Characteristics of osmotic-vacuum microwave drying of tilapia fillets and its drying kinetics
-
摘要: 为了解渗透后罗非鱼片在真空微波干燥过程中的干燥特性,以干基含水率和干燥速率为指标,研究了不同微波间歇比(R)、功率密度和真空度条件对鱼片干燥特性的影响,并建立渗透-真空微波干燥动力学模型。结果表明,微波间歇比、功率密度和真空度对罗非鱼片干燥特性均有较大影响,随着功率密度和真空度的升高,干燥速率增加,在一定范围内(R小于3),适当提高间歇比可加快干燥过程。不同条件下的干燥过程均分为升速和降速两个阶段,但升速期很短,主要以降速为主。根据数据建立动力学模型,发现Midilli方程拟合效果良好(R2=0.9873),适合于描述罗非鱼片渗透-真空微波干燥过程。该研究结果为罗非鱼的加工与生产提供新依据和新思路。Abstract: In order to obtain the characteristics of tilapia fillets under osmosis dehydration vacuum-microwave drying conditions, the moisture content and drying rate of fish fillet were carried out during drying process.The effect of different microwave gap ratio, power density and vacuum degree on drying characteristic of fish fillet were determined and the drying kinetics model of osmosis dehydration vacuum-microwave drying was set up.The results showed that the microwave gap ratio, power density and vacuum degree had greater influences on dry characteristics of tilapia fillets. The drying rate was increased with increasing of power density and vacuum degree, and improved the microwave gap ratio appropriately was conductive to speed up the drying process. In addition, the whole drying process was divided into two stages with different conditions, including the accelerated drying and falling rate drying. The time of accelerated drying was short and the main process was falling rate drying. The drying kinetics met Midilli model and it was suitable for describing osmosis dehydration vacuum-microwave drying process of tilapia fillet ( R2= 0.9873) . The results provide a new theory and technical guidance for tilapia processing and production.
-
Keywords:
- tilapia fillets /
- osmotic-vacuum microwave drying /
- drying characteristics /
- kinetics
-
[1] Duan Z H, Jiang L N, Wang J L, et al.Drying and quality characteristics of tilapia fish fillets dried with hot air-microwave heating[J].Food and Bioproducts Processing, 2011, 89 (4) :472-476.
[2] 杨毅, 段振华, 徐成发.罗非鱼片真空微波干燥特性及其动力学研究[J].食品科技, 2010, 35 (11) :101-104. [3] 陈文治, 郭忠宝, 单丹, 等.6种不同罗非鱼品种的肌肉营养成分分析[J].南方农业学报, 2015, 46 (7) :1303-1309. [4] Mario G, Juan R H, Jesús O A, et al.Nutrient composition and sensory evaluation of fillets from wild-type Nile tilapia (Oreochromisniloticus, Linnaeus) and a red hybrid (Florida red tilapia×red O.niloticus) [J].Aquaculture Research, 2007, 38 (10) :1074-1081.
[5] 纪丽丽, 王浩, 李瑞伟, 等.奥尼和吉富罗非鱼营养成分研究[J].食品研究与开发, 2009, 29 (12) :129-132. [6] 段振华.水产品干燥技术研究[J].食品研究与开发, 2012, 33 (5) :213-216. [7] 尹凯丹, 刘军, 龚丽, 等.罗非鱼干燥加工技术的研究进展[J].现代农业装备, 2014 (6) :50-56. [8] 刘兵, 段振华, 于群, 等.渗透条件对罗非鱼肉渗透-真空微波干燥的影响[J].肉类研究, 2016, 30 (4) :17-20. [9] Koprivica G B, Pezo LL, C'ur cˇi c'B L, et al.Optimization of osmotic dehydration of apples in sugar beet molasses[J].Journal of Food Processing and Preservation, 2014, 38 (4) :1705-1715.
[10] Badwaik L S, Choudhury S, Borah P K, et al.Optimization of osmotic dehydration process of bamboo shootsin mixtures of sucrose and sodium chloride solutions[J].Journal of Food Processing and Preservation, 2013, 37 (6) :1068-1077.
[11] 王隽冬, 张国琛, 王麓璐, 等.微波真空干燥技术及其在水产品加工中的应用[J].大连水产学院学报, 2009, 24 (S1) :202-205. [12] Therdthai N, Zhou W B, Pattanapa K.Microwave vacuum drying of osmoticallydehydrated mandarin cv. (Sai-Namphaung) [J].International Journal of Food Science and Technology, 2011, 46 (11) :2401-2407.
[13] Changrue V, Orsat V, Raghavan G S V.Osmotically dehydrated microwave-vacuum drying of strawberries[J].Journal of Food Processing and Preservation, 2008, 32 (5) :798-816.
[14] Nimmanpipug N, Therdthai N, Dhamvithee P.Characterisation of osmoticallydehydrated papaya with further hot air drying and microwave vacuum drying[J].International Journal of Food Science and Technology, 2013, 48 (6) :1193-1200.
[15] 中华人民共和国卫生部.GB 5009.3-2010食品中水分的测定[S].北京:中国标准出版社, 2010. [16] 李婧怡, 段振华, 刘怡彤.黄秋葵真空微波干燥特性及其动力学研究[J].食品工业科技, 2013, 34 (22) :285-289. [17] 赵莹婷, 王为为, 庄玮婧, 等.莲子微波真空干燥特性及动力学模型的研究[J].食品工业科技, 2016, 37 (18) :111-121. [18] Doymaz I.Thin-layer drying of spinach leaves in a convective dryer[J].Journal of Food Process Engineering, 2009, 32 (1) :112-125.
[19] Kashaninejad M, Mortazavi A, Safekordi A, et al.Thin-layer drying characteristics and modeling ofpistachio nuts[J].Journal of Food Engineering, 2007, 78 (1) :98-108.
[20] Motevali A, Minaei S, Banakar A, et al.Energy analyses and drying kinetics of chamomile leaves in microwave-convective dryer[J].Journal of the Saudi Society of Agricultural Sciences, 2016, 15 (2) :179-187.
[21] Sharma G P, Verma R C, Pathare P.Mathematical modeling of infrared radiation thin layer drying of onion slices[J].Journal of Food Engineering, 2005, 71 (3) :282-286.
[22] Pu Y Y, Sun D W.Vis-NIR hyperspectral imaging in visualizing moisture distribution of mango slices during microwave-vacuum drying[J].Food Chemistry, 2015, 188:271-278.
[23] Xu S, Chen Q Q, Bi J F, et al.Infrared radiation and microwave vacuum combined drying kinetics and quality of raspberry[J].Journal of Food Process Engineering, 2015, 39 (4) :1-14.
[24] 李维新, 魏巍, 何志刚, 等.糖浆间歇微波真空干燥特性及动力学模型[J].农业工程学报, 2012, 28 (S1) :262-266. [25] 黄婷, 乔庆杰, 张海晖, 等.萝卜缨微波真空干燥动力学研究[J].安徽农业科学, 2014, 42 (36) :13024-13027. [26] 段振华, 于晓阳, 汪菊兰, 等.罗非鱼片的热风微波复合干燥动力学[J].食品研究与开发, 2009, 30 (12) :37-40. [27] 李顺峰, 王安建, 候传伟, 等.废弃双孢蘑菇菇柄微波真空干燥特性及动力学模型[J].中国食品学报, 2016, 16 (2) :181-188. [28] Zhang J, Zhang M, Shan L, et al.Microwave-vacuum heating parameters savory crisp bighead carp (Hypophthalmichthysnobilis) slices[J].Journal of Food Engineering, 2007, 79 (3) :885-891.
[29] Dong Z Z, Gu F L, Xu F, et al.Comparison of four kinds of extraction techniques and kinetics of microwave-assisted extraction of vanillin from Vanilla planifolia Andrews[J].Food Chemistry, 2014, 149 (15) :54-61.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: