Study on adsorption of Cu2+ and Pb2+ by acid modified seedy melon peel
-
摘要: 利用酸改性籽瓜皮,使用扫描电子显微镜与红外光谱分析结构特征,并研究酸度、吸附剂质量、时间、浓度对Cu2+与Pb2+吸附性的影响。结果表明:静态吸附符合二级动力学方程及Langmuir吸附等温线,吸附机理是自发的化学吸附过程,Cu2+与Pb2+最大吸附量分别为14.72、41.69 mg/g;最佳吸附条件是:p H4,料液比2.5 g/L,吸附时间200 min。在流动性吸附应用中,对低浓度Cu2+与Pb2+吸附,酸改性籽瓜皮具有较快的吸附速度,吸附率及解吸率均很高,可重复使用,循环次数大于10次。Abstract: Using acid to modify seedy melon peel,the adsorbent structure characteristics was analyzed by scanning electron microscope and infrared spectroscopy. The effect of concentration,adsorbent quality,time and acidity on the adsorption of Cu2+ and Pb2+ was studied. Experimental results showed that the static adsorption accorded with the Pseudo- second- order kinetic and Langmuir adsorption isotherm,adsorption mechanism was spontaneous chemical adsorption process.Maximum adsorption capacity of Cu2+ and Pb2+ was calculated,which was 14.72 mg / g and 41.69 mg / g.The optimum adsorption conditions was found that p H was 4,the ratio of material to liquid ratio was 2.5 g / L,the adsorption time was 200 min.In the application of flowing adsorption,acid modified seedy melon had faster adsorption speed in low concentrations,high adsorption and desorption rate,also it could be reused,cycle number was more than 10 times.
-
Keywords:
- seedy melon peel /
- adsorption /
- desorption /
- adsorption isotherm /
- adsorption kinetics
-
[1] 袁嫦静.理性、科学地直面中国食品安全持久战(上)—2014年食品安全热点科学解读[J].食品工业科技,2015,36(3):22-26. [2] Li Z,Ma Z,van der Kuijp T J,et al.A review of soil heavy metal pollution from mines in China:pollution and health risk assessment[J].Science of the total environment,2014,468:843-853.
[3] 韩锐,叶盛权,吉宏武,等.壳聚糖和菠萝皮渣纤维素交联复配物对铜离子的吸附特性研究[J].食品工业科技,2012,33(11):83-85. [4] 杜磊.芹菜渣对Pb2+的吸附[J].食品与发酵工业,2011,37(10):100-104. [5] 康小虎,唐德平,郭燕花,等.香蕉皮吸附剂的制备及其对Cr6+的吸附参数研究[J].食品工业科技,2014,35(11):127-130. [6] Panneerselvam P,Morad N,Tan K A.Magnetic nanoparticle(Fe3O4)impregnated onto tea waste for the removal of nickel(II)from aqueous solution[J].Journal of hazardous materials,2011,186(1):160-168.
[7] Huang K,Zhu H.Removal of Pb2+from aqueous solution by adsorption on chemically modified muskmelon peel[J].Environmental Science and Pollution Research,2013,20(7):4424-4434.
[8] Altun T,Pehlivan E.Removal of Cr(VI)from aqueous solutions by modified walnut shells[J].Food Chemistry,2012,132(2):693-700.
[9] 赵多勇,李应彪,翟金兰,等.籽瓜系列产品的开发现状与存在问题[J].北方园艺,2008,4:100-102. [10] 杨成德.籽瓜中提取果胶的工艺研究[J].应用化工,2005,34(1):59-60. [11] 梁琪,蒋玉梅.籽瓜瓜皮中果胶的提取及脱色研究[J].食品工业科技,2002,23(10):48-49. [12] 罗资琴,李士雨,杨成德,等.籽瓜中提取果胶的工艺研究[J].新疆师范大学学报:自然科学版,2006,25(1):45-48. [13] 姜丽娜,但建明,周文斌,等.微波辅助提取籽瓜皮果胶工艺的研究[J].石河子大学学报:自然科学版,2010,28(3):353-356. [14] 刘金郎,刘建华.籽瓜皮中果胶的提取及脱色技术研究[J].食品工业科技,2007,第5期(05):204-205. [15] 孟祥和.重金属废水处理[M].北京:化学工业出版社,2002:11-115. [16] 近藤精一.吸附科学[M].北京:化学工业版社,2006:10-104. [17] 王喜洋.果胶修饰的磁性纳米材料吸附剂的制备及其去除重金属的研究[D].长沙:湖南大学,2012. [18] 倪平.改性柚皮纤维素的制备及其对金属离子Cd2+的吸附研究[D].武汉:华中农业大学,2011. [19] 张忠忠.纤维素基吸附剂对水中Pb2+的吸附性能研究[D].天津大学,2012. [20] Wu C H,Kuo C Y,Guan S S.Adsorption of heavy metals from aqueous solutions by waste coffee residues:kinetics,equilibrium and thermodynamics[J].Desalination and Water Treatment,2014(ahead-of-print):1-9.
[21] 党艳.生物质廉价吸附材料对Cr(Ⅵ)和染料的吸附性能及机理研究[D].西安:西北大学,2011. [22] 党子建.荸荠皮渣改性为染料色素及重金属离子吸附剂的研究[D].广州:华南理工大学,2013. [23] 薛红琴,荆肇乾.低成本生物材料去除废水中铅的研究探讨[J].工业水处理,2011,31(10):6-9. [24] 高庭艳.食用菌废弃物对镉和铅的生物吸附研究[D].中国科学院水利部成都山地灾害与环境研究所,2008. [25] 郭逗逗,庞浩,刘海露,等.超声波辅助改性竹粉吸附剂的制备及对铅离子的吸附研究[J].林产化学与工业,2013,33(6):1-6. [26] 刘恒,王建龙,文湘华.啤酒酵母吸附重金属离子铅的研究[J].环境科学研究,2002,15(02):26-29. [27] 林海,曹丽霞,陈月芳,等.香菇培养基废料吸附矿山酸性废水中铜离子[J].北京科技大学学报,2013,35(9):1119-1125. [28] 于艳,黄凤远.改性稻草颗粒对铜离子的吸附研究[J].材料导报,2013,2(2):89-91.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: