Plasma Chemistry and Plasma Processing,2007,27(5):529−545. doi: 10.1007/s11090-007-9079-x

    [18]

    ZHANG X, ZHANG X F, LI H P, et al. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool[J]. Applied Microbiology and Biotechnology,2014,98(12):5387−5396. doi: 10.1007/s00253-014-5755-y

    [19]

    LI G, LI H P, WANG L Y, et al. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium[J]. Applied Physics Letters,2008,92(22):221504. doi: 10.1063/1.2938692

    [20]

    WANG L Y, HUANG Z L, LI G, et al. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma[J]. Journal of Applied Microbiology,2010,108(3):851−858. doi: 10.1111/j.1365-2672.2009.04483.x

    [21]

    GAO Y D, LIU Y, GUO R, et al. The effect of ARTP mutagenesis on the enzymatic properties of chitosanase produced by Bacillus cereus[J]. Food Science and Technology,2021,46(3):1−7.

    [22]

    REN S X. ARTP mutagenesis and gene-directed modification to select strains with high stable adenosine production[D]. Xinxiang: Henan Normal University, 2017.

    [23]

    ZHANG X, ZHANG C, ZHOU Q Q, et al. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma(ARTP) and conventional mutagenesis[J]. Applied Microbiology and Biotechnology,2015,99(13):5639−5646. doi: 10.1007/s00253-015-6678-y

    [24]

    LAROUSSI M. Nonthermal decontamination of biological media by atmospheric-pressure plasmas: Review, analysis, and prospects[J]. Ieee Transactions on Plasma Science,2002,30(4):1409−1415. doi: 10.1109/TPS.2002.804220

    [25]

    LAROUSSI M. Low temperature plasma-based sterilization: Overview and state-of-the-art[J]. Plasma Processes and Polymers,2005,2(5):391−400. doi: 10.1002/ppap.200400078

    [26]

    ZHANG X Q, ZHANG X X, YANG C L, et al. ARTP mutagenesis and screening of a Bacillus subtilis antagonistic to tomato fusarium wilt[J]. Chinese Agricultural Science Bulletin,2020,36(26):44−49.

    [27]

    CHRISTOPH O, MARGARETE N, JIN C W. Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): The latest development[J]. Bioresources and Bioprocessing,2018,5(1):1−14. doi: 10.1186/s40643-017-0187-z

    [28]

    DUAN S F, HUANG Y N, WANG J B, et al. Atmospheric pressure and room temperature plasma mutagenesis and breeding of high nitrogenase activity Azotobacter chroococcus[J]. China Agricultural Science and Technology Review,2021,23(5):194−201.

    [29]

    ZHU Y L. Research on the experimental method for determination of bacterial growth curve[J]. Journal of Microbiology,2016,36(5):108−112.

    [30]

    ZHANG Y Q, ZHANG J, CHANG H Y, et al. A new method for high-sensitivity determination of chitosanase activity and its comparative study[J]. Food Science,2013,34(9):277−281.

    [31]

    ZHANG H F. On the definition of enzyme activity unit[J]. Research on Scientific Terminology,2005(1):38.

    [32]

    GAO L Y. A rapid glucose oxidase activity determination method and application effect research[D]. Jinan: Qilu University of Technology, 2017.

    [33]

    LI P W, LIU Y, LI R R, et al. Comparison of two methods for determination of glucose oxidase activity[J]. Food Industry Science and Technology,2013,34(12):71−75,80.

    [34]

    JANION C. Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli[J]. International Journal of Biological Sciences,2008,4(6):338−344.

    [35]

    SHAO S J. Study on the mutation and breeding of rennet-producing mold and its enzymatic properties[D]. Changchun: Jilin University, 2011.

    [36]

    LIN Y, BRIGEN K, SUN J, et al. Screening of lactic acid bacteria and ARTP mutagenesis of high acid-producing strains[J/OL]. Food and Fermentation Industry: 1−8 [2021-06 -19]. https://doi.org/10.13995/j.cnki.11-1802/ts.026545.

    [37]

    CHANG X C, HAN Y D, CHEN C, et al. Optimization of new fermentation technology for Bacillus subtilis[J]. Feed Research,2019,42(2):48−50.

    [38]

    WANG H B, LI Y Q, WU K, et al. Screening and mutation breeding of high-producing chitosanase strains[J]. Journal of Anhui Agricultural Sciences,2011,39(14):8212−8214.

    [39]

    XIONG J, WU X Y, QIU S Y, et al. Rapid mutagenesis and breeding of high-yield tanninase strains by normal pressure and room temperature plasma[J]. Food Industry Science and Technology,2017,38(4):225−230.

    [40]

    FAN X L, XIAO C J, GU Q Y, et al. ARTP mutagenesis to select high-yield glucose oxidase strains and optimization of fermentation conditions[J]. Industrial Microorganisms,2015,45(1):15−19.

    [41]

    LIANG J G, GU Q Y, QIN X D, et al. Breeding of high-yield nuclease P1 strain using atmospheric pressure room temperature plasma(ARTP) mutagenesis[J]. Food Industry Science and Technology,2015,36(21):183−186.

图(5)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 网络出版日期:  2021-11-02
  • 刊出日期:  2021-12-31

目录

/

返回文章
返回