• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

γ-PGA降解酶系基因pgdS和ggt的克隆及生物信息分析

王风青, 梁金钟, 付大伟, 王薇, 肖玮

王风青, 梁金钟, 付大伟, 王薇, 肖玮. γ-PGA降解酶系基因pgdS和ggt的克隆及生物信息分析[J]. 食品工业科技, 2016, (16): 190-194. DOI: 10.13386/j.issn1002-0306.2016.16.029
引用本文: 王风青, 梁金钟, 付大伟, 王薇, 肖玮. γ-PGA降解酶系基因pgdS和ggt的克隆及生物信息分析[J]. 食品工业科技, 2016, (16): 190-194. DOI: 10.13386/j.issn1002-0306.2016.16.029
WANG Feng-qing, LIANG Jin-zhong, FU Da-wei, WANG Wei, XIAO Wei. Cloning and gene sequence analysis of pgd S and ggt of poly-γ-glutamate degrading enzymes system[J]. Science and Technology of Food Industry, 2016, (16): 190-194. DOI: 10.13386/j.issn1002-0306.2016.16.029
Citation: WANG Feng-qing, LIANG Jin-zhong, FU Da-wei, WANG Wei, XIAO Wei. Cloning and gene sequence analysis of pgd S and ggt of poly-γ-glutamate degrading enzymes system[J]. Science and Technology of Food Industry, 2016, (16): 190-194. DOI: 10.13386/j.issn1002-0306.2016.16.029

γ-PGA降解酶系基因pgdS和ggt的克隆及生物信息分析

基金项目: 

国家支撑计划项目(2012BAD32B08); 研究生创新科研资金项目(YJSCX2015-356HSD);

详细信息
    作者简介:

    王风青(1984-),女,在读博士研究生,研究方向:食品生物技术,E-mail:wangfengqing-100@163.com。;

    梁金钟(1957-),男,教授,研究方向:微生物学与发酵工程,E-mail:ljz2050@126.com。;

  • 中图分类号: Q811.4;Q78

Cloning and gene sequence analysis of pgd S and ggt of poly-γ-glutamate degrading enzymes system

  • 摘要: 以实验菌株枯草芽孢杆菌Bacillus subtilis 115基因组为模板,通过PCR技术成功克隆到γ-聚谷氨酸降解酶系基因pgd S和ggt,并进行测序,利用Ex PASy-Prot Param tool、Server 3.0 Signal P、TMHMM Server和Tmpred、PSORTB、Predict Protein、Swiss-Model Workspace软件,分别对蛋白质的理化性质、信号肽、跨膜区、亚细胞定位、二级结构、三维结构建模进行了分析和预测。结果表明:pgd S和ggt基因分别含1242个和1764个核苷酸,分别编码414个和588个氨基酸。Pgd S和GGT均为稳定型亲水性蛋白,都存在信号肽,其亚细胞分别定位于胞壁和胞外。GGT在N端存在一个强跨膜区。二级结构分析显示,Pgd S和GGT两种蛋白都以L(环)为主,分别占53.27%和52.47%。通过对γ-PGA降解酶系蛋白结构的分析,为日后有效控制γ-PGA合成及相关研究提供参考和理论依据。 
    Abstract: The gene of pgd S and ggt were cloned from Bacillus subtilis 115 genome DNA by PCR. Physical and chemical properties,trans- membrane domains,sub- cellular localization,secondary structures,and three dimensional structure modeling of Pgd S and GGT were analyzed using the software of Ex PASy- Prot Param,Server3.0 Signal P,TMHMM Server and Tmpred,PSORTB,Predict Protein,Swiss- Model Workspace,respectively. The results showed that the pgd S genes contained 1242 nucleotides and code 414 amino acids. The ggt genes contained 1764 nucleotides and code 588 amino acids. By amino acid sequence analysis,there was a strong transmembrane domain in the N side of GGT. Pgd S and GGT were stable hydrophilic proteins,existence signal peptide and its subcellular localization in the cell wall and outside of cell,respectively. The secondary structure of Pgd S and GGT were mainly loop,which accounted for 53.27% and 52.47% respectively.The process of γ- PGA synthesis and related research were effectively controlled through the analysis of the structure characteristics of theγ- PGA degradation enzyme.
  • [1]

    Zhou Yu-Guang,Li Dong,Wang Li-Jun,et al.Effect of water content on thermal behaviors of common buckwheat flour and starch[J].Journal of Food Engineering,2009,93:242-248.

    [2]

    DW Hatcher,S You,JE Dexte,et al.Evaluation of the performance of flours from cross and self-pollinating Canadian common buckwheat(Fagopyrum esculentum Moench)cultivars in soba noodles[J].Food Chemistry,2008,107:722-731.

    [3]

    CHEN Jie,SHI Feng,ZHANG Bin,et al.Effect of cultivation conditions on the production ofγ-PGA with Bacillus subtilis ZJU-7[J].Applied Biochemistry and Biotechnology,2010,160(2):370-377.

    [4]

    SHYU Y S,HWANG J Y,HSU C K.Improving the rheological and thermal properties of wheat dough by the addition ofγ-polyglutamic acid[J].LWT-Food Sci Technol,2008,41(6):982-987.

    [5]

    CHEN Xiong,CHEN Shouwen,SUN Ming,et al.Medium optimization by response surface methodology for poly-γ-glutamic acid production using dairy manure as the basis of a solid substrate[J].Applied Microbiology and Biotechnology,2005,69(4):390-396.

    [6]

    Ashiuchi M,Fukushima F,Oya H,et al.Development of antimicrobial thermoplastic material from archaeal poly-γ-L-glutamateand its nanofabrication[J].ACS Appl Mater Interfaces,2013,5:1619-1624.

    [7]

    Yesudoss Chritu Rajan,Baskaran Stephen Inbaraj,Bing Huei Chen.In Vitro Adsorption of Aluminum by an Edibie Biopolymer Poly(γ-glutamic acid)[J],Journal of agricultural and food chemistry,2014,62:4803-4811.

    [8]

    Pasut G,Veronese FM.Polymer-drug conjugation,recent achievements and general strategies[J].Progress in Polymer Science,2007,32(8/9):933-961.

    [9]

    Kurosaki T,Kitahara T,Kawakami S,et al.γ-Polyglutamic acid-coated vectors for effective and safe gene therapy[J].Journal of Controlled Release,2010,142(3):404-410.

    [10]

    Sugino A,Miyazaki T,Ohtsuki C.Apatite-forming ability of polyglutamic acid hydrogels in a body-simulating environment[J].Journal of Materials Science:Materials in Medicine,2008,19(6):2269-2274.

    [11] 王敬,高陪,沈竞,等.γ-多聚谷氨酸水凝胶制备及生物安全性评价[J].中国组织工程研究与临床康复,2008,12(1):56-60.
    [12]

    Bajaj I,Singhal R.Poly(glutamic acid)-Anemerging biopolymer of commercial interest[J].Bioresour Technol,2011,102:5551-5561.

    [13]

    Bajaj I,Lele S,Singhal R.A statistical approach to optimization of fermentative production of poly(gamma-glutamic acid)from Bacillus licheniformis NCIM 2324[J].Bioresour Technol,2009,100:826-832.

    [14]

    Shi F,Xu Z,Cen P.Efficient production of poly-gammaglutamic acid by Bacillus subtilis ZJU-7[J].Appl Biochem Biotechnol,2006,133:271-282.

    [15]

    Kimura K,Itoh Y.Characterization of poly-gammaglutamate hydrolase encoded by a bacteriophage genome:Possible role in phage infection of Bacillus subtilis encapsulated with polygamma-glutamate[J].Appl Environ Microbiol,2003,69:2491-2497.

    [16]

    Kimura K,Tran LS,Uchida I,et al.Characterization of Bacillus subtilis gamma-glutamyltransferase and its involvement in the degradation of capsule poly-gamma-glutamate[J].Microbiology,2004,150:4115-4123.

    [17]

    Obst M,Steinbu¨chel A.Microbial degradation of poly(amino acid)s[J].Biomacromolecules,2004,5:1166-1176.

    [18]

    Suzuki T,Tahara Y.Characterization of the Bacillus subtilis ywt D gene,whose product is involved in gamma-polyglutamic acid degradation[J].J Bacteriol,2003,185:2379-2382.

    [19]

    Tanaka T,Yaguchi T,Hiruta O,et al.Screening for microorganisms having poly(γ-glutamic acid)endohydrolase activity and the enzyme production by Myrothecium sp.TM-4222[J].Biosci Biotechnol Biochem,1993,57:1809-1810.

    [20]

    King EC,Blacker AJ,Bugg TD.Enzymatic breakdown of polygamma-D-glutamic acid in Bacillus licheniformis:Identification of a polyglutamyl gamma-hydrolase enzyme[J].Biomacromolecules,2000,1:75-83.

    [21]

    Kunioka M,Goto A.Biosynthesis of poly(gamma-glutamic acid)from L-glutamic acid,citric-acid,and ammonium-sulfate in Bacillus subtilis IFO 3335[J].Appl Microbiol Biotechnol,1994,40:867-872.

    [22]

    Richard A,Margaritis A.Kinetics of molecular weight reduction of poly(glutamic acid)by in situ depolymerization in cell-free broth of Bacillus subtilis[J].Biochem Eng J,2006,30:303-307.

    [23]

    Kimura K,Fujimoto Z.Enzymatic degradation of polygammaglutamic acid.In:Hamano Y,editor.Amino-acid homopolymers occurring in nature[J].Berlin/Heidelberg:Springer,2010:95-117.

    [24]

    Kimura K,Tran LS,Uchida I,et al.Characterization of Bacillus subtilis gamma-glutamyltransferase and its involvement in the degradation of capsule poly-gamma-glutamate[J].Microbiology,2004,150:4115-4123.

    [25]

    Yao J,Jing J,Xu H,et al.Investigation on enzymatic degradation of g-polyglutamic acid from Bacillus subtilis NX-2[J].J Mol Catal B Enzym,2009,56:158-164.

    [26]

    Ashiuchi M,Nakamura H,Yamamoto M,et al.Novel polygamma-glutamate-processing enzyme catalyzing gammaglutamyl DD-amidohydrolysis[J].J Biosci Bioeng,2006,102:60-65.

    [27]

    Chunhachart O,Itoh T,Sukchotiratana M,et al.Characterization of gamma-glutamyl hydrolase produced by Bacillus sp.isolated from Thai Thua-nao[J].Biosci Biotechnol Biochem,2006,70:2779-2782.

    [28]

    Suzuki T,Tahara Y.Characterization of the Bacillus subtilis ywt D gene,whose product is involved in gamma-polyglutamic acid degradation[J].J Bacteriol,2003,185:2379-2382.

    [29]

    Ashiuchi M,Nakamura H,Yamamoto T,et al.Poly-gammaglutamate depolymerase of Bacillus subtilis:Production,simple purification and substrate selectivity[J].J Mol Catal B Enzym,2003,23:249-255.

    [30] Urushibata Y,Tokuyama S,Tahara Y.γ-Polyglutamic acid productivity of Bacillus subtilis NR-1 mutant defective ofγ-glutamyltranspeptidase gene[R].日本生物工学会大会講演要旨集,Japan:The Society for Bioscience and Bioengineering,1997:115.
    [31]

    Arnold K,Bordoli L,Kopp J,et al.The SWISS-MODELworkspace:a web-based environment for protein structure homology modeling[J].Bioinformatics,2006,22(2):195-201.

    [32]

    Schwede T,Kopp J,Guex N,et al.SWISS-MODEL:an automated protein homology-modeling server[J].Nucleic Acids Research,2003,31(13):3381-3385.

    [33]

    Guex N,Peitsch M C.SWISS-MODEL and the SwissPdb Viewer:An environment for comparative protein modeling[J].Electrophoresis,1997,18(15):2714-2723.

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-21

目录

    /

    返回文章
    返回