• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

使用圆二色性光谱分析二级结构对大豆分离蛋白表面疏水性的影响

王辰, 江连洲

王辰, 江连洲. 使用圆二色性光谱分析二级结构对大豆分离蛋白表面疏水性的影响[J]. 食品工业科技, 2016, (14): 134-137. DOI: 10.13386/j.issn1002-0306.2016.14.018
引用本文: 王辰, 江连洲. 使用圆二色性光谱分析二级结构对大豆分离蛋白表面疏水性的影响[J]. 食品工业科技, 2016, (14): 134-137. DOI: 10.13386/j.issn1002-0306.2016.14.018
WANG Chen, JIANG Lian-zhou. Effect of secondary structure determined by CD spectra on surface hydrophobicity of soybean protein isolate[J]. Science and Technology of Food Industry, 2016, (14): 134-137. DOI: 10.13386/j.issn1002-0306.2016.14.018
Citation: WANG Chen, JIANG Lian-zhou. Effect of secondary structure determined by CD spectra on surface hydrophobicity of soybean protein isolate[J]. Science and Technology of Food Industry, 2016, (14): 134-137. DOI: 10.13386/j.issn1002-0306.2016.14.018

使用圆二色性光谱分析二级结构对大豆分离蛋白表面疏水性的影响

详细信息
    作者简介:

    王辰(1987-),女,硕士,助教,研究方向:粮食、油脂及植物蛋白工程,E-mail:cc198772@163.com。;

    江连洲(1960-),男,博士,教授,研究方向:粮食、油脂及植物蛋白工程,E-mail:jlzname@163.com。;

  • 中图分类号: TS201.21

Effect of secondary structure determined by CD spectra on surface hydrophobicity of soybean protein isolate

  • 摘要: 旨在采用圆二色性光谱手段研究二级结构对我国六种经常使用的大豆品种制备而成的分离蛋白的表面疏水性的影响。实验先是对六个品种的大豆进行分离蛋白的提取,并对其性质进行测定,包括溶解度和表面疏水性;再对六种大豆分离蛋白的二级结构进行测定和分析;通过SPSS软件对六种大豆分离蛋白的表面疏水性和二级结构的数值进行线性相关性分析,探究二者之间的构效关系。研究中发现六个品种的大豆分离蛋白的二级结构、溶解性、表面疏水性都差异显著(p<0.05),表面疏水性的大小随着α-螺旋含量升高而减小,随着无规则卷曲和β-折叠含量增大而提高,因β-转角含量变化的影响不明显。SPSS线性相关性分析表明品种间的表面疏水性与β-转角含量线性关系不显著,与无规则卷曲、β-折叠含量呈正向相关,与α-螺旋含量呈负向相关。 
    Abstract: CD( circular dichroism spectra) was applied to research on the relationship between surface hydrophobicity( SH) and secondary structure in six varieties of soy protein isolate( SPI). First step was the extraction of SPIs,the functional abilities( surface hydrophobicity and solubility) and the secondary structure of the six varieties of SPI were measured and analyzed.Through SPSS software,the numerical linear correlation bewteen surface hydrophobicity and secondary structure of six varieties of soybean protein isolate was analyzed to explore the structure- activity relationship between them. The results revearled that there were significant differences( p < 0.05) bewteen the secondary structure and the functional abilities( surface hydrophobicity and solubility).The SH of the six varieties of SPI increased with the decrease of α- helix content,and decreased with the increase of random coil and β-sheet content,and the linear relationship between the SH and β-turn content was not obvious. SPSS linear correlation analysis showed that the SH of the six varieties of SPI had no significant linear relationship with β-turn content,positively related to random coil and β-sheet content,and negative correlated to α-helix content.
  • [1]

    Castro R F,Marina M L,Garfa M C.Perfusion Reversedphase High-performance Liquid Chromatography/Mass Spectrometry Analysis of Intact Soybean Proteins for the Characterization of Soybean Cultivars[J].J Chromatogr A,2007,1170:34-43.

    [2]

    Srinivasan Damodaran.Food protein and their applications[M].New York:Marcel Dekker Inc,1997.

    [3]

    Marsman G J P,Gruppen H,J de Groot.Effect of toasting and xtrusion at different shear levels on soy protein interactions[J].J Agic Food Chem,1998,46:2770-2777.

    [4]

    Fukushima D.Recent progress of soybean protein foods:Chemistry,Technology and Nutrition[J].Food Reviews International,1991,7:323-351.

    [5]

    Keerati-u-rai M,Corredig M.Heat-induced changes in oilin-water emulsions stabilized with soy protein isolate[J].Food Hydrocolloids,2009a,23(8):2141-2148.

    [6]

    Keerati-u-rai M,Corredig M.Effect of dynamic high pressure homogenization on the aggregation state of soy protein[J].Journalof Agricultural and Food Chemistry,2009,57:3556-3562.

    [7]

    Damodaran S.Refolding of thermally unfolded soy proteins during the cooling regime of the gelation process:effect on gelation[J].J Agric Food Chem,1988,36:262-269.

    [8]

    Sheard P R,Fellows A,Ledward D Aaa,et al.Macromolecular charges associated with the heat treatment of soya isolate[J].Food Technology,1988,21:55-60.

    [9] 华欲飞,Steve W C,Yoshinori M.不同大豆分离蛋白凝胶的流变学性质[J].中国粮油学报,2003,18(6):43-48.
    [10] 徐红华,申德超.不同挤压参数对大豆粕蛋白质结构的影响[J].农业工程学报,2003,23(7):267-271.
    [11]

    Ren C G,Tang L,Zhang M,et al.Structural characterization of heat-Induced protein particles in Soy Milk[J].J Agric Food Chem,2009,57:1921-1926.

    [12]

    Puppo M C,Anon M C.Soybean protein dispersions at acidic p H.Thermal and rheological behavior[J].Journal of Food Science,1999,64:50-56.

    [13]

    Petruccelli S,Anon M C.Relationship between the method of obtention and the structural and functional properties of soy protein isolates.2.Surface properties[J].Journal of Agricultural and Food Chemistry,1994,42:2170-2176.

    [14]

    Wu W U,Hettiarachchy N S,Qi M.Hydrophobicity,solubility,and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration[J].J Amer Oil Chemists Soc,1998,75(7):845-850.

    [15]

    Babiker E F E,Khan M A S,Matsudomi N,et al.Polymerization of soy protein digests by microbial transglutaminase for improvement of the functional properties[J].Food Research International.1996,29:627-634.

    [16] 洪法水.Pb2+对α-淀粉酶活性的影响及其光谱学研究[J].光谱学与光谱学分析,2003,23(3):583-586.
    [17] 王辰,江连洲,魏东旭,等.不同品种大豆分离蛋白结构与表面疏水性的关系[J].食品科学,2012,33(9):39-42.
    [18] 陈勇,王晶,江连洲,等.不同辐照剂量对红豆分离蛋白结构及特性的影响[J].中国粮油学报,2015,30(4):54-57.
    [19]

    Shimada K,Cheftel J C.Determination of sulfhydryl groups and disulfide bonds in heat-induced gels of soy protein isolate[J].Agriculture and Food Chemistry,1988,36:147-153.

    [20]

    Kato A,Nakai S.Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins[J].Biochem Biophy Acta,1980,624(1):13-20.

    [21] 吴海波,齐宝坤,江连洲,等.大豆分离蛋白热性质及其空间构象对表面疏水性的影响[J].中国粮油学报,2014,29(10):42-46.
    [22]

    Paraman I,Hettiarachchy N S,Schaefer C,et al.Hydrophobicity,solubility,and emulsifying properties of enzyme-modified rice endosperm protein[J].Cereal Chemistry,2007,84(4):343-349.

    [23]

    Hayakawa S,Nakai S.Relationship of hydrophobicity and net charge to the solubility of milk and soy proteins[J].Food Sci,1985,50:486-491.

    [24]

    Boatright W L,Hettiarachchy N S.Soy protein isolate solubility and surface hydrophobicity as affected by antioxidants[J].Food Science,1995,60(4):798-800.

    [25]

    Xiong H,Chen X D,Ruan X,et al.Comparison of functional and structural properties of native and industrial process-modified proteins from long-grain indica rice[J].Cereal Science,2012,56(3):568-575.

    [26]

    Fukushima D.Internal structure of 7S and 11S globulin molecules in soybean proteins[J].Cereal Chem,1968,45(3):203-224.

    [27]

    Sreerama N,Venyaminov S Y U,Woody R W.Estimation of the number ofα-helical andβ-strand segments in proteins using circular dichroism spectroscopy[J].Protein Science,1999,8(2):370-380.

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-28

目录

    /

    返回文章
    返回