• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

遗传算法优化双水相法提取葡萄皮渣花色苷工艺及其组分分析

许丹妮, 杨海玲, 范丽丽, 潘月林

许丹妮, 杨海玲, 范丽丽, 潘月林. 遗传算法优化双水相法提取葡萄皮渣花色苷工艺及其组分分析[J]. 食品工业科技, 2021, 42(4): 168-174,193. DOI: 10.13386/j.issn1002-0306.2020050279
引用本文: 许丹妮, 杨海玲, 范丽丽, 潘月林. 遗传算法优化双水相法提取葡萄皮渣花色苷工艺及其组分分析[J]. 食品工业科技, 2021, 42(4): 168-174,193. DOI: 10.13386/j.issn1002-0306.2020050279
XU Danni, YANG Hailing, FAN Lili, PAN Yuelin. Optimization of Extraction Process and Component Analysis of Anthocyanins from Grape Pomace in Aqueous Two-phase Extraction with Genetic Algorithm[J]. Science and Technology of Food Industry, 2021, 42(4): 168-174,193. DOI: 10.13386/j.issn1002-0306.2020050279
Citation: XU Danni, YANG Hailing, FAN Lili, PAN Yuelin. Optimization of Extraction Process and Component Analysis of Anthocyanins from Grape Pomace in Aqueous Two-phase Extraction with Genetic Algorithm[J]. Science and Technology of Food Industry, 2021, 42(4): 168-174,193. DOI: 10.13386/j.issn1002-0306.2020050279

遗传算法优化双水相法提取葡萄皮渣花色苷工艺及其组分分析

基金项目: 

2017年度广西壮族自治区中青年教师基础能力提升项目"山黄皮叶、艾叶辅助发酵制作麦酱的现代工艺研究(2017KY0843)";2018年度崇左市科技计划项目"民间秘方外用抗菌制剂的现代工艺研究(崇科FA2018018)"。

详细信息
    作者简介:

    许丹妮(1983-),女,硕士,副教授,研究方向:药食同源资源的开发与利用,E-mail:330686394@qq.com。

    通讯作者:

    范丽丽(1982-),女,硕士,副教授,研究方向:中药药效筛选与药膳研究,E-mail:gdh687898@163.com。

  • 中图分类号: TS255.1

Optimization of Extraction Process and Component Analysis of Anthocyanins from Grape Pomace in Aqueous Two-phase Extraction with Genetic Algorithm

  • 摘要: 以葡萄皮渣为原料,采用双水相法提取其中的花色苷并鉴定花色苷组分。在单因素实验的基础上,通过遗传算法优化双水相法提取葡萄皮渣花色苷的工艺;利用高效液相色谱-质谱联用鉴定葡萄皮渣花色苷提取物中花色苷组分。结果表明:双水相法提取葡萄皮渣花色苷的最佳工艺为:乙醇体积分数40%、硫酸铵质量分数26%、pH3.0、料液比1:38 g/mL,在此条件下花色苷得率(3.05±0.07) mg/g。经鉴定发现葡萄皮渣花色苷提取物含有2种花色苷组分,分别为飞燕草-3-葡萄糖苷和矢车菊素-3-葡萄糖苷,其纯度分别为90.16%和92.41%。研究结果为天然花色苷提取提供一种新的提取方式,并为进一步开发花色苷功能性食品提供依据。
    Abstract: The anthocyanins were extracted from grape pomace by aqueous two-phase extraction. Genetic algorithm was employed to optimize the extraction process of anthocyanins from grape pomace based on single factor experiment. HPLC-MS was used to identify the anthocyanins components of the extracts from grape pomace obtained under the optimal combination of process parameters. The optimum extracting parameters to achieve the highest the yield of anthocyanins of(3.05±0.07) mg/g from grape pomace by aqueous two-phase method was obtained under an ethanol concentration of 40%,ammonium sulfate mass fraction of 26%,pH of 3.0,solid-to-liquid ratio of 1:38 g/mL. Under these conditions,the yield of anthocyanims was(3.05±0.07) mg/g.The anthocyanins extracts from grape pomace mainly contained two anthocyanins components in terms of delphinium-3-glucoside and cyanidin-3-glucoside,and their purities were 90.16% and 92.41%,respectively. The results of natural anthocyanins extraction would provide a new way and basis for further development of functional food.
  • [1]

    Peixoto C M,Dias M I,Alves M J,et al. Grape pomace as a source of phenolic compounds and diverse bioactive properties[J].Food Chemistry,2018,253,132-138.

    [2]

    Wu Z H,Wu A,Dong J,et al. Grape skin extract improves muscle function and extends lifespan of a drosophila model of parkinson's disease through activation of mitophagy[J]. Experimental Gerontology,2018,113,10-17.

    [3]

    Viskelis P,Anisimoviene N,Rubinskiene M,et al. Physical properties,anthocyanins and antioxidant activity of blackcurrant berries of different maturities[J]. Journal of Food Agriculture & Environment,2010,8(2):159-162.

    [4] 王继萍,柏广新,李劲然,等. 溶剂萃取法提取蓝莓中花色苷[J]. 分析化学,2012,40(12):1952-1953.
    [5]

    Liazid A,Guerrero R F,Cantos E,et al. Microwave assisted extraction of anthocyanins from grape skins[J]. Food Chemistry,2011,124(3):1238-1243.

    [6]

    Sancho-galan P,Amores-arrocha A,Jimenez-cantizano A,et al. Ultrasound-assisted extraction of anthocyanins and total phenolic compounds in Vitis vinifera L. ‘Tempranillo’ winemaking lees[J]. Journal of Grapevine Research,2019,58(5):39-47.

    [7] 谭佳琪,王瑜,孙旗,等. 桑葚花色苷超高压提取工艺优化及其组分分析[J]. 食品工业科技,2018,39(21):152-158.
    [8]

    Dinkova R,Heffels P,Shikov V,et al. Effect of enzyme-assisted extraction on the chilled storage stability of bilberry(Vaccinium myrtillus L.)anthocyanins in skin extracts and freshly pressed juices[J]. Food Research International,2014,65:35-41.

    [9] 秦公伟,韩豪,丁小维,等. 蓝莓果渣中花色苷的超临界二氧化碳萃取工艺优化[J]. 应用化工,2019,48(1):109-112

    ,117.

    [10]

    Liu X L,Mu T H,Sun H G,et al. Optimisation of aqueous two-phase extraction of anthocyanins from purple sweet potatoes by response surface methodology[J]. Food Chemistry,2013,141:3034-3041.

    [11]

    Li Z G,Teng H,Xiu Z L,et al. Aqueous two-phase extraction of 2,3-butanediol from fermentation broths using an ethanol/ammonium sulfate system[J]. Process Biochemistry,2010,45:731-737.

    [12]

    Monrad J K,Howard L R,King J W,et al. Subcritical solvent extraction of anthocyanins from dried red grape pomace[J]. Journal of Agricultural and Food Chemistry,2010,58(7),4014-4021.

    [13] 于泽源,赵剑辉,李兴国,等. 大孔树脂-中压柱层析联用分离纯化蓝莓花色苷[J]. 食品科学,2018,39(1):118-123.
    [14]

    Zheng X Z,Xu X W,Liu C H,et al. Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions[J]. Separation and Purification Technology,2013,104:17-25.

    [15]

    Kerio L C,Wachira F N,Wanyoko J K,et al. Characterization of anthocyanins in Kenyan teas:Extraction and identification[J]. Food Chemistry,2012,131(1),31-38.

    [16]

    Aryanti N,Wardhani D H,Wasi A,et al. Extraction characteristics of anthocyanin from roselle(Hibiscus sabdariffa L.)calyces by ultrasound-assisted extraction[J]. Advanced Science Letters,2017,23(6):5626-5628.

    [17] 薛宏坤,刘成海,刘钗,等. 响应面法和遗传算法-神经网络模型优化微波萃取蓝莓中花青素工艺[J]. 食品科学,2018,39(16):280-288.
    [18] 陈姗姗,王丹,张超,等. 紫甘薯花色苷在双水相萃取体系中的分配特性[J]. 食品科学,2013,34(19):76-79.
    [19] 翟硕,张海悦,于润美,等. 响应面优化双水相提取黑豆皮花色苷工艺的研究[J]. 食品研究与开发,2017,38(24):24-31.
    [20] 赵慧芳,王小敏,闾连飞,等. 黑莓果实中花色苷的提取和测定方法研究[J]. 食品工业科技,2008,29(5):176-179.
    [21] 李楠,曾永明,王国振,等. 超声辅助酶法提取薰衣草花色苷及其热降解动力学[J]. 食品工业科技,2020,41(1):150-157.
    [22]

    Bendahou A,Dufresne A,Kaddami H,et al. Isolation and structural characterization of hemicelluloses from palm of pHoenix dactylifera l[J]. Carbohydrate Polymers,2007,68(3):601-608.

    [23] 卢鹏飞,高志强,孙敏,等. 响应面法优化超声波辅助提取黑小麦花色苷的工艺研究[J]. 食品研究与开发,2020,41(4):69-76.
    [24] 于海鑫,张秀玲,高诗涵,等. 紫苏叶花色苷微波辅助提取工艺优化及其抗氧化活性[J]. 食品工业,2019,40(10):51-55.
    [25]

    Khazaei K M,Jafari S M,Ghorbani M,et al. Optimization of anthocyanin extraction from saffron petals with response surface methodology[J]. Food Analytical Methods,2016,9(7):1993-2001.

    [26] 薛宏坤,李鹏程,钟雪,等. 高速逆流色谱分离纯化桑葚花色苷及其抗氧化活性[J/OL].食品科学:1-12[2020-03-28

    ]. http://kns.cnki.net/kcms/detail/11.2206.TS.20191209.1629.002.html.

    [27]

    Nicoue E E,Savard S,Belkacemi K. Anthocyanins in wild blueberries of Quebec:Extraction and identification[J]. Journal of Agricultural & Food Chemistry,2007,55(14):5626-5635.

    [28]

    Cerezo A B,Cuevas E,Winterhalter P,et al. Isolation,identification,and antioxidant activity of anthocyanin compounds in Camarosa strawberry[J]. Food Chemistry,2010,123(3):574-582.

    [29]

    Zhang Z,Xue P,Yang C,et al. Purification and structural analysis of anthocyanins from litchi pericarp[J]. Food Chemistry,2004,84(4):601-604.

计量
  • 文章访问数:  227
  • HTML全文浏览量:  14
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-24
  • 网络出版日期:  2021-03-01
  • 刊出日期:  2021-02-14

目录

    /

    返回文章
    返回